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Abstract: Mapping aboveground woody biomass (AGB) on abandoned agricultural land (AAL) is
required by relevant stakeholders to monitor the spatial dynamics of farmland afforestation, to assess
the carbon sequestration, and to set the appropriate management of natural resources. The objective
of this study was, therefore, to present and assess a workflow consisting of (1) the spatial identification
of AAL based on a combination of airborne laser scanning (ALS) data, cadastral data, and Land Parcel
Identification System data, and (2) the prediction of AGB on AAL using an area-based approach and
a nonparametric random forest (RF) model based on a combination of field and ALS data. Part of
the second objective was also to evaluate the applicability of (1) the author-developed algorithm
for the calculation of ALS metrics and (2) a single comprehensive RF model for the whole area of
interest. The study was conducted in the forest management unit Vígl’aš (Slovakia, Central Europe)
covering a total area of 12,472 ha. Specifically, five reference areas consisting of 11,194 reference
points were used to assess the accuracy of the spatial identification of AAL, and seventy-five ground
reference plots were used for the development of the ALS-based AGB model and for assessing the
accuracy of the AGB map. The overall accuracy of the spatial identification of AAL was found to be
93.00% (Cohen’s kappa = 0.82). The difference between ALS-predicted and ground-observed AGB
reached a relative root mean square error (RMSE) at 26.1%, 33.1%, and 21.3% for the whole sample
size, plots dominated by shrub species, and plots dominated by tree species, respectively.

Keywords: monitoring of natural resources; farmland afforestation; airborne LiDAR; area-based
approach; machine learning; random forest

1. Introduction

Changes in the landscape related to the abandonment of agricultural land represent a problem in
many regions of the world. This phenomenon is mainly notable in countries of Eastern and Central
Europe, where the formerly intensively worked farmland has been abandoned due to deep social
and political changes [1,2]. Moreover, the process of abandonment is intensified by the complicated
ownership structure of land parcels (defragmentation), which leads to the loss of active management,
especially in mountainous areas with less-productive soils. Here, the relevant drivers of agricultural
land abandonment could also be the elevation, slope, erosion, clime, and fertility [3,4].

Uncontrolled cessation of agricultural production and the subsequent afforestation of agricultural
land through forest succession, especially on land with good soil quality, is a serious challenge for

Remote Sens. 2020, 12, 4189; doi:10.3390/rs12244189 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-8379-5635
https://orcid.org/0000-0001-8434-7527
http://dx.doi.org/10.3390/rs12244189
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/24/4189?type=check_update&version=2


Remote Sens. 2020, 12, 4189 2 of 17

effective natural resource management and environmental policy. Primarily, this phenomenon leads
to the loss of agricultural land and has therefore had a tremendous impact on food security and
local livelihoods [5]. Negative impacts on soil chemical composition due to higher carbon dioxide
sequestration have also been identified [6]. Moreover, the restoration of abandoned agricultural land
(AAL), already occupied by forest vegetation, is very difficult, time consuming, and expensive. On the
other hand, in many environmental aspects, including biodiversity, the balance of positive and negative
effects of land abandonment is still discussed [7].

Because of the causal effects related to the enormous scope of the present processes of land
abandonment in many regions of the world, it is necessary to continuously monitor the aboveground
woody biomass (AGB) on AAL and to include it in the global carbon storage and cycle [8]. However,
ground-based monitoring is significantly limited for these purposes due to the fragmented occurrence
and dynamics of land abandonment, especially in larger areas [9]. Remote sensing (RS) technologies
represent a more effective way to acquire relevant information about AAL ecosystems. Specifically,
airborne laser scanning (ALS) data provide an opportunity to complement ground-based monitoring [10].
This is primarily because ALS systems can penetrate a laser beam through even dense and multi-layered
vegetation canopies to the ground, and ALS data can then be used to directly estimate a spatially explicit
three-dimensional vegetation structure with submeter accuracy [11]. However, classification of the
composition of tree species and nationwide AGB estimations using only ALS data has proven to be a
difficult task. Therefore, airborne and/or spaceborne optical and/or radar data are often used for tree
species classification [12,13] and to upscale local or regional estimations to the national level [14,15].

A comprehensive overview of RS-based applications focused on the spatial identification of AAL
was published by [8]. According to this review, satellite platforms were identified as the most frequently
used data source for AAL identification (e.g., Landsat, Terra Aqua, SPOT, Sentinel-2, Envisat-ASAR,
RADARSAT-2, and Sentinel-1) [16,17]. Specifically, the majority of studies identified AAL using
object-based image analysis with or without a fusion of machine learning algorithms [18,19] based
on vegetation indexes, such as the normalized vegetation index (NDVI) [20,21]. Although ALS data
were used less frequently as a primary data source [22,23], the combination of optical and/or radar
data with ALS data was defined as a prospective solution for RS-based identification of AAL [8].
While many studies have examined the RS-based spatial identification of AAL, less attention has been
paid to predicting AGB specifically in these areas. According to available studies, the relevant features
extracted from high-resolution optical images of pixel or multi-pixel scale were mostly used for these
purposes [24,25]. However, ALS [26] as well as a combination of other active and passive sensors (e.g.,
Landsat and PALSAR [27]) have been also investigated in AAL-specific ecosystems. For example, [28]
assessed the performance of five vegetation indices, fractional green vegetation cover, and fractional
coverage of vegetation in order to monitor shrub vegetation. [29–31] proposed to use an application of
the crown volume index or NDVI in the case of woody vegetation.

Regardless of the source of RS data and the type of extracted features from this data, an area-based
approach (ABA) is the most appropriate method for AGB estimation over large areas [32,33]. This is
because ABA makes it possible to obtain model-unbiased estimates of AGB [34], and the requirements
for RS data (e.g., point cloud density) or hardware are relatively low [32]. On the other hand, up-to-date
ground data are still needed for preparing a model, and when tree-level information, such as stem
number or species, is desired, ABA is less suitable [35]. In ABA, the response variable (e.g., AGB)
is estimated through co-located metrics (e.g., height, intensity, and density). These metrics can be
directly or indirectly computed from the RS data. Specialized software packages, such as FUSION
(United States Forest Service, [36]) or LAStools (rapidlasso GmbH, [37]), are most commonly used for
this purpose. However, the submodule “Point Cloud Metrics” implemented in the reFLex software
(National Forest Centre, [38,39]) represents the newest alternative. This software includes only original
sets of algorithms scripted in C# programming language and ALS metrics can be computed from first,
last, or all returns considering the height thresholds defined by user. Regarding the development
of final predictive models, the nonparametric machine learning techniques, such as random forest
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(RF), have the ability to identify complex relationships between predictor and response variables,
therefore showing their superiority or promising level of performance over parametric methods for the
estimation of AGB [40–42].

Many studies have used different RS data and modelling methods to predict AGB in forest, shrub,
or grassland ecosystems (e.g., [10,32–35,38–42]). However, as far as we know, relatively few studies
(e.g., [22,23,26]) have dealt with the spatial identification of AAL and prediction of AGB on AAL using
ALS data. Moreover, an author-developed algorithm for the calculation of ALS metrics, which was
used in this study, has not yet been broadly tested and reported. Therefore, the overall objective of this
study was to present and asses a workflow consisting of (1) the spatial identification of AAL based on
a combination of ALS data, cadastral data, and Land Parcel Identification System (LPIS) data, and (2)
the prediction of AGB on AAL using ABA and a nonparametric RF model based on a combination of
field and ALS data. Here, the applicability of (1) the author-developed algorithm for the calculation of
ALS metrics and (2) a single comprehensive RF model for the whole area of interest was investigated,
as well.

2. Materials and Methods

This study was conducted in the territory of the forest management unit Vígl’aš (Figure 1) located
in central Slovakia (48◦32′N, 19◦21′E), with a total area of 12,472 ha. The dissected hill lands and
uplands of this area, based on Neogene volcanic andesite rocks with medium fertile Cambisols,
have a moderately warm and moderately humid climate with a mean yearly temperature of 6 ◦C.
The mean yearly atmospheric precipitation is 700–800 mm. Elevated parts of the uplands are covered
by oak–hornbeam or sub-mountainous beech woods. Much of the dissected and inclined uplands were
traditionally agriculturally exploited on small plots of arable land, meadows, pastures, and orchards,
especially around dispersed settlements. The agriculture of the uplands concentrated on the growing
of feed cereals, potatoes, and fodders, while the extensive grasslands were exploited for cattle and
sheep breeding.

Figure 1. Study area, including 5 reference areas (reference points were visually interpreted and
applied to assess the accuracy of the spatial identification of the abandoned agricultural land (AAL))
and 75 reference plots (shrub and tree vegetation was measured and reference data were used for the
development of an airborne laser scanning (ALS)-based aboveground woody biomass (AGB) model
and for assessing the performance of the AGB map). Reference plots were divided into two groups
considering the relative dominance of shrub or tree species (ratio of the first group >75%).
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2.1. Ground Data

A total number of 75 reference plots with a 10 m radius were established over a determined
area of AAL in 2018 (Figure 1). These plots were divided into two groups considering the relative
dominance (ratio > 75%) of shrub or tree species (Table 1). In the first group, 30 shrub–tree plots were
predominantly covered by Blackthorn (Prunus spinosa L.) and Dog rose (Rosa canina L.). In the second
group, 45 tree–shrub plots were predominantly covered by European beech (Fagus sylvatica L.), Black
locust (Robinia pseudoacacia L.), Norway spruce (Picea abies L.), and Wild cherry (Prunus avium L.).

Table 1. Summary statistics for the ground plots.

Samples n A (ha)
Canopy Height (m) AGB (t ha−1)

Mean Std Mean Std

All plots 75 2.36 15.38 13.67 231.51 221.73
Shrub-tree plots * 30 0.94 9.33 8.66 41.09 18.85
Tree-shrub plots * 45 1.42 36.00 3.56 358.45 203.09

Note: n, sample size; A (ha), area in hectares; Std, standard deviation. * Ratio of the first tree. species group >75%.

We used a mapping-grade GNSS receiver, i.e., the Topcon FC-25A (Topcon Positioning Ltd.,
Staffordshire, Great Britain), to record the position of the ground plot centers. A positional error ranged
from 1.44 to 6.25 m [43]. In this context, the position of each plot was further manually corrected
using aerial images and ALS data. The matching points included uniquely identifiable objects using
their position, shape, or height (e.g., position and height of dominant trees or shrubs). After manual
correction, sub-meter horizontal accuracy was expected for all plots.

The AGB for each ground plot (AGB_GR) was calculated using the newly developed model
for shrub vegetation and an existing model for tree species. The model for the quantification of
shrub biomass was developed based on empirical material from the study area. For this purpose,
we measured the mean height of canopy surface and total weight of the above ground vegetation from
20 square plots covering a total area of 80 m2. The power function has proven to be most suitable
for AGB derivation based on these variables. In this way, the AGB model expresses the relationship
between AGB per 1 m2 and the mean canopy height of the shrubs (root mean square error (RMSE)
= 23.9%). However, this model was created only to calculate the AGB of blackthorn (Prunus spinosa
L.), that it is the most abundant shrubby species in the study area (75.9% of the total shrub biomass).
There is a statistical assumption that this model also represents the AGB of other, less represented
shrub species (Table 2). The model for the quantification of tree biomass was developed in 1991 [44,45].
An empirical material includes 18,087 sample trees from areas across Slovakia and Czechia. The model
predictors are tree height and tree diameter for selected tree species (RMSE = 9%).

Table 2. An allometric model for quantifying aboveground woody biomass of shrubs on abandoned
agricultural land.

Vegetation Form Model Form n A (m2) R2 %RMSE p-Value

Shrubs species AGB = 1.2417 × h1.45361 20 80.0 0.81 23.94 <0.001

Note: AGB, aboveground woody biomass, in kilograms per square meter; h, mean canopy height in meters; n,
sample size; A, area in square meters; R2, coefficient of determination; %RMSE, root mean square error in percent;
p-value of F-test, null hypothesis is rejected at α = 0.05.

2.2. Airborne Data

ALS data acquisition was performed in September 2016 using a Leica ALS 70 CM scanner (Leica
Geosystems AG). The study area was scanned from an altitude of 1290 m with a 43◦ field of view
and a 281.8 kHz laser pulse repetition rate. The resulting vertical standard error was 0.05 m and the
average density of the point cloud reached 20.5 point/m2. In further processing, positive and negative
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outliers were removed (points with disproportionately higher or lower altitudes than the altitude of
neighboring tens points). Subsequently, a normalized digital surface model (nDSM) of 0.5 m resolution
was generated as a result of the subtraction of the digital surface model (DSM) and the digital terrain
model (DTM). The DTM was interpolated using points registered as last returns only and classified
as ground. The DSM was interpolated using points registered as first returns only. The process was
conducted in SCOP++ software environment (Trimble).

Multispectral aerial image acquisition was performed in parallel with the ALS using a Leica
RCD30 medium-format camera (Leica Geosystems AG). The available motion range was expected to
be ±0.15 mm. In further processing, the images were corrected, orthorectified, and merged, which
resulted in the creation of natural-color (RGB) and color-infrared (CIR) orthophoto images with a
spatial resolution of 0.2 m and a 16-bit color depth.

2.3. Additional Geospatial Data

The additional geospatial data were imported from the cadastral database and LPIS. These data
sources are internationally accepted and express the dimensions and spatial location of land parcels
described in legal documentation. While the cadastral database contains, among others, general
information about the land use of parcels (e.g., agricultural land), LPIS allows us to define agricultural
land with active management (i.e., farmland eligible for payments for active agricultural activities) [46].
On the other hand, the limited spatial and temporal resolution of both the cadastral database and LPIS
may not be sufficient to identify the fragmented occurrence and dynamics of forest succession on AAL.

2.4. Workflow

The workflow for mapping AGB on AAL based on a combination of field and ALS data is shown
in Figure 2 and described in detail in the following sections.

Figure 2. Flowchart for mapping aboveground woody biomass (AGB) on abandoned agricultural land
(AAL): (a) Spatial identification of AAL; (b) mapping AGB on AAL. Note: ALS, airborne laser scanning;
LPIS, land parcel identification system; nDSM, normalized digital surface model; DAP, digital aerial
photography; GR, ground.

2.4.1. Spatial Identification of Abandoned Agricultural Land

A vegetation class [47] was generated as a result of the classification and filtration of the ALS data.
The process was conducted in the SCOP++ software environment (Trimble) using a robust filtering
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method [48]. The vegetation class was then used to create a vegetation map in raster format with a
0.5 m resolution representing the current state of total vegetation in the study area.

As the estimation of AGB was focused exclusively on AAL, we reduced the vegetation map in
three consecutive steps (Figure 2a). For this purpose, we adopted the definition from [49,50], according
to which agricultural land is generally represented by arable land, permanent crops, permanent
meadows, and permanent pastures, while this agricultural land is considered to be abandoned when it
has no longer has any farming functions. Firstly, we excluded forests, settlements, wetlands, and others
(e.g., communications) using cadastral data. Secondly, we excluded farmland with active management
using LPIS data. Finally, we removed pixels smaller than 1.5 m using nDSM. The height threshold was
set to reflect the range of commonly accepted definitions of AAL classes [51] with the goal of ensuring
that herbaceous formations were excluded from the final AAL map. In this way, we generated an AAL
map of 0.5 m resolution that includes areas of AAL overgrown by medium-sized vegetation (shrub
formations) and by tall vegetation (tree formations).

2.4.2. Mapping Aboveground Woody Biomass on Abandoned Agricultural Land

The ALS metrics from all 75 reference plots, as candidate variables for predictive AGB models,
were computed from ALS data for specific areas of each reference plot using the author-developed
submodule “Point Cloud Metrics” implemented in the reFLex software environment. In this study,
we computed numerous height metrics, applying a 1.5 m height threshold (Table 3). The spatial
location of plots was defined by a polygon shapefile.

Table 3. Airborne laser scanning canopy height metrics considered as candidate variables for the
predictive aboveground woody biomass model.

Variable Description Variable Description

HMIN Height minimum HVAR Height variance
HMAX Height maximum HSTD Height standard deviation
HRAN Height range (H90-H10) HCOV Height coefficient of variation

HCRR Canopy relief ratio
(HMEAN-HMIN)/(HMAX-HMIN) HSKEW Height skewness

HMEAN Height mean HKURT Height kurtosis
HMOD Height mode HP01-99 Height 1st–99th percentile

The nonparametric model for AGB prediction was developed based on machine learning methods
using the R package RandomForest [52]. The number of predictor variables performing the data
partitioning at each node (mtry) was defined by the number of highly uncorrelated preliminary sets of
ALS metrics, and the total number of trees to be grown in the model run (ntree) was set to 1000 because,
in this setting, RF avoids unnecessary processing time [53]. Even though machine learning algorithms
are usually not sensible for collinearity, normality, or linearity, in order to reduce a multicollinearity
effect, we used two techniques for predictor selection. First, we used Pearson’s correlation analysis
to identify highly correlated metrics that were related to each other as well as to ground-based AGB.
Second, we used principal component analysis (PCA) to select a final set of predictor variables. In order
to correctly apply PCA, we normalized the range of ALS metrics using the unit variance scaling
technique. Here, we calculated the standard deviation for each variable and obtained the scaling
weight as the inverse standard deviation. Subsequently, each variable was multiplied by the standard
deviation; each scaled variable then had equal variance [54]. A correlation matrix derived from the
normalized ALS metrics provided the basis for the eigenvalue and eigenvector calculations and for the
subsequent determination of the principal component (PC) scores. By analyzing the eigenvectors and
the PC score, we assessed the contribution of each ALS metric and used those with the highest loading
on the PCs as the input variables for the final AGB model. Finally, the ALS-based AGB (AGB_ALS)
was estimated using the developed predictive models within all reference plots.
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The regular 20 × 20-m grid covering the area defined by the AAL map was created and the same
metrics as in Table 3 were computed for all grid cells (85,648 cells). The size of the grid cells (400 m2) was
set to reflect the size of the ground plots (314 m2) and to allow upscaling of the ALS-based estimations
through satellite data in future work (e.g., Sentinel 1, Sentinel 2, and ALOS 2). The ALS-based AGB
was predicted for all grid cells through the developed predictive RF model. In this way, the map of the
ALS-based AGB with a pixel size of 20 m was generated, covering AAL across the whole study area.

2.4.3. Validation of the Models and Maps

The accuracy of the ALS-based spatial identification of AAL was assessed by an error matrix,
including calculations of the producer’s, user’s, and overall accuracies, as well as the Cohen’s kappa [55].
We used five reference areas (1 × 1 km) located in the center, northwest, northeast, southwest, and
southeast of the study area (Figure 1). A total of 11,194 reference points located within the reference
areas in the regular grid (20 × 20 m) but not overlapping the excluded areas (e.g., forest) were applied
to calculate the error matrix. For this purpose, we applied additional geospatial datasets (Section 2.3).
Specifically, (1) reference points were displayed concurrently on RGB and each point was interpreted
visually as representing the AAL class or another class and, independently, (2) reference points were
displayed concurrently on the ALS-based AAL map and were automatically selected by location as
representing the AAL class or another class.

The accuracy of the ALS-based mapping of AGB on AAL was assessed by comparing the
ALS-predicted AGB (AGB_ALS) and the ground-observed AGB (AGB_GR). Here, we used all 75
reference plots. The value of AGB_GR for each reference plot was obtained by ground measurement
(Section 2.1). The value of AGB_ALS for each reference plot was obtained using a zonal function in
the ArcGIS environment (ESRI). Specifically, we calculated the average of all cells in the ALS-based
AGB map (Section 2.4.2) that belong to the zone defined by the reference plot. We are convinced
that the value of AGB extracted from the final map and not computed directly from the predictive
model is sufficiently independent of the training data, and the proposed approach is an objective
alternative to out-of-sample testing, such as cross-validation. Subsequently, bias (Equation (1)) and
RMSE (Equation (2)) were used to assess the model’s performance. The relative %bias and %RMSE
were calculated as the ratios of their absolute values and the arithmetic average of the reference
data. Additionally, the regression function, coefficient of determination (R2), and F-test of statistical
significance of the regression model (p-value) were calculated to assess the strength of the relationship
between AGB_ALS and AGB_GR. Finally, we used (1) a t-test when a normal distribution of mean
differences was confirmed or (2) a Wilcoxon test when a normal distribution of mean differences was
not confirmed to assess the significance of differences (p-values < 0.05).

Bias =
1
n

n∑
i=1

(ŷi − yi), (1)

RMSE =

√√ n∑
i=1

(ŷi − yi)
2/n, (2)

where n is the number of reference (ground) plots, yi is the ground-observed AGB for plot i, and ŷi is
the ALS-predicted AGB that was extracted from the final AGB map for the area of plot i.

3. Results

3.1. Performance of the Spatial Identification of Abandoned Agricultural Land

In the error matrix of Table 4, the user’s, producer’s, and overall accuracies, as well as the Cohen’s
kappa related to the ALS-based determination of AAL, are presented. The overall error, the error of
omission, and the error of commission achieved values of 7.0%, 9.7%, and 7.8%, respectively.
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Table 4. Error matrix resulting from the spatial identification of the abandoned agricultural land (AAL).

Reference Data

Classification

Class AAL Other Total User’s
Accuracy (%)

AAL 2672 276 2948 90.64
Other 508 7738 8246 93.84
Total 3180 8014 11,194

Producer’s
Accuracy (%) 84.03 96.56 93.00

Producer’s Accuracy: 90.29%; User’s Accuracy: 92.24%;
Overall Accuracy: 93.00%; Cohen’s Kappa: 0.82.

3.2. Performance of Mapping the Aboveground Woody Biomass on Abandoned Agricultural Land

3.2.1. Predictor Variable Selection

A total of 17 of the 26 ALS metrics showed a very strong correlation (r > 0.9). In order to reduce
any multicollinearity effect, we selected HP99 as one of the highly correlated metrics, because HP99 (1)
approached the highest correlation to AGB (r = 0.94) and (2) provided the broadest combination of
other remaining non-highly correlated metrics (r ≤ 0.9) (Table 5).

Table 5. Pearson correlations among the selected airborne laser scanning metrics.

HMIN HCRR HVAR HCOV HKURT HP01 HP05 HP20 HP99

HMIN 1
HCRR 0.26 * 1
HVAR 0.17 0.50 *** 1
HCOV −0.18 −0.46 *** 0.11 1

HKURT −0.10 −0.28 * −0.26 * −0.15 1
HP01 0.37 ** 0.56 *** 0.10 −0.46 *** 0.12 1
HP05 0.41 *** 0.74 *** 0.21 −0.54 *** 0.12 0.85 *** 1
HP20 0.35 ** 0.89 *** 0.49 *** −0.49 *** −0.01 0.69 *** 0.88 *** 1
HP99 0.33 ** 0.85 *** 0.80 *** −0.20 −0.18 0.52 *** 0.70 *** 0.89 *** 1

Note: *** p < 0.001; ** p < 0.01; * p < 0.05. If there is no *, then p > 0.05.

HP99, HP20, HP05, HP01, HMIN, HKURT, HCOV, HVAR, and HCRR were included in the PCA.
The three PCs accounted for 94.6% of the total variance contained in the selected set of nine ALS
metrics (PC1 = 63.0%, PC2 = 21.2%, and PC3 = 10.5%). The first PC was mainly influenced by height
within different intervals and showed loadings by HP99, HP01, HP05, HP20, and HCRR. The second
and third PCs were mainly influenced by height variability and showed loadings by HPKURT, HCOV,
and HVAR. HMIN achieved minimal value of variable importance, loading as well as correlation to
AGB (r = 0.2) and was discarded from the final model (Figure 3).
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Figure 3. Predictor variable selection: (a) Variable importance based on the random forest model;
(b) eigenvector loadings based on principal component analysis. Note: PC, principal component.

3.2.2. Accuracy of the AGB Map

The ALS-based approach evaluated the AGB at 227.0 ± 209.1 t ha−1 within the whole sample size,
38.8 ± 13.8 t ha−1 within the shrub–tree plots, and 349.8 ± 186.8 t ha−1 within the tree–shrub plots by using
an RF model with eight predictors. The overall difference between the ALS-predicted and ground-observed
AGB reached a relative RMSE at 26.1%, 33.1%, and 21.3% for the whole sample size, the shrub–tree plots,
and the tree–shrub plots, respectively. Despite slightly underestimating the predictions, the ALS-predicted
AGB in all samples did not differ significantly from the ground-observed AGB (p-values > 0.05) (Table 6).
Moreover, the relationship between the ALS-predicted and ground-observed AGB was very high (R2 = 0.92)
(Figure 4). A selected part of the AGB map is displayed in Figure 5.

Table 6. Differences between the airborne laser scanning (ALS)-predicted and ground-observed
aboveground woody biomass.

Samples n %bias %RMSE
Normality Test Paired Test

W p-Value Z p-Value

All plots 75 −1.93 26.05 0.72 0.00 0.56 0.57
Shrub–tree plots 30 −5.57 33.05 0.92 0.04 0.34 0.73
Tree–shrub plots 45 −2.43 21.32 0.78 0.00 0.02 0.98

Note: n, sample size; %RMSE, relative root mean square error; W, test statistic of the Shapiro–Wilk normality test; Z,
test statistic of the Wilcoxon matched pairs test; p-value, null hypothesis is rejected at α = 0.05.

Figure 4. Relationship between the airborne laser scanning (ALS)-predicted and ground-observed
aboveground woody biomass (AGB) in tons per hectare (t ha−1). The dashed line represents a
1:1 correspondence.
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Figure 5. A map of the aboveground woody biomass (AGB) on abandoned agricultural land (north
part of the study area).

4. Discussion

The motivation and hypothesis of this study focused on the presentation and assessment of a
workflow for the spatial identification of AAL, and the mapping of AGB on identified AAL resulted
mainly from the following points:

(1) Uncontrolled cessation of agricultural production and the subsequent afforestation of agricultural
land through forest succession is a serious challenge for the effective management of
natural resources.

(2) Mapping AGB on AAL is strictly required by relevant stakeholders (e.g., farmers, foresters, parcel
owners, environmentalist, and policy-makers). This is primarily because these geospatial data
make it possible to understand the state and trend of afforestation/deforestation in related regions
and subsequently to implement a proper policy focused on the reduction of the negative effects
of giving up agricultural production, support for sustainable forest management, or aimed at
obtaining financial support.

(3) RS technologies, especially ALS, represent an effective way to predict AGB on AAL and provide an
opportunity to complement ground-based monitoring. Here, the ABA and RF models generally
allowed us to obtain unbiased estimates of AGB and, in addition, the point density requirements
of ALS data, hardware performance, and processing time are lower than with other methods.

4.1. Spatial Identification of Abandoned Agricultural Land

In this study, AAL was spatially identified based on an ALS-derived vegetation map, which was
additionally corrected by cadastral and LPIS data. The overall accuracy of this process achieved a
value of 93.00% (Cohen’s kappa = 0.82), and the final map of a 0.5 m resolution included farmland
without agricultural activities and overgrown by shrub and tree formations. In this way, we have
significantly improved the results of AAL identification, which would otherwise be related only to the
commonly used data with limited spatial and temporal resolution (i.e., cadaster).

Comparable datasets and methods were used by [23,56–59]. These studies confirmed the
applicability of ALS data from both leaf-on and leaf-off seasons, and the overall accuracy of the AAL
map with a 1.0 m resolution was 90–95%. However, in all cases, an ancillary topographic database (e.g.,
cadaster) did not contain information about the state of agricultural activities, and in this case [23,59],
the AAL was identified using object-based image analysis.

Most of the other studies tended to use optical images at various spatial resolutions to spatially
identify AAL. This is because they are generally more accessible for large areas than ALS data. Here,
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an application of spectral or multiscale features extracted from aerial [60] or satellite images, such
as GF-2 [61], Quick Bird [62], and Landsat [63], resulted in an overall accuracy of 77–91%. Several
studies have also demonstrated the potential of radar data as an alternative to optical images for the
identification of AAL. Synthetic aperture radar systems provided all-weather mapping capability [64],
but the overall accuracy of AAL identification varied from 63% to 93% [18,65] and thus did not exceed
the limits of optical images. Moreover, the limited spatial resolution of both optical and radar images
may not be sufficient to identify the fragmented occurrence and dynamics of land abandonment.

In this context, our results showed that ALS data allowed us to map AAL with higher classification
accuracy and spatial resolution than other RS platforms. Moreover, the process of AAL identification
is largely automated and there is also a potential to improve the process of identification using some
qualitative variable of ALS data (e.g., intensity) [66,67]. An application of multispectral ALS data could
be very useful as well. Point clouds at three different laser wavelengths represent a new promising
category of ALS data that could improve the results of land cover classification [68,69]. On the other
hand, acquiring ALS data is associated with additional demands on budget and time, especially if a
regular update at the regional/national level is requested. Here, the thorough and long-term preparation
of flight missions should ensure the optimization of additional cost related to ALS application.

4.2. Mapping Aboveground Woody Biomass on Abandoned Agricultural Land

We proposed and assessed the workflow for the prediction of AGB on AAL comprising the
techniques of ABA and machine learning, which are based on a combination of field and ALS data.
The study findings showed that AGB located in specific areas of AAL can be predicted on the basis
of the proposed workflow with a precision comparable to that obtained in other studies focusing on
forest or shrub ecosystems.

The ALS-based AGB estimation reached a relative RMSE at 26.1% for all plots, 33.1% for plots with
a predominance of shrub species, and 21.3% for plots with a predominance of tree species. Predictive
models included field-observed AGB and a set of selected ALS data-calculated metrics. Specifically,
we selected HP99, HP20, HP05, HP01, HKURT, HCOV, HVAR, and HCRR as the most important ALS
metrics for AGB prediction. These metrics accounted for 94.6% of the total variation and the developed
comprehensive RF model was unbiased for the whole sample size. Thus, there was no need to create
two separate models, such as the shrub ecosystem-specific model and the tree ecosystem-specific model.
In addition to the contribution of RF, this is primarily because the combination of selected ALS metrics
precisely described the specific vertical structure of both shrub–tree plots and tree–shrub plots. First,
while the shrub–tree plots contained more than 60% of the ALS points in the first quarter of the total
height, most of the ALS points of the tree–shrub plots were located within the fourth quarter of the total
height (Figure 6). Second, the height variability of the shrub–tree plots was nine times higher than the
height variability of the tree–shrub plots, but AGB variability was relatively similar (Table 1). Here, a
combination of HP99, HP20, HCOV, and HVAR was the most beneficial and sufficiently sensitive for the
representation of different structural parameters of these vegetation formations (Figure 3). In addition,
the suitability of most of these metrics has also been confirmed by other studies, such as [42] in Brazilian
eucalyptus plantations (RMSE = 10–28%), [70] in Canadian boreal forests (RMSE = 20–29%), [71] in
Chinese subtropical forests (RMSE = 22–23%), [72] in Spanish Mediterranean forests (RMSE = 3–39%),
or [26] in the xeric shrub steppes of southwest Idaho (RMSE = 36–43%).

Although the application of ALS data in this study demonstrated sufficient applicability for
mapping AGB on AAL, it is generally accepted that data fusion methods using multi-sensor RS data
sources allow AGB predictions for large areas while maintaining accuracy and reducing the associated
costs. For example, ALS-based AGB estimations could be expanded through data from Landsat-8
and Sentinel-1 [73,74], Landsat-7 [75], Sentinel-2 [76–78], as well as MODIS [79] sensors. The overall
accuracy of AGB prediction varied from 25% [73] to 49% [79] in these studies. However, in all cases,
the study area did not contain AAL. In this context, we include in the discussion our own and
previously unpublished conclusions from a research project supported by the European Space Agency,
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entitled “Advanced Techniques for Biomass Mapping in Abandoned Agriculture Land using Novel
Combination of Optical and Radar Remote Sensing Sensors”. The territory and time of the project
realization is fully consistent with the territory and time of realization of this study. The methodology
for AGB estimation and validation is similar, as well (i.e., Sections 2.4.2 and 2.4.3). However, the AGB
was predicted based on RF models consisting of ALS-based AGB prediction as the response variable
and the predictor variables included a set of the selected metrics derived from multi-sensor satellite
images (SAT), such as Sentinel 1 (leaf-off and leaf-on season), Sentinel 2 (leaf-off and leaf-on season),
and ALOS 2 (leaf-off season). In this way, we developed three individual models for each sensor and one
combined model for all sensors. In addition to the reasons mentioned in Section 2.4.2, RF was selected
also for the SAT-based AGB prediction due to its ability to handle high-dimensional and non-normally
distributed data. Here, a sample training dataset for the model development was created in a manner
that allowed for the AGB class proportions of the training data to be representative of actual AGB class
proportions in the landscape [80]. The overall accuracy of the SAT-based AGB estimation reached a
relative RMSE at 60.1%, 62.1%, and 81.2% for the Sentinel-2, Sentinel-1, and ALOS-2. The predictive
model consisting of selected metrics from all these sensors resulted in an overall accuracy of 62.1% in
terms of relative RMSE. Specifically, all models provided a systematic overestimation in AGB prediction
within the shrub–tree plots and a systematic underestimation in AGB prediction within the tree–shrub
plots. Thus, the developed SAT-based models were not able to describe the specific structure of the
shrub and tree ecosystems. We assume that the high variability in vegetation characteristics, especially
the density and the height of the shrubs and trees, could be the main reason for the relatively high
bias and RMSE values. The better results of the model based on Sentinel-2 data could be explained by
the presence of broadleaved species in the study area, which led to a higher difference in winter and
summer optical scenes compared to that of radar data. The lowest accuracy of the model based on
ALOS 2 data probably resulted from only one scene used for model development, while Sentinel-1
scenes were available for the whole vegetation cycle (i.e., leaf-off as well as leaf-on seasons). There are
several options to improve the results. For example, the possibility to include plots on managed
agricultural land, as well as plots from young forest stands, into the training dataset could be tested to
develop models with higher performance. Such an extended training dataset could help to train the
models that more precisely describe the whole range of AGB distribution. The development of different
ecosystem-specific (e.g., tree species group and vegetation type) models for the area of interest is also a
promising solution. However, this should be an objective of a detailed study focused specifically on
AGB prediction using multi-sensor satellite images.

Figure 6. Density metrics of (a) shrub–tree plots and (b) tree–shrub plots. An airborne laser scanning
data from each plot was divided into 10 height slices from low to high (RS01–10) and the proportion of
returns in each slice is the corresponding density metric.

5. Conclusions

This study selected an individual forest management unit located in central Slovakia that covered
12,472 ha as a study area to present the performance of the proposed workflow for mapping AGB on
AAL based on ABA, RF models, and a combination of field and ALS data. The results in the context of
existing studies indicate the following:
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(1) ALS data allowed for an automated and more accurate identification of AAL in terms of classification
accuracy (>90%) and spatial resolution (<1.0 m) than did other RS platforms [53–64]. Potential
improvements in process of AAL identification may be achieved using some qualitative variable of
ALS data (e.g., intensity) or alternatively through multispectral ALS data [65–68]. The additional
costs related to the application of ALS may be optimized by long-term survey planning.

(2) Cadastral and LPIS data allowed us to apply the legal spatial status of parcels and to identify
farmland without active agricultural activities. A combination of these data sources with the
high-resolution ALS-derived map of vegetation resulted in more objective identification of AAL.

(3) The authors’ algorithm implemented in the reFLex software was capable of providing relevant
point cloud metrics (i.e., height) at the reference plot level (75 reference plots) as well as at forest
management unit level (85,648 cells).

(4) ALS data, despite a slight underestimation (bias from −2% to −6%), allowed more accurate
prediction of AGB (RMSE < 33%) using ABA and the RF models than did other RS platforms [69–75].
Although the development of ecosystem-specific (e.g., tree species group and vegetation type)
models is generally recommended, the single comprehensive RF model based on height metrics
was sufficiently accurate for the whole area of interest (corresponding bias was not statistically
significant). The additional costs related to obtaining the field data necessary for the development
of the RF model may be optimized by the selection of a suitable sample design.

The description and performance assessment of the proposed workflow for mapping AGB on AAL
presented herein can serve as useful information for relevant stakeholders related to the management
of natural resources. We demonstrated that AAL can be identified and AGB on AAL can be predicted
with relevant accuracy in large areas through ABA, nonparametric RF models, and a combination of
field and ALS data. However, future research should include gradual testing of different RS data from
active as well as passive sensors in different forest environments to assess their applicability for the
practice of natural resource inventories.
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