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Abstract: Building extraction is a binary classification task that separates the building area from the
background in remote sensing images. The conditional random field (CRF) is directly modelled
by the maximum posterior probability, which can make full use of the spatial neighbourhood
information of both labelled and observed images. CRF is widely used in building footprint extraction.
However, edge oversmoothing still exists when CRF is directly used to extract buildings from
high spatial resolution (HSR) remote sensing images. Based on a computer vision multi-scale
semantic segmentation network (D-LinkNet), a novel building extraction framework is proposed,
named multiscale-aware and segmentation-prior conditional random fields (MSCRF). To solve the
problem of losing building details in the downsampling process, D-LinkNet connecting the encoder
and decoder is correspondingly used to generate the unary potential. By integrating multi-scale
building features in the central module, D-LinkNet can integrate multiscale contextual information
without loss of resolution. For the pairwise potential, the segmentation prior is fused to alleviate the
influence of spectral diversity between the building and the background area. Moreover, the local
class label cost term is introduced. The clear boundaries of the buildings are obtained by using the
larger-scale context information. The experimental results demonstrate that the proposed MSCRF
framework is superior to the state-of-the-art methods and performs well for building extraction of
complex scenes.
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1. Introduction

With the rapid development of city construction, buildings have become one of the most changeable
artificial target types in basic geographical data [1]. In recent years, many series of high-resolution
satellites have been launched worldwide. The availability and accessibility of HSR images have
been significantly improved [2]. The timely and accurate extraction of buildings from HSR is of
great significance for urban planning, disaster management, digital city and geographic database
updates [3,4].

In the 1980s, researchers began to study the basic theory of building extraction using remote
sensing images. In recent decades, many scholars worldwide have proposed a variety of accurate and
rapid building extraction methods. During this period, information was applied to building extraction
such as edge extraction, image segmentation, digital surface model (DSM) data, light detection and
ranging (LiDAR) point clouds, and the spatial information and features of HSR images [5]. In addition,
building extraction methods that use spatial information and features such as the geometry and texture
of HSR images were gradually developed. An a priori shape model of typical buildings with respect to
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their geometric attributes was introduced by Karantzalos and Paragios [6]. This model, which combines
level set segmentation, can achieve better extraction results, but its application in urban areas with
dense buildings is limited. Akgay et al. [7] combined probabilistic latent semantic analysis (PLSA)
and morphological analysis to identify features of HSR images, which can simultaneously extract
urban buildings, roads and vegetation areas, avoiding the difficulty of establishing regular geometric
shapes. However, the extracted building outline is irregular. A conditional random field (CRF) was
applied to building extraction in 2015. Li et al. combined pixel-level information and segmentation
level to identify roofs, which can improve the performance of roof extraction and can also effectively
handle complex-shaped buildings [8,9]. A CRF was developed on the basis of a Markov random field,
which eliminates the strict independence assumption of the Markov random field. Its good overall
nature can link local features well and realize the organic integration of bottom-up and top-down
target semantics. However, due to the lack of large-scale spatial interactive information modelling
capabilities of CRF, it easily produces different degrees of smoothing problems [10].

With the increasing maturity of deep learning technology, it is possible to learn representative
high-level features in images by training a large number of samples, and deep learning has also been
introduced into building extraction research. Vakalopoulou et al. [11] implemented remote sensing
image building target detection based on a convolutional neural network in 2015. Aiming at the
regular shape, diverse appearance and complex distribution of buildings, Chen et al. [12] designed a
27-layer-deep convolutional neural network with convolution and deconvolution to achieve pixel-level
extraction of buildings on high-resolution images. Deep learning networks have powerful feature
extraction capabilities. Complex neural networks have high extraction accuracy, but often require
considerable computing time, and the existing deep learning methods are not ideal for extracting
building boundaries with regular geometric structures.

The ability to use contextual information from CRF can compensate for the shortcomings of
deep learning in extracting buildings. Shrestha S et al. improved the full convolutional network by
introducing an exponential linear unit (ELU) to improve the performance of the fully convolutional
networks (FCNs). This is combined with CRF to make full use of context information and enhance
building boundaries [13,14]. Sun et al. [15] designed a multitask network to enable FCN to generate
mask and edge information simultaneously. It used a CRF to refine the results of the FCN. Then, a new
time-efficient end-to-end model was obtained. Li et al. [16] proposed a feature pair conditional
random field (FPCRF) framework, which uses convolutional neural networks (CNNs) as a feature
extractor to achieve fine-grained building segmentation. These methods generally use traditional
neural networks combined with traditional CRF. However, existing deep learning models of building
extraction easily lose detailed information in the process of downsampling, which is difficult to recover
during upsampling. In addition, the pixel-based processing of CRF may cause discontinuities inside
the building and lead to the loss of detailed information.

In this paper, a multiscale-aware and segmentation-prior conditional random field (MSCRF)
framework is proposed. For buildings of different scales, it is difficult to extract sufficient features from
a single receptive field. This framework introduces D-LinkNet (LinkNet with a pretrained encoder
and dilated convolution) [17] to model the relationship between the observed image data and the
label for the first time. The pairwise potential models the linear combination of the spatial smoothing
term and the local class label cost term. Moreover, this paper fuses segmentation prior to extracting
buildings using larger-scale context information. Finally, the a—expansion algorithm based on graph
cuts is introduced for model inference.

The major contributions of this paper are as follows:

(1) The MSCRF framework is proposed to obtain buildings with clear boundaries and maintain
the continuity inside the buildings. In MSCRF, D-LinkNet is used to model the correspondence
between the image and its label. Using D-LinkNet to extract buildings still has problems, such as
discontinuities inside the buildings. The CRF compensates for the shortcomings of D-LinkNet.
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The segmentation prior and the local class label cost are merged into the pairwise potential of the
traditional CRF in the MSCRE.

(2) Multiscale building features are integrated by D-LinkNet based on multiple parallel dilated
convolution modules in the MSCRF framework. D-LinkNet can avoid losing many details
in the subsampling process, and solve the problem of boundary blur. This is beneficial for
extracting small-scale dense buildings. To obtain a stronger feature expression of the building
areas, the feature map of D-LinkNet is used to replace the unary potential of the traditional CRF
in MSCRE.

(3) Thelocal class label cost term is introduced. The pairwise potential reflect the linear combination
of the spatial relationship of adjacent pixels and the local class label cost term. It can effectively
maintain the detailed information inside the buildings. Moreover, to solve the problem of
the spectral similarity between buildings and noise, the segmentation prior is fused to extract
buildings by using larger-scale context information.

The rest of this paper is organized as follows. In Section 2, building extraction methods are
described in detail. Section 3 describes the proposed MSCRF framework for HSR imagery building
extraction. A description of the datasets and a discussion of the experimental results are presented in
Section 4. Section 5 presents the discussion. Finally, conclusions are drawn in Section 6.

2. Related Works

High-resolution remote sensing images contain much detailed information, but there are
also certain noise problems. Therefore, originally, object-oriented methods were widely used
in the field of building extraction. Then, the building extraction mode based on segmentation
gradually developed. Qiao et al. [18] adopted an object-oriented strategy and proposed a multiscale
segmentation methodology based on IKONOS images. Wegne et al. [19] proposed a combination
of region segmentation and the Markov random field algorithm for image scene modelling and
building extraction.

To further improve the accuracy of building extraction, auxiliary information was introduced into
the extraction methods. Data collection using LiDAR while concurrently capturing very high-resolution
optical images is one of the options. Mohamad et al. [20] fused high-resolution optical images with
LiDAR data. An innovative technique for improving the fusion process, which relies on wavelet
transform techniques, was proposed. In 2018, a deep learning (DL)-based building detection method
was proposed that used the fusion of LIDAR data and orthophotos [21]. This improved the accuracy of
building recognition in the fused LiDAR-orthophoto data by using an automatic encoder. In addition,
Maruyama et al. [22] extracted earthquake-damaged buildings based on DSM data. Li et al. [23] used
public geographic information system (GIS) map datasets to improve building extraction results. Several
strategies have been designed and combined with the U-Net semantic segmentation model, including
data augmentation and postprocessing. Gao et al. proposed a method that could automatically
extract building samples using building shadows and accurately verified buildings. This method
has high accuracy, especially for suburban areas. In recent years, building extraction has become
an important part of the LIDAR point cloud processing field. LIDAR point clouds combined with
texture features, Markov random fields, etc., can effectively extract building information in a variety of
complex environments [24,25].

The development of deep learning has greatly promoted the progress of building extraction.
Xu et al. [26] proposed a new neural network framework called Res-U-Net. This framework is an
alternative technology of urban area object labelling combined with deep learning and guided filtering.
It can extract buildings in urban areas with very high-resolution (VHR) remote sensing images.
Huang et al. [27] proposed an end-to-end trainable gated residual refinement network (GRRNet).
This network is based on the excellent feature learning and end-to-end pixel-level labelling capabilities
of FCN, and combines high-resolution aerial images and LiDAR point clouds for building extraction.
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Combined with edge detection technology, convolutional neural networks can effectively deal with the
recognition and segmentation of complex buildings [28].

3. MSCRF Framework for HSR Imagery Building Extraction

This paper proposes a multiscale-aware and segmentation-prior conditional random field, which is
used to extract buildings from high-resolution remote sensing images. As shownin Figure 1, the building
extraction process can be divided into three steps. (1) We train the D-LinkNet network and build
the unary potential of the CRF based on D-LinkNet. (2) The segmentation prior is obtained based
on the feature map using the connected region labelling algorithm. While using image spatial
context information, the label cost is introduced. Then, when the uncertainty of the image label is
strong, the category label is obtained by referring to the image neighbourhood label information.
(3) The a—expansion algorithm based on graph cuts is used for model inference to obtain the final
labelling result.
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Figure 1. Flow chart of multiscale-aware and segmentation-prior conditional random field.

3.1. Unary Potential Based on D-LinkNet

Let x be the labels of the whole image and y be the observed data from the input image. When the
observation field y is given and the random variable x; obeys the definition of a Markov random field,
the model constitutes a CRE. CRF is a probabilistic discriminative framework that directly models the
posterior probability of the labels. Given the observed image data y, the Gibbs distribution of x can be
expressed as the following form:

P(XW) = 2(1 m eXp{—Z Pe(Xe, y)} @

ceC

where the partition function is defined as Z(y) = Y., exp{—XY.cec ¥c(xc, y)}, which can adjust the
calculation result of the posterior probability to between 0 and 1. ¢ (x,, y) is the potential function.

The unary potential models the relationship between the label sequence and the observation
sequence. It calculates the probability that the pixel obtains a building label or a nonbuilding label
based on the feature of the pixel. The commonly used unary potential can be defined as:

Yi(xi,y) = —In(P(x; = bilfi(y) )) @)

where x; is the label at pixel i,i € V = {1,2,---, N}, and the parameter N is the number of pixels in
the image. The set of labels is B = {(k = 0,1)|b; }, and the value of k is 0 or 1, which indicates that the
pixel category is building or nonbuilding, respectively. The function f is the feature mapping function,
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which corresponds to the image block to the feature vector. Finally, f;(y) represents the feature at
pixel i.

The early method of segmentation using CRF was to directly process each pixel as a unit [29]. In a
typical CRF-based segmentation method [30], first, select and extract appropriate features from the
input image. Then use a structured support vector machine (SSVM) [29] or other classifiers to learn the
coefficients of CRF for segmentation [31,32]. These methods do not need to extract features, but the
number of calculations is large. In addition, the existing potential functions cannot fully consider the
characteristics of high-resolution images and lack large-scale spatial interactive information modelling
capabilities. D-LinkNet not only has fewer parameters and is computationally efficient, but it can
also use the multiscale spatial building features of the image. Therefore, this paper uses D-LinkNet to
learn image features and calculate the probability P(xi = bk| fi(y) ) of obtaining the marker by, at pixel x;
based on its feature vector.

3.1.1. Encoder and Decoder

Zhou et al. (2018) proposed a new network D-LinkNet based on the LinkNet (exploiting encoder
representations for efficient semantic segmentation) network [28,33]. D-LinkNet obtains efficient
calculation and storage capabilities by building a dilated convolutional layer in the central module.
Moreover, it integrates multiscale contextual information of buildings without reducing the resolution
of the feature map. D-LinkNet is divided into three parts, A, B, and C, which are named the encoder,
the centre module, and the decoder, respectively, as shown in Figure 2.
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Figure 2. D-LinkNet architecture. Each blue rectangular block represents a multi-channel features map.

The encoder of D-LinkNet is ResNet34 (residual neural network) [34], which is pretrained on the
ImageNet [35] dataset. First, start with an initial block. This block uses a convolution kernel with
a kernel size of 7 X 7 and a step size of 2 to convolve the input image. Then it uses a convolution
kernel with a kernel size of 3 X 3 and a step size of 2 for space maximum pooling. The latter part of the
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D-LinkNet encoder is composed of ResNet34 residual blocks, and the hierarchical structure is shown

in Figure 3.
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Figure 3. Structure diagram of the convolution module in the encoder.

The decoder of D-LinkNet is consistent with LinkNet [33], and the hierarchical structure is shown
in Figure 4. The decoder uses a full convolution structure, and each operation in the decoder module

has at least three parameters.

Conv[(1 X1).(m/4,m)]

full-Conv{(3 % 3),(m/4,m/4),stride=2]

Conv[(1X1).(m.m/4)]

Figure 4. Structure diagram of the convolution module in the decoder.

After performing multiple subsampled operations in the encoder, some spatial information will
be lost. It is difficult to recover the lost information using only the upsampling output of the decoder.
Therefore, in D-LinkNet, each encoder is connected to the decoder so that each layer of the decoder
can obtain the learning results of the encoder, thereby preserving the detailed features of the building.
The probability of calculating the label by based on its feature vector at pixel x; can be expressed
as P(xi = bk| fi(y) ) After the calculation of the entire image is completed, the decoder outputs a
feature map. The eigenvalues of the feature map are further processed into probability values. Finally,
the probability map is used as the input of the unary potential of the CRF.

3.1.2. Multiparallel Dilated Convolution Module

Building detail information is easily lost in the process of subsampling. In addition, there are
differences in different building scales, which makes it difficult to extract sufficient features from
a single receptive field. To solve this problem, a multiparallel dilated convolution module is used.
This module supports the exponential growth of the receptive field and can capture building features
from multiple scales.

As shown in Figure 5, if the dilation rates of the stacked dilated convolution layers are 1, 2, 4, and 8,
then the receptive field of each layer will be 3, 7, 15, and 31, respectively. The central dilation
convolution module of D-LinkNet includes dilation convolution in the cascade mode and parallel
mode. It uses different dilation rates in each branch to extract building features in parallel and finally
obtains the final feature extraction by fusing all branch results. Since the acceptance domain of each
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path is different, the network can integrate building features of different scales. The loss of details due
to subsampling is alleviated.
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Figure 5. Structure diagram of multiparallel dilated convolution [28].

3.2. Detail-Preserving Pairwise Potential

The introduction of pairwise potential ¥;(x;, y;, y) makes it possible to consider the spatial
interaction of local pixels in the building extraction process. The pairwise potential constructs the
relationship between the current node and its neighbouring nodes. However, due to the influence of
spectral variability and noise, the spectral values of adjacent pixels in the homogeneous image area are
not completely equal. Based on the spatial correlation of features, adjacent pixels always tend to be of
the same feature category. Pairwise potential models this kind of spatial neighbourhood relationship,
and it considers the constraints of pixel category labels and the scale of image segmentation. Therefore,

pairwise potential can make full use of the large-scale spatial context information of the observed
image data.

3.2.1. The Local Class Label Cost Term

In this paper, the local class label cost term is introduced into the pairwise potential. The label of

each pixel can be fully considered in the classification iteration process to maintain detailed information.
It is defined as follows:

0 xi:xj

. ®G)
8ij(y) + 0% ®B(xi, yi|y) otherwise

Vilxi, yi,y) = {

where g;;(y) represents the spatial smoothing term of modelling adjacent pixels. @B(xl-, x]-| y) is the label
cost term of size | B| X |B|, which represents the cost between the corresponding labels of adjacent pixels x;
and x;. 6 is a parameter that controls the degree of the category labelling cost in the pairwise potential.

The function g;;(y) models the spatial interaction between neighbouring pixels i and j, which can

be expressed as [36]:

gij(y) = dist(i, j) " exp(~pllyi - yjIP) ¥
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where (i, j) represents the coordinate pair of the neighbouring pixels, and the function dist(i, j) is
its corresponding Euclidean distance. y; and y; represent the spectral vectors at positions i and j.
The parameter f is set to the mean square difference between the spectral vectors of all the adjacent
pixels in the image.

The local class label cost term uses observation image data to model the spatial relationship of
each neighbourhood category label x; and x;, defined as follows:

min{P(xifi(y) ), P(x;(») )
max{P(xi}fi(y) ),P(x]-|fj(y) )}

O (x;, 1]y ) = ©)

Similar to the unary potential, the category probability P(x,-| ﬁ(y)) is obtained by D-LinkNet.
Therefore, the local class label cost term is the interactive influence of the current label between
the adjacent nodes i and j using the observation image data y. The label of each pixel can be fully
considered and the detailed information in the classification iteration process can be kept.

3.2.2. Segmentation Prior

When the precision and richness of the sample are limited, the pairwise potential of the
traditional CRF has difficulty accurately distinguishing the details of the ground from the image noise.
The object-oriented methods can use a larger-scale spatial information, which can effectively alleviate
the influence of the spectral difference between buildings and background areas [18].

The segmentation prior is based on the feature map and is obtained by using the connected-
component labelling algorithm. The algorithm uses the connected regions with the same value in
the feature map as the segmentation region, thereby avoiding the selection of the segmentation scale.
This paper uses the classical connected-component algorithm with an 8-neighbourhood to obtain
the segmentation object [37]. Then, based on the original building extraction map, the label of each
segmented object can be obtained through the maximum voting strategy. The segmentation prior can
be defined as:

P(x; = bseg) = max{P(x; = by}, k € |B] (6)

where b represents the object label category of the segmented area where the pixel is located.

The segmentation prior requires that the objects in each area are marked as the maximum value of
all the pixel category labels in the area. It has a similar strategy for processing category probabilities as
object-oriented probabilities.

3.3. The Inference of MSCRF

In the MSCREF, the potential functions are constructed for building extraction according to the
characteristics of high-resolution images. After parameter estimation, model inference needs to be
used to predict the optimal building extraction effect of the test image. That is, the pixel obtains the
optimal label x, which is defined relative to finding the minimum value of the energy function [38].
To obtain the optimal label, researchers have proposed many reasoning methods, such as iterative
conditional modes (ICMs) and graph cuts. However, the ICM is more sensitive to the selection of the
initial value and easily falls into a local minimum. Therefore, we use the a—expansion algorithm based
on graph cuts [39] for inference.

Define G = (V, E) as a weighted graph with two distinguished vertices called terminals. The cut
Eo C E is a set of edges in which the terminals are separated in the induced graph G = (V,E — Ep).
For energy functions with metric attributes, the a—expansion algorithm based on graph cuts sets up a
local search strategy. The strategy can solve the problem that the algorithm tends to fall into a local
minimum solution when the moving space is small. The a—expansion algorithm continuously iterates
through the graph cuts algorithm in the loop according to the local search strategy. At each iteration,
the global minimum of the binary labelling problem is calculated, as shown in Algorithm 1.
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Algorithm 1 The a—expansion algorithm based on graph cuts

Input xli= arbitrary labelling
set mark :=0
foraeB={1,...,K}
xf= argminE(xi)
if E(xf) < E(xi), set x':= x/and mark := 1
if mark =1 goto 2
return x!

First, initialize the current label. In the a—expansion algorithm, there are two strategies for each
pixel: keeping the current label and changing the label to a specific value « € B = {1, ..., K}. By using
the graph-cut algorithm to optimize the energy function E(xi), the optimal solution of the binary
labelling problem is obtained. Since all pixels are processed simultaneously, there are an exponential
number of possible moves with respect to any particular label (building or non-building). Therefore,
the strong local minimum property of the algorithm is effectively guaranteed. The problem of the ICM
algorithm easily falling into the local minimum can be solved.

4. Experiments and Analysis

4.1. Dataset Description

This paper uses the WHU building dataset and the Massachusetts building dataset for experimental
analysis [40,41]. The WHU building dataset was taken in New Zealand and covers an area of
approximately 450 square kilometres. The ground resolution is downsampled to 0.3 m and contains
more than 187,000 well-marked buildings. The images in the area are cropped into 8189 images
of 512 x 512 pixels. Following Ji et al. [40], the samples are divided into 4736 images for training,
1036 images for validation and 2416 images for testing, respectively.

The Massachusetts building dataset consists of 151 aerial images and corresponding single-channel
labelled images, including 137 training images, 10 test images, and 4 validation images. The size of all
images in the dataset is 1500 x 1500 pixels, and the resolution of images is 1 m. The entire dataset
covers an area of approximately 340 km?, and each image covers 2.25 km?.

4.2. Experimental Design

D-LinkNet [28], convolution conditional random field (ConvCRF) [42], detail-preserving
smoothing classifier based on conditional random fields (DPSCRF) [18] and fully connected conditional
random field (FullCRF) [43] were selected for the comparative experiment of MSCRF. Of these,
DPSCREF uses a support vector machine (SVM) to construct unary potential. Although SVM is simple
to operate, its pixel-based classification has problems such as salt-and-pepper noise. The pairwise
potential of DPSCRF models the linear combination of the spatial smoothing term and the local class
label cost term. In addition, DPSCRF adopts object-oriented thinking to integrate the segmentation
prior. FullCRF constructs a fully connected CRF model of the complete image pixel set. On the
basis of FullCRF, ConvCRF uses ResNet to construct unary potential. Moreover, ConvCRF adds
conditional independence assumptions to CRF reasoning, which can formalize most of the inferencing
into convolutions. D-LinkNet uses pretrained ResNet34 as its encoder, and its decoder remains the
same as LinkNet. All methods take the RGB images as input in this paper.

A total of 4736 images in the training set of the WHU building dataset were used to train the
network, including the unary of MSCRF and D-LinkNet. In the experiment, ENVI was used directly to
obtain the SVM classification result. First, the region of interest was selected, and the SVM classifier
was used to classify the image based on the colour characteristics of images. Then, the classification
map was used to construct the unary potential of DPSCRF. The unary potential of ConvCRF was
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constructed using ResNet, and the pretrained network model was used in the experiment. Finally,
the filter size k was set to 3 in the inference part of ConvCRFE.

In the experiments using the Massachusetts building dataset, except for DPSCRF and MSCREF,
all other methods directly used the images of 1500 x 1500 pixels for training or testing. DPSCRF used
images cropped to 750 x 750 pixels for testing and calculating accuracy. MSCRF used 137 images with
a size of 1500 x 1500 pixels for training the unary. The images in the training set were cropped to
750 x 750 pixels for iterative inferencing of the MSCRF.

In the experiment, three kinds of accuracy evaluation indicators were selected as the evaluation
criteria for building extraction. The three evaluation indicators were precision (the ratio of the correct
prediction within the category), IoU (the ratio of the intersection and union of a category prediction
result and the true value), and recall (a measure of coverage, which measures the number of positive
samples classified as positive samples).

4.3. Experiment 1: WHU Building Dataset

This article only shows the building extraction results of two groups of images. The original image
is shown in Figure 6a, and the corresponding manually labelled building area is shown in Figure 6b.
Figures 7 and 8 show the results of building extraction on two sets of images using different models.

(d)

Figure 6. Original image and label. (a) Image 1; (b) Label 1; (c) Image 2; (d) Label 2.
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(d) (e) ()

Figure 7. The building extraction results of image 1. (a) Label; (b) DPSCREF; (c) FullCRF; (d) ConvCRF.
(e) D-LinkNet; (f) MSCREFE.

(d) (e) ()

Figure 8. The building extraction results of image 2. (a) Label; (b) DPSCREF; (c) FullCRF; (d) ConvCREF;
(e) D-LinkNet; (f) MSCRE.
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It can be seen in the figure that the extraction performance of DPSCRF is somewhat poor:
there are more discrete pixels, and the boundaries are relatively rough. The effect of FullCRF is
average. Although there is no obvious salt-and-pepper noise, there are also blurred boundaries.
The building extraction performance of the ConvCRF algorithm is better. There is basically no
noise, and the boundary blur problem is greatly improved. However, for a few small buildings,
the extracted boundary is relatively rough. In contrast, D-LinkNet and MSCRF can extract clearer
building boundaries without noise. In addition, MSCRF removes the small buildings that D-LinkNet
misextracts and can effectively maintain detailed information.

In this paper, the recall, precision and IoU of the methods are calculated to quantitatively evaluate
the performance of the building extracted from the model, as shown in Table 1.

Table 1. Quantitative evaluation of building extraction from the WHU dataset.

Method Recall (%) Precision (%) IoU (%)
DPSCREF [18] 76.33 80.00 67.74
FullCRF [43] \ 81.04 80.01

ConvCREF [42] 89.21 94.98 87.31
SRI-Net [44] \ 95.21 89.09
DE-Net [45] \ 95.00 90.12
EU-Net [46] \ 94.98 90.56

D-LinkNet [28] 96.30 93.72 90.58

MSCRF 96.47 95.07 91.99

It can be seen in the table that the performance of DPSCREF is slightly worse, the IoU of ConvCRF
reaches 87.31%, and other indicators are relatively high. The recall and IoU of D-LinkNet are both
higher than those of ConvCRE, but the precision is slightly lower than that of ConvCRE. The accuracy
evaluation results of both are significantly higher than DPSCRF and FullCRF, indicating that they can be
well applied to the field of building extraction. For our MSCRE, it can be seen that the recall, precision,
and IoU are all higher than those of the other seven models, which are also significantly improved
compared to D-LinkNet. In addition, it can be seen that MSCRF performs better than the current
state-of-the-art methods, i.e., SRI-Net (spatial residual inception convolutional neural network) [44],
DE-Net (deep encoding network) [45] and EU-Net (efficient fully convolutional network) [46].

4.4. Experiment 2: Massachusetts Building Dataset

The scene of the Massachusetts building dataset is more complex, with many small-scale dense
buildings, as shown in Figure 9. Figure 10 shows the visual performance of different models for
extracting buildings. It can be seen in the figure that the buildings extracted by each model are
incomplete, especially in the cases of FullCRF and ConvCREF, both of which have a weak ability to
extract small-scale buildings. The buildings extracted by DPSCRF not only have serious boundary blur
problems but also contain more noise. In contrast, the D-LinkNet and MSCRF methods give more
complete and accurate building extraction results. D-LinkNet has a better extraction performance for
small and dense building areas, while MSCRF can more accurately extract large-scale buildings and
effectively improve the problem of blurry building boundaries.

The quantitative evaluation of building extraction performance is shown in Table 2. In addition,
to further verify the effectiveness of the model, some state-of-the-art methods in the field of building
extraction were compared, including pruned FCN-2s [47] and GMEDN(global and multiscale
encoder-decoder network) [48]. It can be clearly seen that the performance of the MSCRF proposed
in this article is better than other comparison methods, such as DPSCREF, FullCRF, and ConvCRE.
Although the IoU of pruned FCN-2s is significantly lower than that of GMEDN and other methods,
its precision is higher. Compared with D-LinkNet, our model improves IoU by nearly 6%, and there
are also significant improvements in other evaluation indicators.
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(a) (b)

Figure 10. Building extraction results using the Massachusetts dataset. (a) Label; (b) DPSCREF;
(c) FullCRF; (d) ConvCRF; (e) D-LinkNet; (f) MSCREFE.

Table 2. Quantitative evaluation of buildings extracted from the Massachusetts dataset.

Method Recall (%) Precision (%) IoU (%)
DPSCREF [18] 49.70 49.07 34.85
Pruned FCN-2s [47] 61.00 78.00 52.00
FullCRF [43] \ 55.86 54.02
ConvCREF [42] 78.63 65.89 56.64
D-LinkNet [28] 85.88 73.36 65.54
GMEDN [48] \ \ 70.39
MSCRF 89.93 80.14 71.19

The scene of the Massachusetts building dataset is more complex, including large, medium,
and small building areas. The shadow projection of high-rise buildings also creates great difficulties
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in extraction. Additionally, compared with the WHU building dataset, the label accuracy and image
resolution of this dataset are lower. Therefore, the quantitative evaluation results of all methods in the
Massachusetts building dataset are much lower.

5. Discussion

5.1. Detailed Comparative Analysis of Building Extraction Results

As shown in Figure 11, the building boundaries extracted by D-LinkNet are relatively complete.
D-LinkNet uses multiparallel dilated convolution modules to integrate multiscale building features,
which is conducive to extracting small-scale dense building targets. However, only using D-LinkNet for
building extraction still has the problem of discontinuity inside the building, and the extraction results
often show small fragments. The framework proposed in this paper combines D-LinkNet with CRFE.
The ability to use CRF spatial context information can effectively smooth the boundaries of buildings
and remove small fragments. In addition, this paper introduces the local class label cost term in the
CREF. The term is able to fully consider the label of each pixel and maintain the detailed information of
the building. Moreover, the fusion of segmentation priors is beneficial to obtain continuous building
interior labels. As seen in Figure 11, compared with D-LinkNet, the boundaries of the building
extracted by MSCREF are smoother, and the fine parts near the building are effectively removed.

i |

II

(@ (b) (c) (d)

Figure 11. The detailed annotation of building extraction results, where I are from the WHU building
dataset, and the II are from the Massachusetts building dataset. (a) Image; (b) Label; (c¢) D-Linknet;
(d) MSCRE.

5.2. Analysis of Building Extraction Results with Different Sample Sizes

The WHU building dataset is divided into three parts: a training set (4736 tiles with 130,500 buildings),
a validation set (1036 tiles with 14,500 buildings) and a test set (2416 tiles with 42,000 buildings) [40].
Sample data is shown in Figure 12. In general, the more training samples there are, the higher the
testing accuracy of the deep learning network. However, with the gradual increase in training samples,
the model may overfit. The MSCRF framework combines deep learning networks with traditional
methods. Considering whether the performance of the framework is affected by the laws of deep
learning networks, this paper discusses the following experiments.
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(f) (8) (h) () ()

Figure 12. WHU building dataset sample data. (a-e) Images. (f—j) Labels.

As shown in Figure 13, when the training sample size is 58% of the total number of images,
the performance of MSCREF is excellent. When the proportion of training samples increases to 68%,
not only the performance of MSCREF is not significantly improved, but the time cost becomes much
higher; that is, the current sample division method is most suitable for our method. Moreover,
the changing trend of MSCREF is consistent with the deep learning network D-LinkNet. Regardless of
how the sample size is divided, the performance of MSCREF is always better than that of D-LinkNet,
which fully reflects the superiority of our method.

0.93
0.92
0.91

05
—e— D-Linknet

IoU (100%)

0.85 MSCRF

0.28

20 30 40 50 60 70

Proportion of training samples (%)

Figure 13. Analytical diagram of building extraction results with different number of Samples. The IoU
of D-Linknet and MSCRF with different numbers of training samples using the WHU building dataset.

6. Conclusions

This paper proposes a high-resolution remote sensing image-based multiscale-aware and
segmentation-prior conditional random field framework. The framework introduces D-LinkNet
into the field of building extraction, and uses D-LinkNet to model the unary potential of the CRF to
make full use of the multiscale building features. In the construction of pairwise potential, segmentation
prior is added to effectively deal with the problems of noise and spectral difference of the images.
Moreover, the local class label cost term is introduced to extract detailed building information.
Finally, after parameter estimation and model inference based on the a—expansion algorithm, the final
building extraction result is obtained. For testing, this paper used the WHU building dataset and the
Massachusetts building dataset. The results show that MSCRF has excellent extraction performance.
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The detailed information of the building can be effectively preserved during the extraction, and the
problem of blurry building boundaries also effectively improves. In the future, we will use larger-scale
datasets, such as the Inria aerial image dataset [49], to test model performance. In addition, it is also a
good idea to fuse the additional satellite imagery information and geographic information system map
data to extract clearer building boundaries.
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