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Abstract: Soybean maturity is a trait of critical importance for the development of new
soybean cultivars, nevertheless, its characterization based on visual ratings has many challenges.
Unmanned aerial vehicles (UAVs) imagery-based high-throughput phenotyping methodologies
have been proposed as an alternative to the traditional visual ratings of pod senescence. However,
the lack of scalable and accurate methods to extract the desired information from the images remains
a significant bottleneck in breeding programs. The objective of this study was to develop an
image-based high-throughput phenotyping system for evaluating soybean maturity in breeding
programs. Images were acquired twice a week, starting when the earlier lines began maturation
until the latest ones were mature. Two complementary convolutional neural networks (CNN) were
developed to predict the maturity date. The first using a single date and the second using the five
best image dates identified by the first model. The proposed CNN architecture was validated using
more than 15,000 ground truth observations from five trials, including data from three growing
seasons and two countries. The trained model showed good generalization capability with a root
mean squared error lower than two days in four out of five trials. Four methods of estimating
prediction uncertainty showed potential at identifying different sources of errors in the maturity date
predictions. The architecture developed solves limitations of previous research and can be used at
scale in commercial breeding programs.

Keywords: machine learning; physiological maturity; computer vision; plant breeding; soybean
phenology; Glycine max (L.) Merr

1. Introduction

As the most important source of plant protein in the world, soybean (Glycine max L.) is widely
grown and heavily traded and plays a significant role in global food security [1]. In this context,
crop breeding aims to increase the grain yield potential and improve the adaptation of new cultivars
to environmental changes. Improving traits of interest, such as grain yield, depends on the ability to
accurately assess the phenotype of a large number of experimental lines developed annually from
breeding populations [2,3]. However, the labor-intensive and costly nature of classical phenotyping
limits its implementation when large populations are used. This may result in breeders not selecting
potentially valuable germplasm and reduced genetic gain [4,5].
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Among the many plant phenotyping tasks, the most critical phenological traits characterized
in breeding programs are usually emergence, flowering, and physiological maturity [6]. In soybean,
physiological maturity or the R8 stage is defined as the date when 95% of the pods have reached their
mature color [7]. For soybean, maturity is especially important because besides defining the crop cycle
length, many management decisions are associated with it. The ideal cultivar for a given region is
the one that can take full advantage of the growing season to maximize yields, but at the same time
avoids delayed harvest, which increases risks and costs. In most cases, if all other characteristics are
the same, relatively early-maturity cultivars are preferred. One of the reasons for this preference is
for better management of soybean diseases, especially Asian soybean rust. The shorter growing cycle
decreases the time for epidemic development, thus preventing yield loss by the disease [8]. Besides the
actual costs, the cycle length is also associated with opportunity costs. The possibility of successful
development of a second cash crop or a cover crop is increased when early maturity cultivars are used,
which can be an important step towards the sustainable intensification of production [9]. The accurate
measurement of maturity is also important in breeding trials. Only the performance of experimental
lines that have similar maturity dates should be directly compared. This information is also used to
take into account the effects that earlier maturing lines may have on the neighboring plots [6].

Soybean phenology is directly affected by the interactions of photoperiod and temperature,
therefore, one observation of cycle length from a single year and location is insufficient to characterize
a cultivar. This led to the development of the relative maturity concept, which is a rating system
designed to account for all of the factors that affect the number of days from emergence to maturity and
allow for comparisons of cultivars that were not directly compared in tests [10,11]. Maturity groups
are estimated by comparing experimental lines to well-known cultivars grown in the same conditions.
The choice of these references is usually guided by published lists of the most stable cultivars and,
consequently, of the most suitable check genotypes for each maturity group [10,12,13].

The technological advances in other breeding sciences such as marker-assisted selection and
genomic selection, where phenotyping provides critical information for developing and testing
statistical models, has increased the demand for phenotypic data resulting in phenotyping becoming
the major bottleneck of plant breeding [14]. In this context, the term high-throughput field
phenotyping (HTFP) is used to refer to the field-based phenotyping platforms developed to deliver
the necessary throughput for large scale experiments and to provide an accurate depiction of trait
performance in real-world environments [15]. Most of HTFP technologies are based on remote sensing,
taking advantage of light and other properties that can be measured without direct contact [14].
Recent advances in proximal remote sensing, in which sensors are usually a few meters from the
plants, paired with new sensors and computer science applications, has enabled cost-effective HTFP [4].
Among the many options of remote sensing platforms, unmanned aerial vehicles (UAVs) equipped
with different sensors have received considerable attention recently. UAVs have become an important
approach for fast and non-destructive HTFP due to their growing autonomy, reliability, decreasing
cost, flexible and convenient operation, on-demand access to data, and high spatial resolution [14,16].
RGB (red-green-blue) cameras are the most commonly used sensor due to their lower cost and much
higher resolution when compared with multispectral cameras [14]. These factors contribute to the
fact that UAVs equipped with RGB cameras are currently the most affordable and widely adopted
proximal sensing based HTFP tools [17,18].

The costs associated with image capture represent a limited fraction of the overall cost of HTFP.
The massive number of images produced and the intense computational requirements to accurately
locate images and extract data for corresponding experimental units contribute to a significant
increase in the cost of the analysis [17,19]. Routine use of phenotypic data for breeding decisions
requires a rapid data turnaround, and image processing remains a significant bottleneck in breeding
programs [5]. Systems for data management, including user-friendly components for data modeling
and integration, are fundamental for the adoption of these technologies [14]. The phenotyping pipeline
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also has to include metadata and integrate other sources of information following best practices and
interoperability guidelines [20].

Recently, free and open-source alternatives such as the Open Drone Map integrated into cloud
computing platforms have been made available, which helps to reduce the costs of mosaicing the
images [21]. This makes the construction of the orthomosaic mostly an automated process, which is
similar to the needs of many other scientific uses. However, the delineation of experimental units and
the extraction of plot-level features poses additional difficulties in processing the information from
HTFP platforms [22]. These challenges have been addressed in recent publications, with optimized
methods for semi-automatic detection of the microplots [23,24] and open-source software packages in
python [25] and R [22]. Another contribution that can improve the usefulness of the data collected
is the projection of individual microplots generated from the orthomosaic back onto the raw aerial
UAV images. This allows the final plot image to retain higher quality and allows the extraction of many
replicates from the overlapping images, resulting in several plot images of different perspectives from
the same sampling date [4,24]. This is also an essential step towards direct georeferencing the geometric
position of the microplot in the raw image, avoiding the expenses related to building the orthomosaic
and allowing high accuracy with smaller overlaps so that the time and amount of redundant data
is minimized [26].

Another strategy to simplify the processing is to move from the image to an aggregated value early
in the pipeline. The use of vegetation indices and other averages of reflectance from all pixels in the plot
is widespread. From a computer vision perspective, this is the equivalent of using handcrafted features
to reduce the dimensionality of the data. Recently, methods that automate feature extraction integrated
with the final classification or regression model have been shown to outperform classic feature
extraction in many image processing tasks such as image classification/regression, object recognition,
and image segmentation [27]. Within machine learning, the term deep neural networks is used to
characterize models in which many layers are sequentially stacked together, allowing the model to
learn hierarchical features that encode the information in the image in lower dimensions. In this way
the features are learned automatically from input data. Deep convolutional neural networks (CNNs)
have become the most common type of deep learning model for image analysis. CNNs are especially
well-suited for these tasks because they take advantage of the spatial structure of the pixels. The kernels
are shared across all the image positions, which dramatically reduces the number of parameters to
be learned, improves computational performance, reduces the risk of overfitting, and requires fewer
examples for training. CNNs have been successfully applied in plant phenotyping for plant stress
evaluation, plant development, and postharvest quality assessment [27].

The training of most deep learning models is supervised, thus requiring a great number of training
examples with annotated labels. The availability of annotated data is among the main limitations to
the use of these advanced supervised algorithms in plant phenotyping problems [14,19]. For example,
the availability of several large, annotated image datasets for plant stress classification accelerated the
evaluation of various CNNs for stress phenotyping [27]. Although the number of publicly available
datasets and the diversity of phenotyping tasks covered is growing [28,29], there are still many
tasks that have yet to be addressed. In general, these datasets have been used to compare new
CNN architectures and to pretrain CNNs models to be used in transfer learning. However, training a
robust model for field applications still requires a great effort to prepare the dataset. For some traits,
such as grain yield, ground truth data can only be obtained in the field because the phenotype cannot
be directly observed in the image [30]. When the large number of observations needed is not met,
strategies such as synthetic data augmentation may be used to improve the robustness of models
trained with fewer examples [27].

In most published research, the features chosen to build maturity prediction models are
related to the canopy reflectance. Because pod maturity and canopy senescence are usually well
correlated, it is possible to estimate the plant maturity level based on the spectral reflectance [26].
However, physiological maturity, defined by the R8 stage, is assigned by the pod maturity and not
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by the canopy senescence. Delayed leaf senescence, green stems, and the presence of weeds may
cause significant errors in the predictions based only on canopy reflectance. This may explain why
transformations applied to high-resolution images that extract additional color and texture information
may improve the precision and accuracy of the predicted values [31]. The robustness of the model
may also be affected by variation in reflectance during the acquisition of the images. Factors such as
the relative position between the sun and the camera, cloudiness, and the image stitching process that
may cause artifacts such as blurred portions of the orthomosaic, are some examples [26].

Increasing the robustness of the model to the factors listed above may require the use
of additional features and more observations during the training. The use of synthetic data
augmentation could substantially increase the sample size and the variation within the observations.
However, the augmented images are still highly correlated, presenting potential problems due to
overfitting [27]. Even though the use of specific features and variable selection based on expert
knowledge may be preferred when the biological interpretation of the parameters is important [18],
the use of models with automatic feature extraction may increase the accuracy of the model [27].
CNNs have become state of the art in many computer vision tasks, with an increasing number of
applications in plant phenotyping tasks such as plant stress detection [27]. Recently, CNNs have also
been applied to monitoring the phenology in rice and wheat crops [32,33]. However, this type of
advanced model still needs to be validated for predicting physiological maturity in soybean breeding
programs using an HTFP approach.

Working with time-series of images poses additional challenges to the phenotyping pipeline,
mainly because it is difficult to assure consistency of reflectance values and spatial alignment over time.
Some researchers have focused on analyzing individual dates to overcome this challenge, however,
these algorithms may lack generalization robustness and lose accuracy drastically when applied in
other experiments [15]. The importance of multi-temporal data to describe crop growth and to predict
specific parameters such as maturity is well recognized [18]. The number of available image dates,
and the intervals between dates, may also be different from one trial to another. This requires a
great deal of flexibility in the model so that it can be tested in other locations. The resolution of the
images, which is a function of flight height and sensor characteristics, can also vary and therefore pose
additional challenges for the model generalization.

In order to decrease the cost of dating tens of thousands of plots in the field, there is a need to
improve the tools to predict the maturity date of soybean progenies in breeding programs. UAV-based
imagery is the most promising candidate for this task [15,26]. However, there are still many challenges
and bottlenecks with the tools used to extract the desired information from the images. These tools
could be significantly enhanced by incorporating the latest scientific developments in other areas
into an integrated, cost-efficient, robust, flexible, and scalable high-throughput phenotyping pipeline.
Therefore, the objective of this study was to develop a high-throughput phenotyping system based on
aerial images for evaluating soybean maturity in breeding trials.

2. Materials and Methods

2.1. Experimental Setup

Five trials were conducted in partnership with public and private breeding programs. Each trial
was comprised of various blocks with experimental lines in different generations of the selection
cycle (Figure 1). A summary of the trials is presented in Table 1. The ground truth maturity date
(GTM), equivalent to the R8 phenological stage, was recorded by field visits every three or four days,
starting at the end of the growing season when the early lines achieved maturity. About 5% of the
plots were used as checks, and for these, the maturity group (MG) was known. Only the plots with
GTM were used for training and evaluating the models. The total number of plots is included to allow
realistic estimates of image acquisition and storage space requirements for different plot sizes and
experiment scales.
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Table 1. Field trials from different breeding programs used for data collection.

Trial Year Location Plot Length (m) Plot Width (m) #Plot * #GTM *

T1 2018 Savoy, IL-USA 2.20 1 × 0.76 9360 9230
T2 2019 Champaign, IL-USA 5.50 2 × 0.76 8608 1421
T3 2019 Arcola, IL-USA 5.50 2 × 0.76 6272 1408
T4 2019 Litchfield, IL-USA 5.50 2 × 0.76 6400 883
T5 2019 Rolândia, PR-Brazil 5.50 2 × 0.50 7170 2680

* #Plot: total number of plots in the trial; #GTM: number of plots with ground truth
maturity date observations.

0 25 50 m Plot

Block

Figure 1. Example of soybean breeding field trial (T4) with layout of plots overlaid on top of the UAV
mosaic from images acquired 112 days after seeding.

2.2. Image Acquisition

Images were acquired using DJI Phantom 4 Professional UAVs (SZ DJI Technology Co., Ltd.,
Shenzhen, China), with the built-in 20 MP RGB camera (DJI FC6310) and GPS. The camera has a
field of view (FOV) of 84◦ and an image resolution of 5472 × 3648 pixels, which were stored as JPEG
compressed files with an average size of 8 MB. All images were acquired at a flight height of 80 m,
yielding a ground sample distance (GSD) of 25 mm/pixel. The image overlap was set to 80% to the
front and 60% to the side. The setting up of the flight plan and the acquisition of the images usually
took less than one hour, unless there were clouds shading the trials. In such conditions, the flights
were paused and resumed. The acquisition of the images followed a similar schedule of the field visits
to record GTM data, with about two images per week recorded from the beginning of leaf senescence
in the early lines until the latest lines matured (Figure 2). Therefore, the number of flight dates varied
according to the range of maturity present in each trial. A summary of the image acquisition step is
presented in Table 2.
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Figure 2. Distribution of ground truth maturity dates and image acquisition dates (blue dots) in
each trial.

Table 2. Image acquisition details and total storage used for each breeding trial.

Trial Images Dates Height (px/plot) Width (px/plot) Raw Data (GB) Processed Data (GB)

T1 100 9 32 96 7.2 0.10
T2 250 10 64 224 20.0 0.53
T3 150 9 64 224 10.8 0.32
T4 200 6 64 224 9.6 0.22
T5 200 12 40 224 19.2 0.30

The reduction in data size from the raw images to the image representing each plot for each
date is about 20 times. Half of this reduction came from the areas not occupied by plots, such as the
paths and borders. However, the most significant reduction of about ten times is from the elimination
of overlaps.

2.3. Image Processing

After the acquisition, the images were processed using the commercial photogrammetry software
(Metashape v1.6, Agisoft LLC, St. Petersburg, Russia). The images were matched with the high
accuracy setting, followed by the construction of a dense cloud, the digital elevation map, and the
orthomosaic. A total of 12 to 18 ground control points (GCPs) were used in each trial. The targets were
placed in the field before the first flight and kept in place until the last flight. The coordinates of the
markers were extracted from the first date orthomosaic and used in all subsequent dates. In this way,
the points are not necessarily globally accurate, but they ensure the temporal consistency of the images.
The first image was also used for manual alignment of the trial layout using QGIS software [34].
The georeferenced orthomosaic was exported to a three band (RGB) GeoTIFF file and used to extract
the image for each plot using the python packages geopandas and rasterio. Each individual orthophoto
was also exported and used to extract replicated observations for each plot.

2.4. Resolution

Another important aspect of the images that may affect the model is resolution. Images with
downsampled resolution simulating a GSD of 50, 100, and 750 mm/pixel were used to train and
compare models. The images were resized accordingly and then compressed to JPEG. For training
the model, after decompressing the images, they were scaled back the original resolution in order to
use the same model architecture, as illustrated in Figure 3. The visual difference between images with
a GSD of 25 and 50 mm/px is very subtle. With 100 mm/px, the difference becomes more evident.
The images at 750 mm/px lose all texture information. These were used to help understand the
importance of color versus texture and other high-level features.
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Figure 3. Time series of plot images with resolution of 25 mm/px (top left), 50 mm/px (top right),
100 mm/px (bottom left), and 750 mm/px (bottom right).

2.5. Data Augmentation

One of the disadvantages of using low-cost RGB sensors is their sensitivity to variation in light
conditions, as observed in Figure 4. This motivated the comparison of different data augmentation
strategies to improve the model’s robustness. The first type of image augmentation consisted of digital
transformations of the images by applying variation in contrast and luminosity. On the other hand,
the availability of many replicates from each plot may be seen as more natural data augmentation.
The availability of many replicates can reproduce geometric errors, distortions, blur, and shadow effects
that are hard to reproduce with synthetic data augmentation. Therefore, three different strategies of
augmentation were compared: no augmentation, synthetic data augmentation, and using the image
replicates. At this time, the image digital numbers stored as 8bit integers were converted to 32 bit
floats and scaled from the original range (0–255) to have zero mean and unit variance.

Figure 4. Examples of image variations caused by shadows, out of focus images and direct reflection of
sunlight (top), and differences found among replicated images of the same plot (bottom).

2.6. Model Development

The model was developed with two steps: The architectures used are referred to as single-date (SD)
and multi-date (MD) models. In the first step, the model takes one image and predicts the maturity
date. The variable ground truth difference (GTDiff), was calculated to represent the difference
between the GTM date and the image acquisition date. A set of SD models were trained using
10-fold cross-validation with GTM data for each trial. The predictions in the test set (PREDDiff) were
then used to calculate the average root mean squared error (RMSE) for each trial:

RMSE =

√
(

1
n
)

n

∑
i=1

(DOYpred − DOYobs)2 (1)
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where: DOYpred and DOYobs are the day of the year in which maturity was predicted and observed,
respectively. This allowed the estimation of which GTDiff interval provided the best accuracy in the
prediction. The image with the PREDDiff closer to the best GTDiff, and the two images acquired
immediately before and after were selected for the next step. The MD model uses the features extracted
by the SD at the layer before the predictions, instead of running the model again over the full images,
which reduces the number of parameters to be trained. In this way, the SD model, which has more
parameters, can be trained with a greater number of observations and data variation, while the MD
model only uses a small number of extracted features and few parameters to refine the prediction.

2.7. Single-Date Model Architecture

Based on the layers used and the intention behind their use, the architecture for the SD model can
be divided into two groups. In the first group, each block contains a 2D convolution with a 3 × 3 kernels,
a max-pooling layer that halves the number of pixels in the output, a dropout layer, and a rectified
linear activation function (RELU) activation. The convolutions are zero-padded to keep the output
sizes the same as the inputs. This block is repeated sequentially five times. Therefore, the output has
its spatial dimensions reduced by a factor of 25 or 32 times. The dimensions shown in Figure 5 are
valid for input sizes used in the largest plots. The main purpose of this group of operations is to extract
meaningful spatial information and condense it in a lower resolution representation. The next block
contains only convolutions with 1 × 1 kernel sizes followed by a dropout layer. Therefore, only the
different features of the same pixel are used to calculate the values in the next layer. This block is
repeated sequentially four times to obtain the output. The output is then subtracted from the image
acquisition date to generate the prediction. This second block does not change the spatial dimension
of the output, but it forces the information to be represented by lower-dimensional spaces since the
number of channels is being reduced. The result from the layer immediately before the output will be
used as features to the temporal model. The reasoning behind the choice to use 1 × 1 convolutions
instead of flattening the features was to conserve the variability within the plot to be used in one of the
estimates of model uncertainty later. By subtracting the image acquisition date, internally, the model is
learning to estimate the difference between the maturity date and the date the image was taken.

1@2X73@64X224

4@32X112
6@16X56

8@8X28
10@4X14

32@2X7

16@2X7

8@2X7

5@2X7

Conv2D (3,3) 

MaxPool (2, 2)
Conv2D (1,1)

Features

DOY - Out = Pred

Figure 5. Schematic representation of the single date convolutional neural network architecture.
The numbers represent the dimensions of the tensors and the names in the boxes are the operations
applied. DOY stands for the day of the year.

2.8. Multi-Date Model Architecture

The architecture for the MD model was developed to operate over groups of five images, selected
from the results of the SD model. The difference between the day of the year (DOY) of each image and
the DOY of the central image was concatenated as an additional feature for each image. The difference
date from the center image is always zero and can be omitted. However, it is easier to keep it and
have all tensors with the same dimensions. Therefore, six features from each of the five images were
concatenated into the 30 features that were used as inputs in the MD model. In case the acquisition
dates span through two different years, as happens, for instance, in the South Hemisphere where
maturity starts in December, the DOY from the previous year can be negative, or on the contrary, it can
be extended beyond 365 for the next year. It is also possible to use days after planting or emergence



Remote Sens. 2020, 12, 3617 9 of 19

instead of the day of the year. Because the value is subtracted before entering the model and is
added back at the end, it is only the intervals that matter. The architecture used in the MD model is
straightforward and follows the same layers of the second block in the single date model Figure 6.
To keep the number of parameters to be trained to a minimum, the convolutions with 1 × 1 kernel sizes
followed by a dropout layer were repeated sequentially three times. The output is then subtracted
from the DOY of the central image to generate the final prediction. The order in which the DOY is
subtracted and then added back may not be very intuitive. However, this is necessary to keep the same
relationship when the difference is greater because the image was taken earlier or when the soybean
line presents delayed maturity.

1@2X7

30@2X7

15@2X7

5@2X7

Conv2D (1,1)

Features Image 0 (5)

DOY 0 – DOY 0 (1)

Features Image 1 (5)

DOY 1 – DOY 0 (1)

Features Image 2 (5)

DOY 2 – DOY 0 (1)

Features Image -1 (5)

DOY -1 – DOY 0 (1)

Features Image -2 (5)

DOY -2 – DOY 0 (1)

DOY 0 - Out = Pred

Figure 6. Schematic representation of the multi date convolutional neural network architecture.
The numbers represent the dimensions of the tensors and the names in the boxes are the operations
applied. The DOY stands for the day of year.

2.9. Model Parameters

The distribution of the parameters in each step of the model is presented in Table 3. The total
number of parameters for the full model was 5682, which characterizes a small and light-weight
model, with more observations available than parameters to be estimated. This number is the same
independent of the size of the input images. The number of parameters in the SD model was 5131,
while the number of parameters in the MD model was 551. The last number represents the effective
samples to train the MD model, which is about 10% of the available data to train the SD model.

Table 3. Details of model architecture and number of parameters in each layer.

Layer Kernel Dim Tensor Shape Param #

Conv2D-S1 [3,3,3] [−1, 3, h, w] 112
Conv2D-S2 [4,3,3] [−1, 4, h/2, w/2] 222
Conv2D-S3 [6,3,3] [−1, 6, h/4, w/4] 440
Conv2D-S4 [8,3,3] [−1, 8, h/8, w/8] 730
Conv2D-S5 [10,3,3] [−1, 10, h/16, w/16] 2912
Conv2D-S6 [32,1,1] [−1, 32, h/32, w/32] 528
Conv2D-S7 [16,1,1] [−1, 16, h/32, w/32] 136
Conv2D-S8 [8,1,1] [−1, 8, h/32, w/32] 45
Conv2D-S9 [5,1,1] [−1, 5, h/32, w/32] 6

Total Single [−1, 1, h/32, w/32] 5131

Conv2D-M1 [30,1,1] [−1, 30, h/32, w/32] 465
Conv2D-M2 [15,1,1] [−1, 15, h/32, w/32] 80
Conv2D-M3 [5,1,1] [−1, 5, h/32, w/32] 6

Total Multi [−1, 1, h/32, w/32] 551

Total 5682
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2.10. Model Training

The training and testing were performed in a computer equipped with an Intel i7 processor
(Intel Corporation, Santa Clara, CA, USA) and an NVIDIA Quadro P4000 GPU (NVIDIA, Santa Clara,
CA, USA) with 8GB memory using the PyTorch deep learning package v. 1.5 [35]. The Adam optimizer,
with a learning rate of 0.001 was used. The RMSE was used as the loss function (Equation (1)).
The models were trained using 10% dropout rate. The models were trained to a maximum of 100 epochs,
using early stopping criteria to monitor the validation set and stop training after the loss did not
decrease for 10 consecutive epochs. The architectures and hyper-parameters were fine-tuned based on
the amount of data available and the overall results in the validation sets.

2.11. Model Validation

The dataset was split into three different sets used for training, validation, and testing.
The validation set is primarily used for early stopping the model. All metrics presented are calculated
over the test set. All comparisons were made using 10-fold cross-validation so that all data were
evaluated in all sets. The data split was set to 80% for the training set, 10% for the validation set,
and 10% for the test set. The split was fully randomized, which represents the most common method
used in the literature. The models trained in one trial were also tested in all other trials. Testing in
different trials assures more independence of the testing set and reflects a more desirable model.

2.12. Model Uncertainty

In the proposed architecture using only convolutional layers, every 32 × 32 pixels in the input
will produce one pixel in the output. The final prediction is taken as the average of the pixels in the
prediction. The standard deviation of the predictions is used as an estimate of model uncertainty due
to within plot variability. As a consequence of the 10-fold cross-validation, there were ten resulting
models for each trial. The standard deviation of these predictions was also evaluated as a metric
of uncertainty.

The use of replicated images was also evaluated at test time to estimate the uncertainty caused
by variation in light intensity and the overall aspect of the images. This also reflects some of the
uncertainty due to the geometric differences in the images, since the distortions are greater for plots
close to the borders of the images. Finally, multiple predictions with dropout layers enabled at test time
were also used to estimate the uncertainty of the model parameters and architecture. The standard
deviation of the predictions with the image replicates, and dropout enabled was computed with
10 random initializations for each plot and method. The four estimates of uncertainty were compared
with the average error at a trial level and also correlated to the absolute error of each plot.

3. Results

3.1. Single Date Model

In four of the five trials, the lowest RMSE was observed when the images were acquired about
one week before maturity, while for T5 the lowest error was obtained when the images were taken
about two weeks prior to maturity (Figure 7). Looking at the images of T5, it was noted that in
many plots the plants were lodged on the neighboring plots. Furthermore, it was noted that weed
growth occurred simultaneously with the crop senescence, and most importantly, leaf retention after
pod senescence. These factors contributed to larger errors when the used images are taken closer
to senescence. So, even though under optimal experimental conditions images close to maturity
would be preferred, the confounding factors could affect the predicted values and increase the error.
When considering all data, the errors remain relatively low for about 12 days before maturity; outside of
this range, the errors increase substantially. Based on these observations, the value of the GTDiff was
set to −6, meaning that from all the available image dates, the one that predicted maturity would occur
about 6 days after the acquisition was used as the center image. The two images acquired immediately
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before and after this center image usually fell within this 12 day time window. The choice of five
images was based mostly on the minimum number of images usually available for the trials. Choosing
a fewer number of images may degrade the performance; this is because at prediction time the GTM
value is unknown, and the estimates from individual images are used to find the center image. The use
of more images confers robustness to the model, in case the choice of images was not optimal.
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Figure 7. Prediction performance measured by the root mean squared error (RMSE) as a function of
the difference between the image acquisition date and the ground truth maturity date. The shaded area
represents the time window comprising the five images with the least error.

3.2. Overall Performance

The overall performance of the models trained and evaluated within the same trial indicated an
RMSE inferior to 2 days in all trials except T5, in which the RMSE was about 3 days (Figure 8). The lower
performance in the last trial is attributed to the lower quality of image acquisition, with more shadows,
and to the higher frequency of lines with leaf retention. The performance of models trained in other
trials and seasons varied among trials. For most cases with high RMSE there was a bias of a few days in
the distributions of predicted and observed values. This could be due to some offset in the relationship
of leaf senescence and pod senescence caused by environmental factors and their interaction with
the genotype. Part of this bias may also be due to differences in the GTM data acquisition, since the
maturity date is an estimate subject to human error. The bias in the raw predictions was corrected
using the information from the reference check plots, which greatly reduced the extremely high values
of RMSE.
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Figure 8. Prediction performance measured by the root mean squared error (RMSE) for the raw model
outputs and after the correction using the check plots.

When evaluating the RMSE of the adjusted maturity dates, the models showed good
generalization (Figure 9). It can be noted that the number of model parameters and dropout were
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effective at avoiding overfitting, since the validation loss did not show any trend to increase within
the number of epochs used. The RMSE values were lower when the conditions were similar, but the
increased errors when the conditions of the trial changed. For example, all models performed well
in trials T2, T3 and T4, which had good quality images and no confounding factors in the trial.
However, all the models that were trained in other trials, had higher errors in T1. One reason for that
was due to the emergence of a new generation of seedlings after the harvest of the earlier maturing
lines. This caused some plots to be green again in the last two acquisition dates. Even though this
effect added a low error, considering that the predictions in the single date model were good enough
to choose the early images, under other conditions, few large errors could cause an overall increase in
the RMSE.
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Figure 9. Prediction performance measured by the root mean squared error (RMSE) as a function of
the number of iterations (epochs) for the training and validation data sets.

3.3. Resolution

The effect of resolution was small, resulting in similar model performance in most trials with
variations between 25 and 100 mm/px (Figure 10). The most significant increase in the RMSE was
observed in T1 with the lowest resolution (750 mm/px). This shows that the features learned by
the model in T1 depend on the texture of images and not only on the color. For the other trials,
the small differences may be related to the number of observations used to train the model, which were
five to 10 times fewer than what was available for T1. The trials in which the quality of resolution
was less important also had more problems with out of focus images such as the examples shown
earlier (Figure 4). It is also important to note that even with the best resolution (25 mm/px), the pods
cannot be distinguished from the leaves, which would be necessary to improve the models when
germplasm expressing leaf retention is present in the trials.
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Figure 10. Prediction performance measured by the root mean squared error (RMSE) as related to
simulated image resolutions.

3.4. Data Augmentation

The two strategies of data augmentation used to train the models did not improve the results,
compared to no data augmentation (Figure 11). Overall, the use of synthetic augmentation decreased
model performance when it was evaluated at the same trial, and even more, when it was evaluated in
the other trials. The use of the image replicates had mixed results, with increased generalization when
the model was tested in other trials in a few cases, but with decreased performance being still more
frequent. These results give further evidence to what was observed from the image resolution analysis.
Since the model relies mostly on the average color of each image, applying augmentation techniques
that change the color of the images (brightness, contrast), leads to a decrease of the model accuracy.
In contrast, the augmentation technique has had more success in other computer vision problems,
where more complex features related to image texture and shape of objects are more important
than color.
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Figure 11. Prediction performance measured by the root mean squared error (RMSE) as related to
different data augmentation strategies.
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3.5. Uncertainty

The standard deviation of the within-plot predictions (spatial) was more related to the data used
for training than the trial in which the predictions were made (Figure 12). The values were lower than
1 day for models trained in trials with bigger plots and higher than 1 day for the models trained in
T1 and T5. The standard deviation of using models trained with different subsets of the data (folds)
shows a clear difference towards lower RMSE when the model included data from the same trial
and when it did not. There was also a distinction of two groups of trials, as models trained in T2,
T3, or T4 had lower variation when tested within this group but higher values when tested in T1 or
T5, and vice-versa. The standard deviation of using image replicates was lower than 1 day for all
trials except in T2, for which its values were higher than the uncertainty estimated by other methods.
The standard deviation of predictions with dropout layers enabled was usually higher than the other
methods, but similar for all trials and models.
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Figure 12. Standard deviation of maturity predictions using different methods to estimate uncertainty.

The correlations between the standard deviation of predictions and the absolute error varied from
−0.1 to 0.3 depending on the trial and the model (Figure 13). In most scenarios the correlation was
positive, although some negative values were observed, mostly when using dropout. The overall
correlation was higher in T1 and lower in T2, independently of the method. Using dropout presented
mixed results, with the best correlation when the model trained in T2 was used in T3. Using the
replicates produced the best results in T1 and T5.
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Figure 13. Correlation between the standard deviation and the absolute error of maturity predictions
using different methods to estimate uncertainty.

4. Discussion

The maturity prediction was framed as a regression model, aiming to predict the maturity date
as a continuous variable, instead of classifying each plant row as mature or immature for a given
date [15]. This eliminates the need for post-processing steps before getting the final result. It also
makes it easy to include local information from the check plots in a simple linear regression to account
for the environmental factors and assign the maturity group. Reporting the results in terms of the
RMSE enables a better evaluation of the model than using classification accuracy, as images taken far
from the maturity date are easier to classify but do not contribute to improved model performance.

The overall performance of the model was superior to what has been reported in previous studies.
One study, using partial least square regression (PLSR) and three vegetation indices to predict maturity
in a diverse set of soybean genotypes, achieved an RMSE of 5.19 days [36]. Another recent study,
also using PLSR models and 130 handcrafted features from five-band multispectral images, achieved an
RMSE of 1.4 days [26]. However, this study used 326 GTM observations with a range of maturity dates
of only 10 days, which makes low RMSE easier to achieve. The relatively low importance of image
resolution, which is an indicator of the importance of using CNN as feature extractors, shows that this
was not the main reason to explain the good performance of the model.

The CNN model is able to learn how to extract the best combination of features. This flexibility
would allow using the model for the extraction of many traits of interest at the same time. For example,
the same model could be trained to predict maturity date, senescence rate, lodging and pubescence
color. The importance of image resolution and the automated feature extraction with CNNs was
demonstrated in a similar study in rice [32]. In that study, the accuracy of the phenological stages
estimation was higher with image resolutions of 20–40 mm/px and decreased sharply when they were
reduced to 80–160 mm/px. The maturity in rice is observed in the panicles, which are at the top of
the canopy, more visible in the images than the soybean pods, which are in the middle of the canopy.
Therefore, it is likely that the best resolution tested in this work (25 mm/px) is still too coarse to allow
the model to learn any feature specific to the pods, which is an explanation for why there was little
impact of reductions in resolution. A future research direction could be to evaluate the importance of
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much higher resolutions, which could be obtained with lower flying altitudes or using autonomous
ground vehicles [37].

Contrary to the expected, using replicated observations from different images of the same plot
did not increase the model performance. More surprising, applying synthetic data augmentation
markedly decreased the model performance in most cases. This result is mostly attributed to the
relative importance of color, rather than more complex plant features. Another reason for the low
performance when using augmentation may be the simultaneous use of dropout. Some works have
shown that for most models there is an equivalence between dropout and data augmentation [38],
both introducing some randomness to reduce the risk of overfitting. Since dropout was used in
all models, it is possible that the combination of dropout and data augmentation created excessive
randomness, reducing the effectiveness of the model training. Considering that dropout is easier
to implement and does not require assumptions about what types of augmentation are meaningful,
this would be preferred instead of data augmentation. However, a more thorough evaluation of
hyper-parameters could be done in future research to confirm these findings.

Developing a model with low prediction error using RGB images makes it more likely to be used
due to the low cost. Besides, an RMSE of about 1.5 to 2.0 days is usually considered the acceptable
limit in breeding programs [26]. Considering that errors above this limit were observed in T5, the use
of multispectral images could provide better results when leaf retention is a significant concern.
The challenge to correctly predict maturity in plots where plants with mature pods still retain green
leaves has been previously reported [15]. This type of error is more important than a random error
because some lines consistently would have higher errors than others, possibly affecting the selection
decisions. Future works to predict physiological maturity should consider foliar retention as a trait to
be analyzed. Another consideration is what stage should maturities be predicted or visually rated in
breeding programs. Breeders will develop and test tens of thousands of experimental lines annually
and evaluate them in small plots. It is very labor-intensive to evaluate all of these lines visually
for maturity, and it is not critically important to obtain accurate maturity estimates at this stage as
the estimates are used to place lines in tests with similar maturities. Predicting maturities with a
UAV would most benefit breeding programs at this stage. At later stages of breeding programs,
more accurate estimates are needed so that the maturity groups of cultivars can be determined.

One particularity of the proposed architecture is the use of only convolutional layers instead of
using fully connected layers for the final prediction. Although this is common in semantic segmentation
tasks, it is less used for regression tasks. The goal of applying this strategy in this context was also
different. Rather than improving performance, the main purpose was to add flexibility and to estimate
prediction uncertainty due to within plot variability. This was demonstrated in Figure 13, and was
helpful to identify the sources of prediction errors in some plots (Figure 14). In a similar way, the use of
image replicates also identified an overall higher uncertainty in T2 and was positively correlated with
errors of individual plots in T1. Therefore, the different methods of uncertainty estimation can be used
for two different purposes. The first is to evaluate the overall quality of the images and procedures
used at the trial level, which can identify problems with image stitching or radiometric calibration.
The second use is to select individual plots in which the error is likely to be higher, which should be
targeted for new data acquisition in order to improve the model.

Another source of uncertainty comes from the imprecision of GTM ratings, and is related to the
observation frequency, the experience level of the people collecting the data, and the number of people
taking notes for the same field. In order to estimate this source of uncertainty it would be necessary to
conduct independent maturity assessments by different people in the the same plots with a higher
frequency of field visits, ideally daily. This is beyond the scope of this work, and is left as a suggestion
for future research.

Most of the processing time is spent preparing the images for each plot and training the models,
but making the predictions is actually very fast. With more than one thousand predictions per second,
in the hardware used, using the GPU, this shows the potential scalability of the method once other
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bottlenecks in image processing are solved. Fast predictions are also important to enable the test time
augmentation and evaluate the model uncertainty. The ability to understand when the predictions
fail is one of the foundations for model improvement. This also opens the possibility of using model
ensembles to improve predictions and to better identify the uncertainty [39].

Figure 14. Examples of replicated images from trial T5 illustrating leaf retention, weeds and influence
from neighboring plots.

5. Conclusions

The strategy of choosing a subset of images that contribute the most to model accuracy proved
to be successful in conferring flexibility to the model. Models trained in other trials and years,
with different plot sizes and image acquisition intervals, were able to predict soybean maturity date
with an RMSE lower than 2.0 days in four out of five trials. Compared to previous studies, additional
challenges were addressed, focusing on the scalability of the proposed solutions. This was possible
after using more than 15,000 ground truth maturity date observations from five trials, including
data from three growing seasons and two countries. Data augmentation did not improve model
performance and was harmful in many cases. Changing the resolution of images did not affect model
performance. Model performance decreased when tested in trials with conditions unseen during
training. Using ground truth information from check plots helped to correct for environmental bias.
Four methods of estimating prediction uncertainty showed potential at identifying different sources of
errors in the maturity date predictions. The main challenge remaining to improve model accuracy is
the low correlation between leaf senescence and pod senescence for some genotypes.
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