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Abstract: We propose an unsupervised network with adversarial learning, the Raindrop-aware GAN,
which enhances the quality of coastal video images contaminated by raindrops. Raindrop removal
from coastal videos faces two main difficulties: converting the degraded image into a clean one
by visually removing the raindrops, and restoring the background coastal wave information in the
raindrop regions. The components of the proposed network—a generator and a discriminator for
adversarial learning—are trained on unpaired images degraded by raindrops and clean images free
from raindrops. By creating raindrop masks and background-restored images, the generator restores
the background information in the raindrop regions alone, preserving the input as much as possible.
The proposed network was trained and tested on an open-access dataset and directly collected
dataset from the coastal area. It was then evaluated by three metrics: the peak signal-to-noise ratio,
structural similarity, and a naturalness-quality evaluator. The indices of metrics are 8.2% (+2.012),
0.2% (+0.002), and 1.6% (−0.196) better than the state-of-the-art method, respectively. In the visual
assessment of the enhanced video image quality, our method better restored the image patterns
of steep wave crests and breaking than the other methods. In both quantitative and qualitative
experiments, the proposed method more effectively removed the raindrops in coastal video and
recovered the damaged background wave information than state-of-the-art methods.

Keywords: coastal video enhancement; raindrop removal; background information recovery;
generative adversarial network; unsupervised learning

1. Introduction

Coastal area plays an important role in national economy, commerce, and recreation. However,
these regions are currently threatened by climate change, sea-level rise, beach erosion, extreme storms,
and coastal urbanization [1]. Studying coastal area is a complicated task. Coastal research is strongly
interrelated with hydrodynamics, morphodynamics, and anthropogenic interactions, and is also linked
to geological, meteorological, hydrological, and biological processes [2]. Furthermore, these processes
and their complex interactions vary on temporal scales from seconds to decades and on spatial scales
from centimeters to tens of kilometers. Although many processes and interactions have been elucidated
over the past few decades, the remaining scientific challenges require advancements in simulation and
observation [3].

Remote sensing can observe the large-scale variability over a long-term period, and provides
coastal measurements even in extreme events. In particular, land-based remote-sensing equipment such
as cameras and video systems can provide long-term, sub-meter-scale consecutive images with high
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temporal resolution. They also cover large spatial areas during extreme events. Conventional image
processing techniques extract the shoreline position and infer the sub-surface morphology [4,5],
from coastal video images, providing measurements for long-term studies of coastal behavior [6–8].

In recent years, deep learning has greatly benefited computer vision problems such as object
detection, motion tracking, action recognition, and semantic segmentation [9]. Deep learning for
computer vision overcomes the limitations of conventional image processing and analysis techniques
by learning large amounts of data. Consequently, the performance is determined by the quantity and
quality of the training data.

An essential problem in coastal studies is the nearshore wave process, which especially in extreme
events is highly nonlinear and uncertain. Deep learning-based computer vision is expected to identify
this phenomenon in numerous video images obtained from coastal video systems. Unfortunately,
during extreme events, video image data are often degraded by bad weather conditions such as
rain, wind, and fog. Raindrops on the camera lens especially degrade the visibility of video images.
The degraded video data are difficult to use as training data for learning the coastal wave behavior
due to low visibility of background wave information.

In addition, annotation of the video is not only very labor-intensive, but ambiguous labeling
of contaminated video images degrades learning performance. Thus, supervised learning approach
with paired dataset, including images and corresponding labels, is difficult to apply coastal videos.
Therefore, unsupervised learning from unlabeled data is a promising direction for the coastal analysis
of accumulated video data. It means that obtaining a larger amount of quality-controlled data are
essential in learning-based approaches with an unsupervised manner.

This paper proposes an unsupervised learning framework with a generative adversarial network
(GAN)-based video generation (Raindrop-aware GAN) to enhance a raindrop-contaminated coastal
video. To detect and correct the degraded video images attentively, the generator produces a mask
image for raindrop regions with various sizes and shapes together with the background-restored image
through an encoder-decoder architecture with dilated convolution blocks and long skip connections.
A mask sparsity loss function guides the generator to create the mask image by focusing only on the
contaminated regions. In addition, the generator is also trained using a clean image set, which does
not necessarily correspond to the contaminated image set, in order to identify raindrop-free regions.
This behavior is achieved by a regularization loss function representing image differences between the
clean images and their reconstructed images by the generator. The adversarial training of the generator
with a discriminator helps to create undistorted images that follow a clean image distribution.

The novel contributions of this paper are: (1) constructing unsupervised Raindrop-aware GAN
architecture to correct the raindrop-degraded coastal videos by learning behavior of propagating
coastal waves; (2) developing new loss functions for adversarial learning of Raindrop-aware GAN and
attentively correcting the raindrop-degraded coastal video imagery; and (3) validating applicability of
the proposed method to real-world coastal monitoring videos acquired at Anmok beach in South Korea.

The remainder of the paper is organized as follows. Section 2 briefly introduces the related work
on raindrop detection and removal by deep neural networks. Section 3 introduces our GAN-based
method and Section 4 describes the three datasets used in our experiments. Section 5 details our
data configuration and experiments, and introduces the state-of-the-art models employed in the
performance comparison. Section 6 presents the quantitative and qualitative comparison results.
Sections 7 and 8 discuss the applicability of our proposed method to reconstruct raindrop-contaminated
wave scenes and concludes the paper with directions of future work, respectively.

2. Related Work

Raindrop-removal techniques can be categorized into two main groups: image processing
methods that mathematically model-driven and data-driven approaches.

Garg and Nayar [10] introduced a physics-based motion blur model and a correlation model,
which captures the photometry and dynamics of rain by detecting the rain streaks in sequential
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images. The rain streaks are identified by their common movements and appearances in the two
models. Roser and Geiger [11] proposed a photometric raindrop model that detects the spherical
shapes of raindrops. However, neither of these techniques restores the background information.
The region-completion method of You et al. [12] accomplishes both raindrop detection and
background restoration using the neighboring pixel information. Although this method restores the
raindrop-occluded pixels in the frequency domain, it is limited to static raindrops with spherical shapes.

Lauded for their excellent performance in image processing and translation, convolutional
neural networks (CNNs) have been introduced to various data-driven approaches for raindrop
removal. CNN-based techniques can be classified into supervised learning and unsupervised learning,
depending on whether or not clean images corresponding to distorted images are used as the ground
truth in the training phase.

Employing a supervised CNN restored the background of raindrop-distorted regions in a
patch-wise manner [13]. High performance is achieved only on images contaminated by scattered
small-sized sprinkles. Qian et al. [14] investigated raindrop removal by supervised image-to-image
translation methods with adversarial learning, and proposed the attentive generative adversarial
network (Attentive GAN) [14]. Attentive GAN generates a raindrop mask using a long short-term
memory (LSTM)-based network, which guides the subsequent generator network to restore the
background in the distorted regions. Attentive GAN achieves higher similarities between the
restored images and the corresponding clean images than conventional methods such as Pix2Pix [15].
However, Attentive GAN requires an additional ground-truth dataset for supervising the raindrop-mask
generation. More recently, Peng et al. [16] introduced a fully-CNN with skip connections and
concurrent channel and spatial attention modules. Their method removes raindrops from single
images, but supervised approaches invariably require paired datasets including clean images.
Backgrounds with dynamically changing subjects are not easily acquired as clean images with accurate
correspondence to distorted images. For this reason, supervised methods are usually evaluated on a
simulated dataset.

Unsupervised image-to-image translation with adversarial learning has been drawing attention
in the field of remote sensing, owing to their advantages in using unlabeled and unpaired data set for
training. Recently, a cycle-consistent GAN has been exploited to transcode synthetic-aperture-radar
(SAR) images into optical images for building change detection using optical-like features [17,18].
GAN architectures have also proven their advantages using discriminative features of the discriminator
in hyperspectral image classification [19,20]. Unsupervised image-to-image translation has been
employed for domain adaptation in aerial image segmentation [21]. In raindrop removal, to avoid
the paired-data requirement, Uzun and Temizel [22] and Wei et al. [23] proposed unsupervised
and semi-supervised approaches using GAN architectures to map the distorted images to a target
distribution of clean images. However, as shown in Qian et al. [14], image-to-image translation without
attention to raindrops often fails the background reconstruction task in undistorted regions. On the
contrary, we present an unsupervised GAN with a raindrop-restoration focus and regularization for
improved background learning.

3. Methodology

3.1. Raindrop-Aware GAN

The proposed raindrop-removal framework (Raindrop-aware GAN) is an unsupervised
image-to-image translation method with adversarial learning, which transforms a raindrop-distorted
image into a clean image domain. As shown in Figure 1, the proposed network consists of two
sub-networks: (1) a conditional generative model called the scene generator, which restores the
backgrounds in the raindrop regions, and (2) a discriminator that captures the distributions of the
distorted and clean image samples in a patch-wise manner. The scene generator attentively restores the
backgrounds by focusing on the raindrop regions determined by a raindrop mask, while preserving
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the input image as much as possible. The adversarial learning in the scene generator restores the
natural appearance of the coastal waves in the backgrounds. The restoration level is sufficient to
deceive the discriminator.

Figure 1. Architecture of the proposed Raindrop-aware GAN.

3.2. Scene Generator for Raindrop-Aware Background Reconstruction

Given an input image (ri) contaminated by raindrops, the scene generator (G) produces a
background-restored image (or

i ) and a raindrop mask (mr
i ). The mask represents the raindrop regions

on a scale from zero (background) to one (raindrops). Our scene generator recognizes the raindrop
regions without any supervision, and transforms the distorted images into a distribution of clean
images while preserving the backgrounds of the raindrop regions. The reconstruction is formulated
as follows:

r̄i = {(1−mr
i )� ri}+ mr

i � or
i (1)

where i is the image index of coastal videos, r indicates the distorted images, and r̄i is the final
output of the generator through the fusion of the background-restored image (or

i ) and the input image
using the raindrop mask. The scene generator is implemented as a fully-convolutional network with
skip connections.

Figure 1a shows the structure of the scene generator. It is composed of three parts: (1) an encoder
that learns the significant features from the inputs; (2) a bottleneck that builds a deep architecture with
a large receptive field; and (3) a decoder that generates the background-restored image and a raindrop
mask with the same input resolution.

The encoder consists of a series of convolution blocks. Each block comprises 3× 3 convolutional
layers followed by a rectified linear unit (RELU) activation function [24]. For downsampling operations
in the feature encoding, the second and last convolution blocks are performed with a stride of 2. Thus,
the spatial resolution of the encoder output is w/4× h/4, where w is the width, and h is the height of
the input image, respectively. The bottleneck part is a series of residual blocks with dilated convolution
layers [25]. Each residual block combines a shortcut connection by addition and a sequence of two
3× 3 dilated convolutions followed by RELU functions. The dilated convolution efficiently increases
the receptive field while maintaining spatial resolution. The bottleneck part with multiple residual
blocks ensures the robustness of Raindrop-aware GAN when detecting raindrop regions of various
sizes. In the decoder, transposed convolutional layers with a stride of 2 are used for upsampling
operations, and the convolutional blocks are used for reconstruction. Among the four output channels
of the decoder, three channels are allocated to the background-restored image, and one channel is
reserved for the raindrop mask. To minimize the loss of image details by frequent convolution and
downsampling operations, we employ long skip-connections that deliver the early-layer features of
the encoder to the decoder by concatenation.
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The scene generator is trained to minimize three loss functions: Lgen for adversarial learning
against the discriminator, Lmask for enforcing the sparsity of the raindrop mask, and Lreg for
background learning. Lgen and the discriminator loss are discussed to describe the adversarial learning
between the generator and discriminator networks in the next Section 3.3. The total loss for training
the scene generator is also described along with Lgen. In the reconstruction operation (Equation (1)),
the mask sparsity loss (Lmask) is an l1 loss that prevents easy saturation (1.0) of the mask, and which
drives the focus to the regions distorted by raindrops. The loss function (Lmask) is given by

Lmask = Eri∈Irain [‖ mr
i ‖1] (2)

where Irain is the set of training instances of distorted images. Because the raindrop discrimination is
unsupervised, we regularize the scene generator to produce a zero-valued mask in the undistorted
background regions while correctly reconstructing the backgrounds. To achieve this task, we compute
the regularization loss (Lreg) of selected clean images (cj) that are randomly sampled from the
training set:

Lreg = Ecj∈Iclean
[‖ (1−mc

j )� oc
j − cj ‖1] (3)

where mc
j is the mask, oc

j is the background-restored version of image cj, and Iclean is the training set of
clean images. c indicates the outputs of the scene generator from the clean images. Figure 2 shows the
forward propagation of the input samples in the scene generator when computing the loss functions of
unsupervised training.

Figure 2. Forward propagations of the input in the scene generator of Raindrop-aware GAN when
computing (a) the loss functions Lmask and Lgan for the sparse mask and adversarial learning,
respectively; and (b) the loss function Lreg for background learning.

3.3. Discriminator for Regional Raindrop Pattern Recognition

During adversarial learning, the discriminator (D) is trained to distinguish clean images from the
images reconstructed by the scene generator. As a classifier, the discriminator learns the distributions
of the real and fake samples; meanwhile, the scene generator attempts to deceive it by producing more
realistic images. Because the raindrop distortions are observed locally, we construct the discriminator
in the PatchGAN architecture [15]. The discriminator is composed of a series of convolution blocks
(convolutional layers followed by a RELU activation function). After multiple downsampling
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operations through convolution blocks with a stride of 2, the output dimension of the discriminator is
w/32× h/32× 1. Each element of the output feature represents one patch of the given input (see the
discriminator in Figure 1). The loss function of the discriminator is given by

LD = Eri∈Irain [‖ D(r̄i) ‖2
2] +Ecj∈Iclean

[‖ D(cj)− 1 ‖2
2] (4)

where r̄i is the image reconstructed by Equation (1). To deceive the discriminator, the scene generator
is trained using the following loss function:

Lgen = Eri∈Irain [‖ D(r̄i)− 1 ‖2
2] (5)

The total loss of the scene generator is then computed as

LG = ω1Lreg + ω2Lmask + ω3Lgen (6)

where ω1, ω2, and ω3 are hyperparameters that control the importance of each loss function. As the
o>1 and o>2 values increase, the masks more rapidly approach to zero; conversely, increasing W3
drives more areas of the mask toward one.

Algorithm 1 performs the unsupervised training of Raindrop-aware GAN on the training sets of
the distorted and clean images. The Shuffle (·) function in Algorithm 1 shuffles the data indices of the
training sets, and the Next, (·) function sequentially calls the data instances of the next indices. In the
testing stage, single video frames, extracted from coastal videos, are given to the trained generator.
Note that the block of frame sequences can be input to the generator as well. This approach can help
reduce the processing time for entire videos. Since the generator learns the backgrounds to regenerate
them using the loss Lreg, extracted frame sequences including undistorted images can be given without
any further processing.

Algorithm 1 Unsupervised training procedure for the Raindrop-aware GAN

Input: Irain,Iclean,N(Number of epochs), ω1, ω2, ω3 (loss weights)
for 0 to | N | −1 do

I′rain=Shuffle(Irain)
I′clean=Shuffle(Iclean)
while True do

if i =| I′rain | −1 then
break

end if
ri = Next, (I′rain)
cj = Next, (I′clean)
Compute r̄i using Equation (1) with ri as an input
Compute Lmask and Lgan of G with ri as an input
Compute Lreg of G with ci as an input
Compute LD of D with ci and r̄i as an input
Update parameters of D using LD
Update parameters of G using Equation (6)

end while
end for

Output: Trained networks G and D

4. Dataset

Three kinds of datasets were used in this study: (1) the open-access dataset, Raindrop1119 [14];
(2) Anmok paired dataset; and (3) Anmok unpaired dataset.
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4.1. Raindrop1119

Qian et al. [14] created a dataset of raindrops attached to a glass window or lens, and released it
for use in raindrop removal studies in Attentive GAN. Their dataset includes 1119 image pairs, one
degraded by raindrops, the other free from raindrops in the same background scene (corresponding
ground-truth image of degraded one). The outdoor background scenes and the raindrop sizes and
distributions are varied among the image pairs. This dataset, hereafter referred to as Raindrop1119,
contains 891 training data and 58 test data. Samples from Raindrop1119 are shown in Figure 3.

Figure 3. Samples selected from the Raindrop1119 dataset [14] (a) images degraded by raindrops;
and (b) their corresponding ground-truth images.

4.2. Coastal Wave Monitoring at Anmok Beach

The video enhancement study is conducted at Anmok beach, a straight, almost 4 km-long strips
dominated by micro-tidal waves. The beach is located on the east coast of South Korea (Figure 4a,b),
which has eroded in the last few decades. To understand the associated physical process, a video
monitoring system using general Closed Circuit Television (CCTV) has been installed, and the video
data captured in 2016 and 2017 have been stored. The camera locations and an image of the camera
view are indicated in (b) and (c) of Figure 4, respectively. In this study, we additionally installed
CCTVs to acquire raindrop-contaminated coastal video images paired with their clean images (see (d)
in Figure 4) for a fair comparison with the supervised approaches using ground-truth. Details of the
paired coastal video acquisition are described in the following section.

4.2.1. Anmok Paired Dataset

Similarly to Raindrop1119, pairs of raindrop images at Anmok beach were generated for fairly
comparing the proposed unsupervised method with the state-of-the-art supervised baseline models.
The camera location is indicated in Figure 4b, and samples of the acquired video images are shown in
Figure 5. An image of the camera view is displayed in Figure 4d. Hereafter, this dataset is referred
to as the Anmok paired dataset. The images in Figure 5a are degraded by raindrops, whereas those in
Figure 5b are raindrop-free. The images (ground-truth) are paired against the same background.

The two CCTVs were connected for simultaneously recording the raindrop-contaminated video
images and their corresponding raindrop-free images. Under inclement weather conditions, the CCTV
lens-distortion pattern caused by raindrops on the instrument was replicated by a (20 × 15 cm)
transparent glass plate attached to the front of the CCTV lens, and the raindrop pattern was simulated
by a sprayer. Clear images without distortion were acquired as the corresponding synchronous CCTV
images taken at the same time as the contaminated images, and with the same glass plate attached.
The collected images contained 13 different raindrops and raindrop deformation images collected
at 1-min intervals. The samples showed the spatial and temporal changes in the raindrops over
approximately 20 min. From each video, we randomly extracted video frames (16,841 frames total)
and divided them into two sets according to acquisition time: 13,605 data for training and 3236 data
for verification. The training and test sets are not overlapped and not extracted from the same videos.
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Figure 4. Study area of Anmok Beach located in north–eastern South Korea (a). The CCTV video system
was installed at two locations (b); one for the unpaired raindrops dataset (blue circle) and one for the
paired raindrop dataset (green circle). The locations for collecting the unpaired- and paired-image
datasets are shown in (c,d), respectively. Dark pixels in (b) indicate the area where the submerged
breakwater is installed.

Figure 5. Samples of our Anmok paired dataset: (a) images degraded with raindrops and (b) their
corresponding ground-truth images. The dark pixels at the point where the wave breaks indicate the
area where the submerged breakwater is installed.

4.2.2. Anmok Unpaired Dataset

To evaluate the applicability of the proposed method, we also acquired coastal video images
from the video monitoring system (see Figure 4c), installed at Anmok beach. Samples of the acquired
video images are shown in Figure 6. Hereafter, this dataset is called Anmok unpaired dataset. Unlike the
Raindrop1119, Figure 6b is free from raindrops but do not correspond to the raindrop-contaminated
images in Figure 6a. The spatial and temporal resolutions of the video system are 1920 × 1080 and
30 frames per second (fps), respectively. From the video clips acquired in November 2016 and 2017,
we randomly selected 233 and 360 clips for training and validating the proposed networks, respectively
(training:validation ratio = 8:2). All videos were recorded in daytime and cover different wave-
breaking and light conditions. Each video clip is approximately 10 min long. For unsupervised learning,
which excludes the labeling task, all video frames recorded at 30 fps were used without downsampling.
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Figure 6. Samples of our Anmok unpaired dataset: (a) images degraded by raindrops; and (b) clean
(raindrop-free) images not corresponding to those in (a).

5. Experiments

5.1. Implementation Details

The kernel parameters of the proposed networks were randomly initialized by He initialization [26]
and trained by an Adam optimizer [27]. In both the scene generator and discriminator, the parameters
β1, β2, and ε of the Adam optimizer were set to 0.5, 0.999, and 0.001, respectively. The learning rate (η)
was 0.0001, and the training datasets were augmented with random horizontal flipping. The size of
the images input to the networks was fixed to 720× 480. The hyperparameters ω1, ω2, and ω3 were
empirically set to 1.0, 0.01, and 0.5 respectively through hyperparameter tuning process using a tuning
set, which was randomly selected from the Raindrop1119 dataset. The size of the tuning set was 10% of
the training set. The hyperparameters were applied equally to all experiments.

All experiments were conducted on a workstation, equipped with a single TITAN XP (12 GB),
Intel i9 CPU, and 32 GB main memory, with a batch size of 16. Training time depends on the size of
the training data. We trained the proposed networks with the observation of the validation loss to
avoid overfitting.

5.2. Baseline Models with Supervised Learning

In this experiment, the proposed method was competed against Pix2Pix [15] and Attentive
GAN [14]. Pix2Pix is a supervised image-to-image translation method based on adversarial learning.
The generator of Pix2Pix is trained to minimize the l1 loss between the reconstructed images and
their corresponding ground truth images, along with the adversarial loss against the discriminator.
The generator of Attentive GAN is composed of two sub-networks: an attentive network based on
convolutional LSTM that generates the attention mask of the given input, and a fully-convolutional
network that produces a de-rained image from the attention mask and input. Attentive GAN requires
the binary raindrop masks of all training instances for supervised learning. The hyperparameters of
Pix2Pix and Attentive GAN were tuned using the validation sets.

5.3. Evaluation Metrics

The accuracy of the background restoration on each method was evaluated by the peak
signal-to-noise ratio (PSNR) [28], the structural similarity index (SSIM) [29], and the natural image
quality evaluator (NIQE) [30].

The PSNR is the ratio of the maximum possible power of a signal and the power of the
corrupting noise. The SSIM metric captures the perceived quality loss between two image sequences.
As reconstructed images are more similar to their paired clean images than the raw images, the PSNR
of a reconstructed image should be high and the SSIM should approach 1.0. The PSNR and SSIM are
employed to measure the image quality with respect to the ground-truth, undistorted images.



Remote Sens. 2020, 12, 3461 10 of 18

Meanwhile, the NIQE is a non-referenced image-quality score that assesses the perceptual
image-quality enhancement. The NIQE measures the distance between the statistics-based features
in an image of a natural scene and the same features obtained from image databases. The features
are modeled as multidimensional Gaussian distributions, called the space domain natural scene
statistic (NSS) model. The NIQE can assess images with arbitrary distortions such as blurring, ringing,
and noise. A lower NIQE score indicates a better image quality.

6. Results

6.1. Comparison with Baseline Models Using the Raindrop1119

For a fair comparison with the supervised-learning baseline methods, we evaluated the accuracy
and image-quality improvements on Raindrop1119’s test dataset. Table 1 lists the PSNR, SSIM,
and NIQE scores calculated from the images reconstructed by Pix2Pix, Attentive GAN, and the
proposed Raindrop-aware GAN. The average PSNR and SSIM between the distorted images and
their corresponding clean images (ground-truth) in Raindrop1119 were 24.078 and 0.850, respectively.
The Pix2Pix method generated images with lower perceptual quality (NIQE = 12.296) than the
distorted images. The Attentive GAN and our Raindrop-aware GAN improved all three metrics of the
raindrop-removal performance. In this experiment, the performance of Attentive GAN was evaluated
using the trained model provided by Qian et al. [14].

Table 1. Accuracy and image-quality assessment of the two baseline models and our proposed method,
which were trained only training data of Raindrop1119 dataset, with test data of Raindrop1119 dataset.

Distorted Images Pix2pix Attentive GAN Raindrop-Aware GAN

PSNR 24.078 27.725 31.618 28.277
SSIM 0.850 0.876 0.920 0.882
NIQE 10.524 12.296 10.171 10.233

Figure 7 shows the reconstruction results of the two baseline models and Raindrop-aware GAN
on Raindrop1119’s test data. As evidenced by its best performance scores, Attentive GAN successfully
removed most of the raindrops, whereas the Pix2Pix reconstruction left gray stains in the raindrop
regions. Raindrop-aware GAN also generated high-quality images but could not remove tiny raindrops
from some test examples.

According to these results, direct supervised learning of the raindrop masks is advantageous
for recognizing small-sized and scattered patterns. The acquisition process of the raindrop mask in
Qian et al. [14] used empirically derived thresholds for the paired sets in Raindrop1119. It is important
to note that Raindrop1119 was acquired in a city with a limited field of view and artificial raindrops.
The mask acquisition method using simple thresholds is difficult to apply in practical cases such as
coastal videos having moving backgrounds like waves.
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Figure 7. Test examples from the Raindrop1119 dataset: (a) distorted examples; (b) their corresponding
clean images (ground-truth); and the reconstruction results of (c) Pix2Pix; (d) attentive GAN; and (e) the
proposed Raindrop-aware GAN.

6.2. Performance Evaluation on the Anmok Paired Dataset

To evaluate the effectiveness of the baselines and the proposed model on actual coastal videos,
we acquired a paired dataset of the wave videos at Anmok Beach. As described above, the dataset was
captured by two connected CCTV cameras placed side by side. While recording the coastal waves,
we sprayed water droplets on one camera multiple times to simulate the image distortions caused
by raindrops. The geometric differences between the corresponding images acquired by the cameras
were minimized by rigid registration. To simulate various raindrop-distortion patterns, we acquired
15 images splashed with artificial raindrops. Each video clip was filmed for approximately one minute
(on average) to capture the wave movements. From the video datasets of both cameras, we randomly
sampled 16,841 paired frames at the same time points, and divided them into a 13,605-image training
set and a 3236-image test set.

In this experiment, we re-trained the baselines and Raindrop-aware GAN that were previously
trained on Raindrop1119, and investigated their validity on the newly acquired datasets. Attentive GAN
performed poorly after fine-tuning because the threshold-based method in Qian et al. [14] could not
acquire the correct mask images for localizing the raindrops.

Table 2 shows the experimental results. After unsupervised re-training and fine-tuning,
Raindrop-aware GAN outperformed Pix2Pix and Attentive GAN, yielding the highest performance
indicators of raindrop removal (PSNR = 26.505, SSIM = 0.940, NIQE = 11.878). The NIQE was of limited
value in comparing the image-quality scores of coastal video images. Although the PSNR and SSIM
scores reflected the degraded performance of Attentive GAN, the image reconstruction of Attentive
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GAN yielded a lower (i.e., better) average NIQE score than the distorted images. These results may be
caused by complex patterns with many white particles observed during wave breaking.

Table 2. Accuracy and image quality assessment of the tested methods on Anmok paired dataset.

Distorted Images Pix2Pix AttentiveGAN
Pre-Trained

Raindrop-Aware
GAN

Fine-Tuned
Raindrop-Aware

GAN

PSNR 25.872 25.134 24.493 25.354 26.505
SSIM 0.938 0.930 0.938 0.932 0.940
NIQE 12.820 15.158 12.074 11.961 11.878

In the visual assessment of image quality, the fine-tuned Raindrop-aware GAN better restored the
image patterns of steep wave crests and breaking (see Figure 8) than the other methods. Black stains and
blurred regions appeared in the images reconstructed by Pix2Pix, Attentive GAN, and the pre-trained
Raindrop-aware GAN. These results indicate that wave-specific patterns in coastal video images are
difficult to restore without additional training processes. Whereas supervised learning methods must
acquire paired images with and without raindrops, our unsupervised approach can utilize all coastal
videos acquired from outdoor visual-sensing systems.

6.3. Application to the Anmok Unpaired Dataset

To validate the proposed method in practice, we assessed the image qualities of the baselines (the
state-of-the-art models) and Raindrop-aware GAN on the Anmok unpaired dataset. From the coastal videos
acquired over two months, we collected separate video clips under wet and dry conditions and then
randomly sampled 12,000 video frames from the two datasets. Note that no temporal correspondence
exists between the raining and non-raining video datasets. In the validation experiment, we took the
Raindrop-aware GAN trained on Raindrop1119 and fine-tuned it on the Anmok unpaired dataset.

In this experiment, we measured only the NIQE because the image sets were not paired. Table 3
gives the image quality scores of the reconstructed images. Raindrop-aware GAN outperformed Pix2Pix
and Attentive GAN; moreover, the fine-tuned Raindrop-aware GAN obtained clearer boundaries of the
propagated waves and wave-like patterns in the reconstructed images than the other methods (see
Figure 9).

Table 3. Image-quality assessment on raindrop-contaminated video images taken from a CCTV that
monitors coastal areas at Anmok Beach (Anmok unpaired dataset).

Distorted Images Pix2Pix Attentive GAN
Pre-Trained

Raindrop-Aware
GAN

Fine-Tuned
Raindrop-Aware

GAN

NIQE 17.498 16.336 12.648 16.083 13.333
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Figure 8. Test examples from the Anmok paired dataset: (a) distorted examples; (b) their corresponding
clean images; and the reconstruction results of (c) Pix2Pix; (d) Attentive GAN; (e) pre-trained
Raindrop-aware GAN; and (f) fine-tuned Raindrop-aware GAN. The right most examples are displayed
in larger size in bottom rows. Circles and arrows indicate areas of steep wave crests and
breaking, respectively.
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Figure 9. Test examples of the CCTV monitoring coastal areas at Anmok Beach: (a) Distorted examples;
and the reconstructed images of (b) Pix2Pix; (c) Attentive GAN; (d) pre-trained Raindrop-aware GAN;
and (e) fine-tuned Raindrop-aware GAN.

7. Discussion

The proposed method provides a learning-based approach to enhance raindrop-contaminated
coastal video. To see how the enhancement of the coastal image from video monitoring system is
helpful for video-based coastal dynamic research beyond the evaluation metric mainly used in deep
learning-based image enhancement, we would like to examine the applicability of the proposed
method through timestack images.

A temporally stacked image, called a timestack image, is an image in which the intensity of an
array of pixels is plotted along time. It is very useful to monitor long-term shoreline and bathymetry
evolution and to track and estimate individual breaking waves on the surf and swash zone. (a)–(e)
in the upper part of the Figure 10 show the raindrop-contaminated image, the reconstructed images
obtained using Pix2Pix, Attentive GAN, pre-trained Raindrop-aware GAN, and fine-tuned Raindrop-aware
GAN, respectively. The lower part of the Figure 10 shows a group of timestack image created by
accumulating consecutive 300 frames of images for 6 s for the five types from (a) to (e) of images on
the upper part, and for each the three cross-shore line transect marked 1©, 2©, and 3©.

Looking at the timestack image created along the first line transect 1©, the refraction due to large
raindrops in the sand side (pink box area) and the contaminated sea area (yellow box area) are overall
well reconstructed when using the fine-tuned Raindrop-aware GAN in the timestack image placed in the
last rightmost column. In the timestack image created along the 2© and 3© line transect, it is clear that
the white foam of the breaking waves on the sand side is best reconstructed in the proposed method
(pink box area) and the crest of the breaking wave is clearly displayed in the sea area (yellow box area)
in the timestack images placed in the last rightmost column.

The timestack images placed in the second column from the right vertically show the results of
Raindrop-aware GAN trained with Raindrop1119 dataset only. This is slightly inferior in reconstruction
compared to the images located in the rightmost column. It shows that the best reconstruction



Remote Sens. 2020, 12, 3461 15 of 18

performance can be obtained when the coastal video is used for fine-tuning even in the same model
architecture of Raindrop-aware GAN.

Figure 10. Test examples with time-stack images: The upper part shows the enhanced images
of raindrop-contaminated image (a) by applying Pix2Pix in (b); Attentive GAN in (c); pre-trained
Raindrop-aware GAN in (d); and fine-tuned Raindrop-aware GAN in (e). The lower part shows the
timestack images acquired at the line transect marked 1©, 2©, and 3© in (a).

By creating timestack image and visually assessment it, we can confirm that the performance
of the proposed method is the best and it also has high applicability in studying nearshore wave
dynamics with video remote sensing, in particular data preparation step, such as breaking wave
height estimation from coastal video [31,32], video sensing of nearshore bathymetry evolution [33,34],
nearshore wave transform with video imagery [35], shoreline response and resilience through video
monitoring [36–39], wave run-up prediction [40,41], and nearshore wave tracking through coastal
video [42,43].

8. Conclusions

We performed unsupervised learning with a GAN-based video generation method that enhances
coastal video images contaminated by raindrops. Unlike recent approaches based on supervised
learning, which require the pairing of degraded images with clean (ground-truth) images, the proposed
raindrop-removal network Raindrop-aware GAN is an unsupervised learning method. Raindrop-aware
GAN attentively corrects the degraded region with minimal changes to the raindrop-free areas in the
contaminated image. For this purpose, it learns the raindrop region and its surroundings, and then
generates a mask image mapped with the spatial-attention information. The scene generator in
the proposed method is expanded by adding the mask generated by background learning, and is
supplemented with a discriminator that distinguishes the raindrop and raindrop-free regions in a
patch-wise manner using adversarial learning.

To evaluate its reference performance, the proposed network was pre-trained on the open dataset
Raindrop1119. For unsupervised learning, the paired dataset (the paired clean and degraded images)
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was ignored and the whole dataset was shuffled in random order. Via transfer learning, the pre-trained
network was applied to coastal video images of Anmok Beach. The Anmok video dataset was
continuously acquired over a long period by CCTVs. To quantitatively verify the proposed network,
we collected an additional dataset of clean images paired with raindrop-contaminated images.

The PSNR, SSIM, and NIQE performance indices of Raindrop-aware GAN were 8.2% (+2.012), 0.2%
(+0.002), and 1.6% (−0.196) better than those of Attentive GAN, respectively, and 5.5% (+1.151), 1.1%
(+0.008), and 21.6% (−0.083) better than those of Pix2Pix, respectively. In addition, the raindrops were
removed from the raindrop-contaminated Anmok video images, and the coastal wave information of
the background was well restored in the removal areas.

The images from cameras, video systems, and other land-based remote-sensing technologies are
severely degraded by bad weather conditions during extreme events. In such situations, unsupervised
learning-based data-driven modeling is essential. Therefore, our proposed method is expected to assist
the data-preparation stage of vision-based remote-sensing studies.

However, whether or not the method correctly restores the movement of propagating waves in
continuous time is difficult to quantify. To correct this uncertainty, we will encode not only the spatial
features, but also the temporal features in an extended version of our network. Moreover, we intend
to modify the architecture of the scene generator for recognizing temporal changes in the raindrop
regions. For this purpose, we will employ a recurrent sub-network.
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