
remote sensing  

Article

A Modular Processing Chain for Automated Flood
Monitoring from Multi-Spectral Satellite Data

Marc Wieland * and Sandro Martinis

German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Oberpfaffenhofen,
D-82234 Wessling, Germany; sandro.martinis@dlr.de
* Correspondence: marc.wieland@dlr.de

Received: 28 August 2019; Accepted: 5 October 2019; Published: 8 October 2019
����������
�������

Abstract: Emergency responders frequently request satellite-based crisis information for flood
monitoring to target the often-limited resources and to prioritize response actions throughout a
disaster situation. We present a generic processing chain that covers all modules required for
operational flood monitoring from multi-spectral satellite data. This includes data search, ingestion
and preparation, water segmentation and mapping of flooded areas. Segmentation of the water
extent is done by a convolutional neural network that has been trained on a global dataset of Landsat
TM, ETM+, OLI and Sentinel-2 images. Clouds, cloud shadows and snow/ice are specifically handled
by the network to remove potential biases from downstream analysis. Compared to previous work in
this direction, the method does not require atmospheric correction or post-processing and does not
rely on ancillary data. Our method achieves an Overall Accuracy (OA) of 0.93, Kappa of 0.87 and Dice
coefficient of 0.90. It outperforms a widely used Random Forest classifier and a Normalized Difference
Water Index (NDWI) threshold method. We introduce an adaptable reference water mask that is
derived by time-series analysis of archive imagery to distinguish flood from permanent water. When
tested against manually produced rapid mapping products for three flood disasters (Germany 2013,
China 2016 and Peru 2017), the method achieves ≥ 0.92 OA, ≥ 0.86 Kappa and ≥ 0.90 Dice coefficient.
Furthermore, we present a flood monitoring application centred on Bihar, India. The processing
chain produces very high OA (0.94), Kappa (0.92) and Dice coefficient (0.97) and shows consistent
performance throughout a monitoring period of one year that involves 19 Landsat OLI (µKappa = 0.92
and σKappa = 0.07) and 61 Sentinel-2 images (µKappa = 0.92, σKappa = 0.05). Moreover, we show
that the mean effective revisit period (considering cloud cover) can be improved significantly by
multi-sensor combination (three days with Sentinel-1, Sentinel-2, and Landsat OLI).

Keywords: flood monitoring; disaster response; convolutional neural network; Landsat; Sentinel-2

1. Introduction

Floods are difficult to monitor over large areas, because they are typically determined by complex
interactions between different conditions such as precipitation, slope of terrain, drainage network,
protective structures, land-cover and many other factors. Conventional hydrological monitoring
systems rely on the availability of dense networks of rain and stream gauging stations, which provide
point-wise measures of rainfall and water height at any given time. This makes them important tools for
flood forecasting and warning [1]. During emergency response near-real time information about flood
water extent and duration are amongst the most critical components to target often limited resources
and prioritize response actions. Since such information cannot directly be measured by point-wise
gauge measurements, satellite images are increasingly being requested by emergency responders to
support flood mapping and monitoring over large areas [2]. Synthetic Aperture Radar (SAR) sensors
are widely used in flood monitoring applications due to their capability of penetrating through clouds
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and acquiring images during day and night [3]. Despite the inherent benefits of SAR, it is crucial for
any satellite-based flood monitoring system to be able to simultaneously use data from a large variety
of platforms and sensors in order to assure that geo-information products have the highest possible
spatial and temporal resolutions and information content [4]. To this regard, we present a prototypical
processing chain for automated flood monitoring from multi-spectral satellite images that aims at
complementing existing flood services from TerraSAR-X [5] and Sentinel-1 [6]. This modular solution
covers all aspects from data search, ingestion and preparation to cloud and cloud shadow masking,
water segmentation and mapping of flooded areas. It focuses on systematically acquired multi-spectral
satellite images with high spatial resolution (10–30 m ground sampling distance) [7] and large swath
width (> 150 km), namely images from Landsat TM, ETM+, OLI and Sentinel-2 sensors.

Being acquired by passive sensors, multi-spectral satellite images are influenced by atmospheric
effects and the presence of clouds and cloud shadows, which may obstruct objects of interest and
introduce bias to further image analysis. Therefore, the usefulness of this imagery depends strongly
on the ability to mask clouds and cloud shadows from clear sky pixels. Significant work has been
undertaken to correct atmospheric effects [8,9] and to mask clouds and cloud shadows in multi-spectral
satellite images [10,11]. An overview of existing methods with their potentials and limitations for
emergency response applications is given in Wieland, Li and Martinis (2019) [12]. Most of the available
algorithms are based on complex rule-sets, require ancillary information (e.g., topography, sensor
characteristics, assumptions about atmospheric conditions, etc.), and are computationally intensive
and strongly sensor dependent. This hampers their efficient use in time-critical applications that
require rapid processing of a large number of images from various satellite sensors.

Existing methods for water segmentation from multi-spectral satellite images can be categorized
into rule-based systems and machine learning models. The majority of rule-based methods exploit
variations of reflectance in spectral bands and develop rule-sets that combine thresholds or functions
over several spectral bands to distinguish water bodies from other land-cover classes. A simple
and widely used approach is to threshold a water index, which makes use of the spectral response
characteristics of water in the visible and (near-) infrared bands to enhance the water signal locally.
Typical water indices include the Normalized Difference Water Index (NDWI) [13], and its modification
MNDWI [14], the Multi Band Water Index (MBWI) [15] or the Automated Water Extraction Index
(AWEI) [16]. Many studies exist that define thresholds empirically or based on trial-and-error
procedures to separate the feature space spanned by a water index into “water” and “no water”
classes [17]. Several threshold approximation methods have been proposed in literature to overcome
the subjective bias and poor transferability of manual thresholding [18]. However, despite their speed
and ease of use, it has been shown that many water indices poorly discriminate water from shadows [19].
Therefore, more refined methods rely on complex rule-sets that make use of additional spectral, textural
or multi-temporal information and ancillary datasets (e.g., digital elevation models or land-use
information) [20]. Rule-based methods can achieve good results for single sensors, but generalizing
rules across different sensors, geographies and scene properties (e.g., sun illumination angle, cloud
cover, etc.) remains largely unsolved. Machine learning methods learn characteristics of water pixels
from a set of labelled samples across a hand-crafted feature space at pixel- or object-level [21,22].
Hughes and Hayes (2014) [23] introduce the Spatial Procedures for Automated Removal of Cloud
and Shadow (SPARCS) algorithm that uses a neural network and rule-based post-processing to
determine “cloud”, “cloud shadow”, “water”, “snow/ice” and “clear sky pixels” in Landsat OLI
images. Hollstein et al. (2016) [24] present an overview of several ready-to-use machine learning
algorithms (Classical Bayes, Decision Trees, Support Vector Machine and Stochastic Gradient Descent)
to distinguish these classes in Sentinel-2 images. These algorithms have been applied successfully
at local to regional scales. However, since the characteristics of water and land vary significantly
across geographic regions and under different scene properties, their generalization at the global scale
and across images from different sensors has proven to be difficult. Convolutional Neural Networks
(CNNs), which learn features directly from raw images by combining convolutional and pooling
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layers, show large potential to overcome these limitations. Thus far, few studies exist that apply
CNNs for water segmentation from multi-spectral satellite imagery. These largely report superior
accuracy and generalization ability of CNNs compared to rule-based and machine learning approaches
with hand-crafted features. Yu et al. (2017) [25] present a framework that combines a CNN with a
logistic regression classifier to extract water bodies from atmospherically corrected bands of Landsat
ETM+. Their results show higher accuracies compared to classical machine learning models, but
the experiments are carried out per-scene and do not allow an insight into the generalization ability
of the proposed model across different regions and/or sensors. Isikdogan, Bovik and Passalacqua
(2017) [26] train a Fully Convolutional Network for large-scale surface water mapping from globally
sampled Landsat ETM+ imagery with noisy labels taken from the corresponding Global Land Survey
2000 (GLS2000) collection [27]. They consider five classes (“land”, “water”, “snow/ice”, “shadow”
and “cloud”) and show superior results of their network compared to simple MNDWI thresholding
and a Multilayer Perceptron model. Chen (2018) [28] propose a CNN with self-adaptive pooling and
semi-supervised training at object-level. Their experimental results on Ziyuan-3 and Gaofeng-2 images
indicate improved discrimination capabilities for shadow and water classes in urban areas. Nogueira
et al. (2018) [29] combine the results of different network architectures to improve the final prediction
map for flood water mapping from Planet Scope images. Despite the encouraging results that are being
achieved in experimental setups, existing studies largely focus on single sensors, limited geographical
coverage and/or propose complex solutions that may not scale well to real-world applications in the
context of emergency response. Therefore, further research is required to train simple, generalized
and fast water segmentation models that are applicable to different satellite sensors and images with
varying atmospheric conditions and scene properties.

Beyond a segmentation of water bodies, it is important for emergency responders to differentiate
between temporarily flooded areas and water bodies of normal water extent. To distinguish these
classes in a single image has proven to be unreliable even when performed manually by expert analysts.
Hence, most studies that treat permanent water and flood water separately use multi-temporal image
analysis or compare the water segmentation with an independent reference water mask. Byun, Han and
Chae (2015) [30] apply an image fusion change detection method to extract newly flooded areas with
respect to a pre-event image. Some studies perform post-classification comparison between a pre-
and co-event water segmentation [31,32]. Other studies [6,33] subtract a co-event water segmentation
from a global or regional reference water mask, which has been derived from an independent source
for a specific time [19,34,35]. These methods are generally fast to compute but depend on the quality
and vintage date of the reference water mask, which may strongly bias the extent of permanent water.
This becomes particularly prominent in seasonal geographies with highly dynamic surface waters [36].
A more reliable estimation would be to identify permanent water bodies as water pixels that are
present throughout a period of observation. This would be similar to the global water seasonality
layer proposed by Pekel et al. (2016) [20]. Ideally one would dynamically compute such a map for
any given geography and time range in order to adapt the estimation of a reference water mask to the
environmental conditions of the area of interest.

The objective of this study is to develop and test a generic processing chain that covers all modules
required for operational flood monitoring from multi-spectral satellite data. Compared to previous
work related to water segmentation, our study specifically focuses on multi-sensor generalization
ability, simplicity and rapid processing. We propose a U-Net CNN for the semantic segmentation of
water bodies in Landsat TM, ETM+, OLI and Sentinel-2 images. The network is trained on a globally
sampled reference dataset and distinguishes between “cloud”, “shadow”, “snow/ice” and “land”.
We provide a comprehensive performance evaluation and compare our results to widely used Random
Forest and NDWI threshold methods. To distinguish flood water from permanent water, we introduce
an adaptive reference water mask that is derived by time-series analysis of archive imagery. This aims
at adjusting the flood mapping module to any area and time of interest and allows to produce a
reference water mask that is valid and relevant even in highly dynamic water environments. We apply
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the processing chain to three different flood disasters and compare the flood mapping results against
manually derived rapid mapping products. Furthermore, we show a flood monitoring application
centred on the North-Eastern Indian state of Bihar, which is seasonally affected by flooding due to
monsoon rain [37].

2. Data

We compile a reference dataset based on globally distributed Landsat TM, ETM+, OLI and
Sentinel-2 images to train, test and validate the water segmentation method (details about data
ingestion and supported sensors are provided in Section 3.1.). For the dataset to be representative
for a large variety of climatic, atmospheric, and land-cover conditions, we apply a stratified random
sampling on the basis of a global biomes map [38] with a minimum distance constraint of 370 km
(this equals twice the swath width of a Landsat scene) and pick 14 sample locations, for which we
acquire respective imagery from each sensor (Figure 1). Acquisition times cover different seasons,
subsets always cover water bodies amongst other land-cover classes and the minimum cloud-cover
percentage for image acquisitions is set to 5 % to guarantee a minimum degree of cloud-cover per
sample. We resample all imagery to 30 m spatial resolution, create a 1024 × 1024 pixels subset from
each scene, stack the image bands together and convert Digital Numbers (DN) to Top of Atmosphere
(TOA) reflectance (details about data preparation are provided in Section 3.2.). Thematic masks are
manually delineated into classes “water”, “snow/ice”, “land”, “shadow”, and “cloud” based on image
interpretation by an experienced operator. We further add the freely available Spatial Procedures for
Automated Removal of Cloud and Shadow (SPARCS) dataset [39]. Similar to our multi-sensor dataset,
it is globally sampled and consists of Landsat OLI images with corresponding manually delineated
thematic masks.
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Figure 1. Sample locations of the reference dataset used for training, testing and validation of the water
segmentation method; biome map used as strata for sampling; spatial distribution of the flood disasters
used for independent testing; and overview of the case study area for systematic flood monitoring.

We split all images and masks into non-overlapping tiles with 256 × 256 pixels size. The tiles are
shuffled and divided into training (60 %), validation (20 %) and testing (20 %) datasets. The training
dataset is further augmented with random contrast, brightness, gamma and rotation. Factors are
randomly applied within predefined ranges to contrast [−0.4, 0.4], brightness [−0.2, 0.2] and gamma
[0.5, 1.5]. Rotation is performed in steps of 90 degrees zero or more times. All augmentations are
applied with equal probability. The final dataset covers 94 locations, 136 images from four sensors,



Remote Sens. 2019, 11, 2330 5 of 23

and is split into 1075 tiles for training (5375 tiles with augmentations) and 358 tiles for validation and
testing respectively.

To specifically test the flood mapping module, we select three flood disasters, for which very
high-resolution optical data and imagery of one of the satellite sensors that we consider in this study
are available (Figure 1). High and very high resolution optical data are used as independent reference,
from which we manually delineate flood extent masks by means of a standard rapid mapping workflow.
Reference and input images are not acquired more than two days apart from each other and visual
checks are performed to assure that water extents are comparable. Cloud and cloud shadow pixels are
masked in both reference and predicted masks and excluded from accuracy assessments. We analyse
the following flood disasters:

• Germany, June 2013: As a result of a combination of wetness caused by a precipitation anomaly
in May 2013 and strong event precipitation, large parts of Southern and Eastern Germany were
hit by flooding [40]. In response to this, the International Charter “Space and Major Disasters”
has been activated on June 2 [41] and emergency mapping has been conducted jointly by DLR’s
Centre for Satellite-based Crisis Information (ZKI) and the Copernicus Emergency Management
Service of the European Commission [42]. We use a Pléiades image (0.5 m) acquired on 08.06.2013
as basis to delineate the reference flood mask and a Landsat OLI image (30 m) from 07.06.2013 as
input for the prediction. A pre-disaster Landsat OLI image from 20.04.2013 is used to generate the
reference water mask.

• China, June 2016: Abnormally heavy monsoon rainfall intensified by a long and strong El Niño
event caused flooding in the Yangtze River basin, which severely impacted the region’s economy
and population [43]. In response to this, the International Charter “Space and Major Disasters”
has been activated on 21.06.2016 [44]. We use a RapidEye image (5 m) acquired on 23.06.2016 as
basis to delineate the reference flood mask and a Landsat OLI image (30 m) from the same date as
input for the prediction. One Landsat OLI image for each of the 12 months before the disaster is
used as input to generate the respective reference water mask.

• Peru, March 2017: A strong local El Niño weather pattern off the coast of Peru triggered heavy
torrential rainfall that caused floods and mudslides with devastating impacts throughout the
country [45]. In response to this, the International Charter “Space and Major Disasters” has been
activated on 31.03.2017 [46]. We use a RapidEye image (5 m) acquired on 01.04.2017 as basis to
delineate the reference flood mask and a Sentinel-2 image (10 m) from 31.03.2017 as input for the
prediction. One Sentinel-2 image for each of the 12 months before the disaster is used as input to
generate the respective reference water mask.

Furthermore, we define a case study for systematic flood monitoring in Bihar, India (Section 5).
For the year 2018 all available Landsat OLI (19 images) and Sentinel-2 data (61 images) are acquired,
processed and analysed with the proposed flood processing chain (Section 3). One Sentinel-2 image for
each month of the previous year is used to generate the respective reference water mask. Moreover, for
every month of the monitoring period one water segmentation mask per sensor is randomly selected
for accuracy assessment. The 24 predicted masks are compared against reference point samples that
are manually labelled by an experienced operator based on visual interpretation of the respective input
images. A stratified random sample with minimum distance constraint of 250 m is used to identify the
reference point locations for each predicted mask.

3. Method

Figure 2 shows a schematic overview of the processing chain and its modules. Metadata and
images are harvested from various sources and ingested into the processing chain for preparation and
analysis (Section 3.1). The raw image bands are stacked and converted from DN to TOA reflectance
values. Further preparation steps are added depending on the particular task and study area at
hand (Section 3.2). The pre-processed image is fed into a trained CNN for water segmentation that
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produces a sematic segmentation of the image into five classes (Section 3.3). By reclassification of the
segmentation result, we derive binary masks for water and valid pixels. A binary reference water mask
is derived from time-series analysis of archive imagery and used to further distinguish reference water
bodies from flood water (Section 3.5). Hence, the final outputs of the processing chain are binary flood,
valid pixel, and reference water masks.
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Figure 2. Overview of the processing chain for automated flood monitoring from multi-spectral
satellite data.

3.1. Data Ingestion

Table 1 provides an overview of the sensors currently supported by the processing chain. Landsat
images are ingested at processing level L1TP from the USGS EarthExplorer data hub, which are
radiometrically calibrated and orthorectified using ground control points and digital elevation model
data to correct for relief displacement. Sentinel-2 images are ingested from the ESA Copernicus Open
Access Hub at comparable processing level L1C, which are radiometrically calibrated, orthorectified
and delivered in tiles of 100 × 100 km. Due to inconsistent availability and long processing times
(resulting in longer lag times between satellite image acquisition and distribution), we decided against
using imagery at higher processing levels, which are atmospherically corrected and delivered as surface
reflectance products (e.g., Sentinel-2 at L2A).

Table 1. Image characteristics of the sensors that are supported by the processing chain.

Sensor Spatial Res.
(Swath) Spectral Res. (Wavelength) Revisit

Period Availability Format Source

Landsat TM 30, 120 m
(185 km)

Blue, Green, Red, NIR, SWIR1,
SWIR2, TIR

(0.45–12.50 µm)
16 days 1984–2013 GeoTIFF

(8 bit) USGS

Landsat
ETM+

15, 30, 60 m
(185 km)

Blue, Green, Red, NIR, SWIR1,
SWIR2, TIR, PAN
(0.45–12.50 µm)

16 days 1999–now GeoTIFF
(8 bit) USGS

Landsat
OLI/TIR

15, 30, 100
m(185 km)

AEROSOL, Blue, Green, Red, NIR,
SWIR1, SWIR2, TIR1, TIR2, PAN,

CIRRUS
(0.43–12.51 µm)

16 days 2013–now GeoTIFF
(12 bit) USGS

Sentinel-2
MSI

10, 20, 60 m
(290 km)

AEROSOL, Blue, Green, Red,
RedEdge1, RedEdge2, RedEdge3,

NIR, RedEdge4, VAPOUR,
CIRRUS, SWIR1, SWIR2

(0.44–2.19 µm)

5 days 2015–now JPEG2000
(12 bit) ESA

Access protocols and metadata models that are being used for archiving products differ between
data providers. An overview of available satellite data providers, their access protocols and metadata
models can be found in Chen, Zhou and Chen (2015) [47]. In this work, we query and ingest data into
the processing chain via a custom Application Programming Interface (API) that is connected to a set
of Python scripts, which interface with the different sources, adjust metadata requests, harmonize



Remote Sens. 2019, 11, 2330 7 of 23

responses and perform the actual data access through the source specific protocols. Along with
each dataset, we store a harmonized metadata file in JSON-format, which contains all tags that are
needed for rapid local data searches, documentation of processing history, and parameters for sensor
specific transformations.

3.2. Preparation

Image preparation is done in succeeding steps. The combination and order of steps may vary
depending on desired area of interest, geometric accuracy, spatial resolution, and sensor. Since all
image data are delivered in single band raster files with varying grid size, we first resample them to
the same grid size. Optionally, pan-sharpening is applied for sensors that provide a higher resolution
panchromatic band. We use cubic convolution interpolation during resampling and a weighted
Brovey transform for pan-sharpening [48]. All spectral bands are stacked together into a single dataset
along the z-axis and optionally subset to a geographical area of interest along x- and y-axis. In this
work, we only use spectral bands that are available across different satellite sensors to ensure a high
degree of transferability of the trained water segmentation model (Section 3.3). Specifically, we use
bands Red, Green, Blue, Near-Infrared (NIR) and two Shortwave-Infrared bands (SWIR1 and SWIR2).
We transform DN to TOA reflectance using sensor specific methods. Image co-registration is performed
using an algorithm based on Fast Fourier Transform (FFT) for translation, rotation and scale-invariant
image registration [49]. For the study areas that are considered in the following, we found that all
relevant images were already well registered to each other and an additional co-registration step was
not necessary. The need for co-registration should, however, be evaluated on a case by case basis.
An in-depth evaluation of inter- and intra-sensor image co-registration and a discussion about its
necessity for Landsat and Sentinel-2 images are beyond the scope of this study but can be found in
Stumpf, Michea and Malet (2018) [50].

3.3. Water Segmentation with a Convolutional Neural Network

For semantic segmentation of water bodies we use a CNN based on the U-Net architecture [51]
(Figure 3). The network achieved good accuracies for cloud and cloud shadow segmentation in previous
work of the authors [12]. In this study, we retrain it on a multi-sensor dataset and optimize training
towards improving the performance of the water segmentation. The network consists of encoder and
decoder parts, where the encoder takes an input image and generates a high-dimensional feature
vector with aggregate features at multiple scales. In five convolutional blocks we apply two 3 × 3
convolutions with Rectified Linear Unit (ReLU) activation function, followed by batch normalization
and a 2 × 2 max pooling operation with stride 1 for down-sampling. In each block the number of
feature channels is doubled starting from 32. In the decoder part, the feature map is up-sampled by a
2 × 2 transpose convolution followed by a concatenation with the correspondingly cropped feature
map from the decoder and two 3 × 3 convolutions with ReLU activation and batch normalization.
At the final layer a 1 × 1 convolution with softmax activation function is used to map each feature
vector to the desired number of classes.

Compared to our previous study on cloud and cloud shadow segmentation, for which we trained
a U-Net on the Landsat OLI SPARCS dataset [39], we train the water segmentation network on a larger
multi-sensor dataset and apply more extended augmentation (Section 2). Image augmentation helps
the network to learn invariance to changes in the augmented domains [52]. This is particularly relevant
for remote sensing images, which are affected by a combination of a large variety of highly dynamic
external (e.g., atmospheric conditions, seasonality) and internal (e.g., sensor characteristics) parameters.
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Figure 3. Architecture of the U-Net used in this study.

To account for class imbalance, we use a weighted categorical cross-entropy loss function as
defined in Equation (1) with wi being the weight, pi the true probability and p̂i the predicted probability
for class i.

H(p, p̂) = −
∑

i

wipi log
(
p̂i

)
(1)

The weight vector w ∈ R is defined over the range of class labels i ∈ {1, 2, . . . , I} and is computed
on the training dataset for each class as the ratio of the median class frequency and the class frequency
fi (Equation (2)).

wi = median(fi)/fi (2)

The loss function assigns a higher cost to misclassification of smaller classes (e.g., “water”) and
therefore reduces bias of the model by classes with relatively higher occurrence in the training dataset
(e.g., “land”). The input image feature space is standardized to zero mean and unit variance with
mean and standard deviation being computed on the training dataset and applied to the validation
and testing datasets. The training set is shuffled once between every training epoch. We optimize the
weights during training using the adaptive moment estimation (Adam) algorithm [53] with default
hyper-parameters β1 = 0.9, β2 = 0.999 and an initial learning rate α = 10−4. Additionally, we step-wise
reduce the learning rate by a factor of 0.5 if no improvement is seen for five epochs. For model
evaluation we track weighted categorical cross-entropy loss and Dice coefficient (Figure 4). In order
to account for the fact that our focus is on applications in the emergency response sector, where
computation time is a critical performance criterion, we also report inference times (measured in
seconds/megapixel). We use Keras with Tensorflow backend [54] as deep learning framework and
train the network in batches of 20 until convergence. Training the multi-sensor dataset described in
Section 2 takes approximately five hours on a NVIDIA M4000 GPU running on a standard desktop PC
with Intel Xeon CPU E5-1630 v4 @ 3.7 GHz, four cores and 20 GB RAM.

U-Net makes predictions on small local windows, which may result in higher prediction
errors towards the image borders. Therefore, during inference we expand the input image with
mirror-padding, split it into overlapping tiles, run the predictions over batches of tiles, blend the
prediction tiles to reconstruct the expanded input image’s x-y-shape and un-pad the resulting prediction
image. We use a tapered cosine window function (Equation (3)) to weight pixels when blending
overlapping prediction tiles together, where N is the number of pixels in the output window and α is a
shape parameter that represents the fraction of the window inside the cosine tapered region.
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w[n] =


1
2

[
1 + cos

(
π
(

2n
αN − 1

))]
0 ≤ n < αN

2

1 αN
2 ≤ n ≤ N

(
1− α

2

)
1
2

[
1 + cos

(
π
(

2n
αN −

2
α + 1

))]
N

(
1− α

2

)
< n ≤ N

(3)

The final categorical output y is computed by maximizing the corresponding predicted probability
vector p(x) (Equations (4) and (5)) with pi(x) being the probability of x to belong to class i.

p(x) =
{
p1(x), p2(x), . . . , pi(x), . . . , pn(x)

}
(4)

y = argmax p(x) (5)

GPU inference speed computed over 358 test image tiles is 0.41 s/megapixel. This means that
a Sentinel-2 image tile at 10 m spatial resolution with a typical size of 10,980 × 10,980 pixels can be
analysed in approximately 50 s. Given the available hardware, this increases to roughly 40 min when
inference is run on CPU.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 23 
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3.4. Benchmark Water Segmentation

As benchmark for the proposed water segmentation method, we also train a traditional Random
Forest classifier on the same standardized training dataset. Random Forest is widely used for water
segmentation in multi-spectral satellite images [21,55]. We use the Scikit-learn [56] implementation of
the classifier, which fits a number of optimized C4.5 decision tree classifiers [57] on sub-samples of the
training data and uses averaging to control over-fitting. We tune hyper-parameters (in particular the
number of trees in the forest and the number of features used at each node) according to a ten-fold
cross-validation and grid-search method during the training phase of the classifier. Training the
multi-sensor dataset takes approximately 5 min on CPU (the implementation used in this study does
not support GPU computation). CPU inference speed computed over 358 test image tiles is 2.15
s/megapixel. This means that a typical Sentinel-2 image tile can be analysed in roughly 4 min when
inference is run on CPU with four cores.

Additionally, we also compare the outcomes of our U-Net model against a simple NDWI
thresholding method. For the water index z we iteratively change the threshold v over the whole range
of index values (Equation (6)) and compare the predicted binary water masks with the true masks.

v =
{
z
∣∣∣min(z) ≤ z ≤ max(z)

}
(6)

Since this method can only predict binary water/no water masks, we reclassify the categorical
outputs of U-Net and Random Forest methods to match these binary masks before comparing them.
For further comparison, we apply a widely used empirical threshold of v = 0.0 to produce binary water
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masks. This method is rule-based and does not need any training. CPU inference speed over 358 test
images is 0.003 s/megapixel when setting a static threshold. This means that a Sentinel-2 image tile can
be analysed in less than one second.

3.5. Flood Mapping

Multi-spectral satellite images are affected by clouds and shadows which may obstruct objects or
areas of interest. It is therefore crucial for unbiased down-stream analysis to separate invalid from
valid pixels. Accordingly, we reclassify the categorical output y produced by the water segmentation
method (Equation (5)) to generate a binary valid pixel mask yvalid′ where “shadow”, “cloud” and
“snow/ice” classes refer to “invalid” pixels, and “water” and “land” classes to “valid” pixels. Dilating
the inverse of this mask with a 4 × 4 square-shaped structuring element k effectively buffers invalid
pixels while taking its inverse provides us with the final valid pixel mask yvalid (Equation (7)).

yvalid = (y−1
valid′ ⊕ k)

−1
(7)

To generate a binary water mask ywater′ we reclassify the categorical output y (Equation (5)) such
that “shadow”, “cloud”, “snow/ice” and “land” classes refer to “no water”, while the “water” class
remains untouched. Intersecting this mask with the buffered valid pixel mask provides the final water
mask ywater (Equation (8)).

ywater = ywater′ ∩ yvalid (8)

We further derive a reference water mask that aims at approximating the normal water extent and
is used to separate temporarily flooded areas from permanent water bodies. To avoid bias by the choice
of a single pre-flood image, we use a time-series of pre-flood images. Within a pre-defined time range
(e.g., one year) before the acquisition date of the flood image, we derive binary water and valid pixel
masks for all available imagery. Additional constraints may be set to identify relevant images, such as
minimum cloud coverage or temporal granularity (e.g., use only one image per month). The relative
water frequency f, with which water is present throughout the time-series is computed as defined in
Equation (9), with ywatert

being the binary water mask and yvalidt the valid pixel mask at time step
t ∈ {1, 2, . . . , T}.

f =
∑

t
ywatert

/
∑

t
yvalidt (9)

A permanent water pixel would be classified as belonging to class “water” in all valid observations
throughout the time range, which would result in a relative water frequency f = 1.0. We relax the
threshold for permanent water pixels and set it to f ≥ 0.9 according to the U-Net model performance for
class “water” on the test dataset (Table 2) to account for uncertainties in the single water segmentations.
This means that a pixel is identified as being permanent water if it belongs to class “water” in 90 % or
more of the valid observations during a given time range. Finally, the set difference of the water mask
derived from the flood image ywater and the reference water mask r produces the final flood mask
yflood (Equation (10)).

yflood = ywater\r (10)

It should be noted that the parameter values, which define the reference water mask (time range,
temporal granularity, minimum cloud coverage, and relative water frequency threshold) depend
on several rather subjective decisions and may be answered differently according to the specific
application focus (e.g., disaster response, re-insurance, preparedness, etc.,) and the climatic and
hydrologic conditions of the study area. A sensitivity analysis of these parameters is beyond the scope
of this study but will be tackled in future work along with an in-depth evaluation of end-user’s needs
and comparison of different reference water masking approaches.
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Table 2. Per-class comparison between U-Net and Random Forest models over the 358 test tiles for
Landsat TM, ETM+, OLI and Sentinel-2.

Class
U-Net Random Forest

Precision Recall F1 Precision Recall F1

Shadow 0.79 0.72 0.75 0.64 0.51 0.57
Water 0.95 0.87 0.91 0.85 0.87 0.86
Snow 0.84 0.95 0.89 0.81 0.90 0.86
Land 0.94 0.97 0.96 0.87 0.96 0.91
Cloud 0.94 0.91 0.92 0.89 0.66 0.76
Total 0.93 0.93 0.93 0.86 0.86 0.85
OA 0.93 0.86

Kappa 0.87 0.74
Dice 0.90 0.86

4. Results

Figure 5 and Table 2 show summaries of the results for the proposed U-Net model and a Random
Forest classifier. It can be seen that the U-Net model outperforms the Random Forest classifier
with respect to all evaluation metrics across the globally distributed 358 test tiles. U-Net shows
improvements of Overall Accuracy (OA) by 0.07, Kappa by 0.13 and Dice coefficient by 0.04 compared
to Random Forest. U-Net also consistently produces higher F1-scores for all classes. The least accurate
class in both models is the “shadow” class, which is mainly affected by confusions with the “land”
class. In case of Random Forest this effect is significantly higher and affected by confusion with the
“water” class. Moreover, Random Forest seems to have problems to segment “cloud” from “land”.
A qualitative comparison of the results for selected test tiles confirms these findings across all tested
satellite sensors (Figure 6).

To compare U-Net and Random Forest models with the NDWI thresholding method, we reclassify
the categorical outputs of U-Net and Random Forest methods to match the binary classification scheme
produced by thresholding the NDWI. From the Receiver Operating Characteristic (ROC) curves for
class “water” (Figure 7) it can be seen that over all thresholds NDWI performs well (area under the
curve (AUC) = 0.947), despite lacking behind Random Forest (AUC = 0.974) and U-Net (AUC = 0.995)
models. When we apply a single threshold to the NDWI (in this case we use v = 0.0, which has
been empirically defined and is referenced in many studies) the performance difference to the other
methods becomes more prominent (Table 3). With respect to the simple NDWI thresholding, the best
performing U-Net model shows an improvement for OA of 0.06, Kappa of 0.29 and Dice coefficient of
0.26. A qualitative comparison of the results confirms these findings across all tested satellite sensors
(Figure 6). Moreover, it can be seen that the NDWI thresholding falsely identifies “shadow” pixels as
“water” and “cloud” pixels as “land”.
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Figure 5. Error matrices for U-Net and Random Forest multi-class segmentation over the 358 test tiles
for Landsat TM, ETM+, OLI and Sentinel-2.
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Figure 7. Receiver Operating Characteristic (ROC) curves for the water class comparing U-Net, Random
Forest and NDWI thresholding over the 358 test tiles for Landsat TM, ETM+, OLI and Sentinel-2.

Table 3. Comparison of U-Net, Random Forest and Normalized Difference Water Index (NDWI)
thresholding for binary water segmentation over the 358 test tiles for Landsat TM, ETM+, OLI
and Sentinel-2.

Model OA Kappa Dice

U-Net 0.99 0.89 0.90
Random Forest 0.98 0.84 0.84

NDWI threshold (v = 0) 0.93 0.60 0.64
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The multi-sensor reference dataset contains only a single water class that does not specifically
cover flood water. To evaluate the results of the model on flood water and to exemplify the flood
mapping method, we analyse three globally distributed flood disasters, for which we acquired reference
data by manually delineating water masks on the basis of independent high and very high resolution
optical imagery (Section 2). To account for the highly dynamic surface water environments of the
China and Peru scenes, we derive reference water masks from 12 images (Landsat OLI for China
and Sentinel-2 for Peru) that are acquired during the year previous to the respective flood disaster.
We select one image per month where cloud-cover is lowest, derive a flood frequency map from the
predicted water extents and threshold it with f ≥ 0.9 to create the actual reference water masks. We use
only a single pre-event image (Landsat OLI) to define the reference water extent, because surface
water dynamics in the Germany scene are known to be stable under normal meteorological conditions.
Table 4 shows the results of the independent accuracy assessment. Figure 8 depicts the input images
and predicted flood maps.

Table 4. Accuracy assessment of the flood mapping method based on U-Net for different flood disasters.

Class
Germany, June 2013 China, June 2016 Peru, March 2017

Precision Recall F1 Precision Recall F1 Precision Recall F1

Flood water 0.83 0.96 0.89 0.79 0.99 0.88 0.87 0.93 0.90
Perm. water 0.87 1.00 0.93 0.97 1.00 0.98 1.00 1.00 1.00

Land 1.00 0.98 0.99 1.00 0.86 0.92 0.99 0.97 0.98
Total 0.98 0.98 0.98 0.92 0.92 0.92 0.98 0.98 0.98
OA 0.98 0.92 0.98

Kappa 0.89 0.86 0.97
Dice 0.90 0.91 0.99
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It can be seen that water bodies can be segmented with consistently high OA (≥ 0.92), Kappa (≥ 0.86)
and Dice coefficient (≥ 0.90), despite varying sensors, atmospheric conditions, seasons, locations and
land-use/land-cover situations. The water segmentation method performs well in areas of permanent
water with high F1-scores (≥ 0.93) throughout all test scenes. In potentially flooded areas the water
segmentation decreases in performance with F1-scores between 0.88 and 0.90.



Remote Sens. 2019, 11, 2330 14 of 23

The Landsat OLI scene of Germany covers an area of 550 km2 and depicts inundated areas of
the Elbe River in and around the city of Magdeburg. It is located in a temperate broadleaf and mixed
forest biome. We can observe highly diverse land-use/land-cover in this urban-rural setup, including
different types of residential, industrial, agriculture, forest and bare soil classes. Water body types
include rivers, ponds, lakes and flood water of varying depth. Particular for this scene is the presence
of flood water in urban areas and large stretches of flooded vegetation. The predicted flood and
permanent water bodies match well with the manually delineated mask and the model is able to
produce high precision (≥0.83) and recall (≥0.96) for both classes, despite the difficulties introduced by
mixed spectral responses at sub-pixel resolution in flooded urban and vegetated areas. It takes the
processing chain approximately 1 min to produce the final flood product, considering data preparation,
water segmentation and flood mapping (including the generation of a reference water mask from a
single pre-event image).

The cloud-free Landsat OLI image of China covers an area of 630 km2 and shows a stretch of the
Yangtze River around the city of Poyang. The scene is located in a temperate broadleaf and mixed
forest biome and displays a large variety of land-use/land-cover types including urban residential,
industrial, agriculture and bare soil. Water body types include rivers, ponds, natural and artificial
lakes and waterways, aquaculture and large areas of shallow to deep flood water. The model segments
flood and permanent water with high precision (≥ 0.79) and recall (≥ 0.99) values and allows to
quickly gain a detailed overview of the flood situation in this highly complex scene. It takes the
processing chain approximately 6 min to produce the final flood product, considering data preparation,
water segmentation and flood mapping (including the generation of a reference water mask from 12
pre-event images).

The Sentinel-2 image of Peru covers an area of 630 km2 and depicts a coastal area with large
patches of ocean, estuaries and temporary flooded lagoons. Except for a few small settlements along
the coastline, with the biggest being the village of Parachique, the area covered by this scene appears to
be largely uninhabited. Dominating land-use/land-cover classes of this xeric shrubland biome include
bare soil, sand and sparse vegetation. Along the main estuary smaller patches of flooded aquaculture
can be observed. The scene shows the most complex atmospheric conditions with partially thick
cloud cover and a large variety of different cloud types and respective cloud shadows. Nevertheless,
the model is able to segment these as invalid pixels and remove them from further analysis. Despite
the variety of water types, all visible water bodies can be delineated with high precision (≥ 0.87) and
recall (≥ 0.93) for both permanent and flood water. It takes the processing chain approximately 6 min to
produce the final flood product, considering data preparation, water segmentation and flood mapping
(including the generation of a reference water mask from 12 pre-event images).

5. Flood Monitoring Application

A subset (100 × 100 km) of the Indian state of Bihar (Figure 1) is identified as study area to test the
capabilities of the processing chain to systematically monitor flood water extent over time. Bihar is
seasonally affected by tropical monsoon rain and considered to be one of the most flood prone regions
in India [37]. Its plains are drained by a number of rivers that have their catchments in the Himalayas.
The largest rivers in the study area are Ganga and Kosi. Highest water levels are usually recorded
between June and October, when more than 80% of annual rain falls. Dominating land-use/land-cover
classes of this tropical and subtropical moist broadleaf forest biome include vast areas of small scale
agricultural fields with a variety of crops and growing patterns, patches of forest, wetlands and
settlements of largely rural character. Along the major rivers large areas of temporary flooded bare soil
and sand are present. The scene is affected by highly varying atmospheric conditions with a large
variety of different cloud types and cloud shadows. For the year 2018 a total of 80 images from Landsat
OLI and Sentinel-2 are accessed, processed and analysed with the flood processing chain. Additionally,
12 Sentinel-2 images for the year 2017 (one per month) are processed to generate a reference water
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mask with a relative water frequency threshold of f ≥ 0.9. Figure 9 shows relative water frequencies for
2017 and 2018.
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Figure 9. Relative water frequency over the study area Bihar derived from 12 monthly Sentinel-2
images for the reference year 2017 (left) and from 80 Landsat OLI and Sentinel-2 images for 2018 (right).

It can be seen that the study area is further characterised by highly dynamic surface water;
even stretches of the major rivers change their path throughout the year and hence are not considered
as being permanent water by the given setup. Moreover, the maximum water extent indicates extended
annual flooding. The 2017 Bihar flood, which had severe impacts on population, economy and housing
sector in the district [58], is well represented in the water frequency maps with larger flood water
extent being detected particularly along the Kosi River compared to 2018.

Figure 10 shows the monthly mean ratio of flood to water pixels for 2018 along with examples of
flood products at different seasons. The plot depicts well the annual water regime of the study area
with highest water levels between July and October, and a dry period with low water levels between
March and June.
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Figure 10. Monthly mean ratio of flood to water pixels for 2018 with flood processing results for
selected timestamps.

To assess the accuracy of the flood mapping results over time, we randomly select one flood
mapping product per month and sensor. Each of the 24 products is compared against randomly selected
and manually labelled point samples. Table 5 shows the results of the flood product comparison
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against the test samples over all months and sensors. The assessment indicates very good performance
with OA, Kappa and Dice coefficient values well above 0.9 and a good balance between precision and
recall for all classes. Permanent water locations are segmented with marginally better F1-score than
temporary flooded locations. Figure 11 shows performance metrics for predicted flood products over
time grouped by sensor. Over the observed 12 months period the performance varies in the range of
0.2 Kappa for Landsat OLI and 0.13 Kappa for Sentinel-2 with higher values being achieved between
April and August. Predictions on Landsat OLI and Sentinel-2 show comparable performance during
the observation period with µKappa = 0.92 and σKappa = 0.07 for Landsat OLI and µKappa = 0.92 and
σKappa = 0.05 for Sentinel-2 respectively.

Table 5. Accuracy assessment of 24 randomly selected flood mapping products from Landsat OLI and
Sentinel-2 based on manually labelled reference point samples (100 samples per product).

Class
U-Net

Precision Recall F1

Flood water 0.95 0.94 0.95
Perm. Water 0.94 1.00 0.97

Land 1.00 0.86 0.92
Invalid (cloud, shadow) 0.86 0.97 0.91

Total 0.94 0.94 0.94
OA 0.94

Kappa 0.92
Dice 0.97Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 23 
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Figure 11. Overall accuracy, Kappa and Dice coefficient of 24 randomly selected flood mapping
products over time grouped by sensor.

We further analyse the results with respect to the effective temporal revisit period that can be
achieved with the given sensors under consideration of cloud coverage. For 2018 the spatial distribution
and histograms of mean effective revisit periods (in number of days between valid observations) for
different sensors and sensor combinations are provided in Figure 12. For each pixel in a stack of
available images for a sensor combination and time range, we compute the time difference between
succeeding acquisition dates for which the pixel is valid (e.g., not covered by cloud or cloud shadow).
The maps visualize the mean over the time difference series, which is interpreted as the mean effective
revisit period per pixel. The histograms depict the pixel value distribution over the study area with the
respective median values being marked with triangles. This is summarized in Table 6, which compares
the mean revisit periods with and without consideration of valid observations. Note that the satellite
revisit period (considering all observations) has been computed specifically for the study area and
may slightly differ from the revisit period provided by the satellite operators given in Table 1. For the
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multi-spectral sensors, the effective revisit period is consistently longer than the satellite revisit period
due to cloud coverage. Since Sentinel-1 is a SAR sensor that penetrates through clouds, all pixels at
all timestamps are considered to be valid. Consequently, the mean number of days between valid
observations is the same for the whole study area and equals the mean satellite revisit period of six days.
Combining Landsat OLI and Sentinel-2 can improve the effective revisit period by 2 days compared
to using Sentinel-2 alone and by 19 days compared to Landsat OLI. Combining Sentinel-1 with the
multi-spectral sensors can improve the effective revisit period to up to 3 days, which equals half the
revisit period of Sentinel-1 over the study area.Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 23 
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superimposed in white as orientation guide.6. Discussion.

Table 6. Comparison of mean revisit periods in days for different sensor combinations with and without
consideration of valid pixel masks.

Sensor
Mean Revisit Period

(all observations)

Mean Effective Revisit Period
(only valid observations)

Q1 Q2 Q3

Landsat OLI 18.6 24.0 25.8 28.0
Sentinel-2 6.0 8.3 8.7 9.1
Sentinel-1 6.0 6.0 6.0 6.0

Landsat OLI + Sentinel-2 4.6 6.1 6.5 6.8
Landsat OLI + Sentinel-2 + Sentinel-1 2.6 3.0 3.1 3.2

The main aim of the water segmentation module is to train a model that generalizes well across
different sensors, locations and atmospheric conditions. We proposed a CNN with U-Net architecture,
which showed superior performance in terms of OA, Kappa and Dice coefficient compared to the
benchmark methods (Random Forest and NDWI thresholding). We decided to use only spectral bands
that are acquired by all tested sensors (Red, Green, Blue, NIR, SWIR1 and SWIR2 bands) to allow for
a high degree of transferability across sensors. We specifically decided against using the Thermal
Infrared (TIR) bands as these are not acquired by Sentinel-2. For sensor-specific applications, however,
including TIR bands into the input feature space of the network may have a positive effect on the
performance. The target domain is affected by atmospheric conditions, land-use/land-cover and other
scene and image properties. Despite our aim to cover these natural and technical variations in the
manually annotated reference dataset, we decided to apply image augmentation to artificially increase
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the training sample size and to cover a larger range of conditions that may occur during inference in
real-world applications. The need for augmentation has been reinforced by experiments that were
carried out in previous work of the authors [12]. We acquired a multi-sensor reference dataset that
we used to train, validate and test the water segmentation. The reference dataset has been sampled
globally under consideration of terrestrial biomes to account for a large variety of climatic, atmospheric
and land-cover conditions. Samples are derived by manual interpretation and digitization of satellite
image patches, which means that the results are to be regarded as relative to the performance of a
human analyst and not to an absolute ground-truth. Especially clouds and cloud shadows lead to
the problem of defining a hard class boundary on fuzzy borders. Their manual delineation is at least
partially a matter of subjective interpretation and may introduce a bias in the reference dataset and
hence into the performance results.

The Random Forest model shows problems to distinguish between “shadow” and “land” classes.
Shadow prevents the spectral characteristics of the underlying surface from being fully represented,
which may cause an overlap of the spectral signatures of shadow and land pixels. The U-Net model
seems to largely overcome this by its non-linear function mapping capability and by the convolutional
features that are being learned directly from the data under consideration of neighbourhood information
at various scales. Considering only spectral characteristics of single pixels (like this is the case for the
Random Forest model) seems to be insufficient. At least textural and/or spatial information would
be needed to distinguish these classes. Computing additional hand-crafted features (e.g., based
on Grey-Level Co-occurrence Matrix) over a sliding-window or as part of an object-based image
analysis could improve the results for traditional machine learning models like Random Forest but
would involve significantly longer computation time during inference. We also compared binary
reclassifications of the CNN and Random Forest predictions against a widely used NDWI thresholding
method. We could show that across all thresholds the NDWI method can produce good predictions but
clearly lacks behind the machine learning methods. Particular problems include finding an optimal
threshold that is globally applicable. Our experiments show, moreover, that even with an optimal
threshold the NDWI feature space is not sufficient to distinguish water from certain other classes
with similar spectral response characteristics like shadows. This means that under realistic conditions
(images show divers cloud and shadow coverage) NDWI thresholding could only produce valid
results, if a cloud and shadow mask is being applied beforehand. The other two methods deliver the
respective segmentations directly.

Compared to other studies, our work presents an end-to-end solution that is targeted towards
an operational usage. We focus specifically on multi-sensor generalization ability, simplicity and
processing speed to produce timely, accurate and relevant information products for emergency
responders in flood disaster situations. Isikdogan, Bovik and Passalacqua (2017) [26] use a Fully
Convolutional Network to map surface water from Landsat ETM+. They train and test their model on
independent subsets of the Global Land-cover Facility (GLCF) inland water dataset [19] but do not
specifically target transferability between sensors. Similarly, to our study, their results show confusion
between “cloud” and “land” as well as “water” and “shadow” classes. Despite using simpler network
architecture and a smaller training dataset, our model is able to reduce these confusions. In a previous
study, we have used the same network architecture for “cloud” and “cloud shadow” segmentation
with “water” and other classes being byproducts [12]. In the present work, the training has been tuned
towards refining the segmentation of water bodies. In particular, we have significantly increased the
training dataset in terms of sensors, locations, and sample size. We apply more extended augmentation
and use a weighted loss function to better account for underrepresented classes. These modifications
could improve the performance of the U-Net model by 0.04 OA, 0.05 Kappa and 0.05 Dice coefficient.
The “water” class shows an improvement in F1-score by 0.08 with an increase in precision of 0.18
at a decrease in recall of 0.03. In its current form the model considers cloud shadows but has not
specifically been trained on other shadow types (e.g., terrain shadows). Despite the encouraging
results achieved on the global test dataset, this may be a potential source of false-positives for water
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segmentation in mountainous areas with strong terrain shadow effects. Therefore, future work will
focus on refining the training dataset and experimenting with different network architectures to
further improve generalization ability and increase precision and recall. Further experiments are also
planned to evaluate the effect of atmospheric correction on the performance. This becomes particularly
relevant as the lag time between satellite image acquisition and distribution is expected to decrease for
standardized atmospherically corrected data in coming years [59].

We present a pragmatic solution to derive a reference water mask for any given area and time of
interest, which can be regarded as a step forward compared to the usually static approaches reported
in literature. Despite the technical implementation that can be adapted to dynamic environments,
it should be noted that its definition is not universal and may vary depending on the application,
targeted end-users, geographical region and time period. An in-depth evaluation of use-cases and
a more quantitative approach towards the definition of reference water and the respective decision
about parameter settings is still pending. This is beyond the scope of this study and will be treated
as a separate research in the future. However, for three flood disasters and a monitoring application
we could show the potentials and flexibility of the proposed reference water mask and related flood
product. In particular, we could show that flood and permanent water were segmented with high
accuracies in all tested situations. A slight performance decrease for flood water could be observed,
which is consistent with the effect that flood water commonly defines the maximum water extent
and thus the land-water border. Particularly in flood situations this border can show highly complex
patterns (e.g., submerged vegetation) that increase the complexity of the segmentation task compared
to permanent water. Moreover, we could show that segmentation performance is comparable between
sensors but varies over the observed 12 months period in the range of 0.2 Kappa for Landsat OLI and
0.13 Kappa for Sentinel-2. Marginally higher accuracies during monsoon months (April to August)
may indicate a seasonal effect on the performance that may be triggered by increased cloud coverage.
In order to confirm these findings, however, it would be needed to analyse a longer time-series and see
if this effect persists.

We introduce the mean effective revisit period as a measure of how frequent a location on the
ground is observed by a satellite during a given time range. Compared to the commonly referenced
satellite revisit period, the effective revisit period specifically considers cloud and cloud shadow
coverage. It is therefore a more meaningful measure to understand the applicability of a multi-spectral
satellite sensor to provide valid observations during monitoring tasks. Naturally, the effective revisit
period of optical sensors is longer than the satellite revisit period, because generally not all pixels in all
acquisitions are cloud and cloud shadow free. It should be noted, however, that it is only valid for a
given area and time range. Accordingly, results may vary for example if we set the time range around
a specific season or if we change the study area. Nevertheless, we could show that the mean effective
revisit period can significantly be improved by combining data from multiple sensors. For the study
area in India the combination of systematically acquired multi-spectral and SAR data could reduce the
mean effective revisit period to 3 days (compared to 6 days for Sentinel-1 only) in 2018. Therefore,
the prototypical multi-spectral processing chain shows high potential to complement SAR-based
flood services.

6. Conclusions

In this study, we introduced a modular processing chain for automated flood monitoring from
multi-spectral satellite data. The presented prototype provides a complete solution to process raw
image data into actionable information products that can provide rapid situational awareness in
disaster situations. Performance evaluation showed that the implemented method produces highly
accurate results and generalize well across different sensors, seasons, locations and disasters (0.93 OA,
0.87 Kappa, 0.90 Dice coefficient). Moreover, no atmospheric correction and ancillary datasets (e.g.,
digital elevation models) are required, which reduces complexity and allows for rapid processing.
By successfully applying the processing chain to three exemplary flood disasters and to a flood
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monitoring application, we could highlight the usefulness of our work for emergency response in
terms of inference speed (0.41 s/megapixel on a standard GPU), accuracy (≥ 0.92 OA, ≥ 0.86 Kappa,
≥ 0.90 Dice coefficient) and mean effective revisit period (6–7 days for multi-spectral only, 6 days
for SAR only and 3 days for multi-spectral and SAR combined). We considered the most common
systematically acquired high resolution multi-spectral satellite data, namely Landsat TM, ETM+, OLI
and Sentinel-2. However, the modular structure of the processing chain allows for flexible extension to
other sensors. Ongoing and future works focus on implementing support for additional high-resolution
sensors (e.g., ALOS-AVNIR2, PlanetScope, etc.), and to train a water segmentation model for very high
resolution satellite (e.g., Pléiades, Kompsat-3, etc.) and aerial imagery. Additional research is also
needed regarding the definition of a reference water mask. In this context, it is intended to carry out
an end-user knowledge elicitation to gain a better insight into their information needs and to define
common use cases for the application of a reference water mask. More specifically, we should be able
to setup a structured scheme that supports the choice of appropriate parameter settings (time range,
granularity and additional constraints) in a less subjective manner and more targeted towards the
needs of specific applications, locations and end-users’ needs. Furthermore, it is envisaged to elaborate
upon the use of spatial uncertainty metrics that may be able to support decision making. Finally,
the proposed processing chain will complement existing SAR-based flood monitoring services [5,6] to
produce flood maps in an operational context with improved temporal revisit period.
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