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Abstract: Synthetic aperture radar (SAR) images have been used to map flooded areas with great
success. Flooded areas are often identified by detecting changes between a pair of images recorded
before and after a certain flood. During the 2018 Western Japan Floods, the change detection
method generated significant misclassifications for agricultural targets. To evaluate whether such
a situation could be repeated in future events, this paper examines and identifies the causes of the
misclassifications. We concluded that the errors occurred because of the following. (i) The use of only
a single pair of SAR images from before and after the floods. (ii) The unawareness of the dynamics
of the backscattering intensity through time in agricultural areas. (iii) The effect of the wavelength
on agricultural targets. Furthermore, it is highly probable that such conditions might occur in
future events. Our conclusions are supported by a field survey of 35 paddy fields located within
the misclassified area and the analysis of Sentinel-1 time series data. In addition, in this paper, we
propose a new parameter, which we named “conditional coherence”, that can be of help to overcome
the referred issue. The new parameter is based on the physical mechanism of the backscattering on
flooded and non-flooded agricultural targets. The performance of the conditional coherence as an
input of discriminant functions to identify flooded and non-flooded agricultural targets is reported
as well.

Keywords: the 2018 western Japan floods; ALOS-2 SAR imagery; agriculture targets; false detection

1. Introduction

Floods are natural phenomena that can perturb ecosystems and societies [1,2]. Microwave remote
sensing is extremely useful for post-disaster analysis of floods for two reasons: First, microwaves
can penetrate clouds, which are almost certainly present during heavy rainfall events. Second, there
is a clear physical mechanism for backscattering in waterbodies, that is, specular reflection. There
are several methods to trace the flooded area from microwave remote sensing. Schumann and
Moller [3] provided a comprehensive review of the role of microwave remote sensing on flood
inundations. Their study focuses on the different potential conditions, such as mapping inundation
at floodplains, coastal shorelines, wetlands, forest, and urban areas. For each case, the limitations
and advantages of microwaves images are drawn. Nakmuenwai et al. [4] proposed a framework to
identify flood-based water areas along the Chao Phraya River basin of central Thailand, an area were
floods occur almost every year. Their study established an inventory of permanent waterbodies within
the Chao Phraya River basin. Then, for an arbitrary SAR image, local thresholds are computed using
the inventory of waterbodies as references. The architecture of the proposed network is independent
of the satellite acquisition condition and normalization was not necessary. Liu and Yamazaki [5]
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performed a similar approach to map the waterbodies in open areas due to the 2015 Kanto and Tohoku
torrential rain in Japan. It was pointed out, however, that a thresholding method applied over the
backscattering intensity has a poor performance in urban areas. The combined effect of the specular
reflection and double-bounce backscattering mechanism produces high backscattering intensity. Thus,
Liu and Yamazaki [5] applied the threshold over the difference of backscattering between a pair of
SAR images taken before and after the referred flood. Boni et al. [6] introduced a prototype system
for flood monitoring in near-real-time. Instead of using an inventory of water body as a reference,
they used an automatic procedure to find subimages with bimodal distribution and used them to
set the threshold. The novelty in this study is the use of numerical simulation to forecast floods and
to request earlier satellite activation. When multitemporal SAR data is available, Pulvirenti et al. [7]
proposed a methodology based on image segmentation and electromagnetic models to monitor
inundations. Pierdicca et al. [8] used the irrigation activities in agricultural targets to test whether
COSMO-Skymed SAR data is able to detect vegetation with water beneath it. The aim of the study
is to detect flooded vegetation areas in future events. Pulvirenti et al. [9] tackled the problem of
discriminate flooded and non-flooded vegetation areas by applying a supervised machine learning
classifier on a segmentation-based classification. In their study, a theoretical backscattering model was
used as training data. However, a proper theoretical model requires information on land cover map
as complementary input. Although currently polarimetric SAR images are not usually available for
early disaster purposes, Sui et al. [10] performed a study of its use together with a digital elevation
model (DEM) and ancillary data. Arnesen et al. [11] combined L-band SAR images, optical images,
and SRTM data to monitor the seasonal variations of flood extent at the Curuai Lake floodplain, in the
Amazon River, Brazil.

Most of these studies are based on similar principles, one of which is the detection of waterbodies
through the identification of areas with low backscattering intensity. For the case of vegetation,
however, flooded vegetation may give rise to large backscatter intensities, due to the joint effect of
specular reflection of a smooth water surface and the double bounce effect of plant stalks. However,
this joint effect is intimately connected to the frequency bands. A frequency associated with a short
wavelength, for instance, in the X-band, is able to interact with the plant stalks. On the other hand,
larger wavelengths, such as those in the L-band, may not interact with thin or low-dense plant stalks.
Another important principle often used in many studies is the comparison of waterbodies observed
in a pair of images taken before (pre-event) and after (post-event) an arbitrary flood event. When
the temporal baseline between the referred images is sufficiently short, it is assumed that most of
the changes observed are effects of the disaster. This procedure is commonly referred to as change
detection, and it is frequently used to analyze large-scale disasters. For the case of floods, change
detection is used to remove permanent waterbodies from those caused by the disaster.

An inevitable issue in the change detection approach is that changes produced by other factors
within the temporal baseline will be detected as well. This is the main reason why a change
detection-based damage map is performed with a pair of images with the shortest available temporal
baseline. An important constraint is the availability of a pre-event image. To the best of our experience,
a temporal baseline from few months to about a year performs fairly well to identify damages in
urban areas [12–18]. However, other types of land use may exhibit constant and systematic changes
through time. Areas devoted to agricultural activities are such examples. Based on seasonal changes,
the referred areas may contain bare soil, water, and/or vegetation. Previous studies have shown that
these periodical changes can be detected from remote sensing imagery. Rosenqvist [19], for instance,
performed an extensive study of the dynamics of the backscattering intensity in agricultural targets
in Malaysia. The referred study used microwave images recorded by JERS-1, a Japanese satellite
with L-band sensor. Five images, recorded during the soil preparation, initial reproduction, budding,
harvesting, and soil preparation (after harvesting), were analyzed. Studies of agricultural targets using
other frequency bands have been performed also [20,21].
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The application of change detection to map the effect of a flood in agricultural targets is therefore
more complicated that its application in urban areas. Previous studies have stated that their results
might contain changes produced by the flood and agricultural activities. Liu and Yamazaki [5] reported
that the change of waterbodies included large paddy fields flooded for irrigation purposes, which
could not be removed. Boni et al. [6] pointed out it is necessary to include a pre-event image recorded
a few days before the flood to successfully remove all the permanent waters, including those from the
agricultural activities. However, this is usually not available. To the best of our knowledge, there is no
report of the severity of this issue, namely, the inability to discriminate changes of waterbodies from
the flood and those from agricultural activities.

Thus, the aim of this study is to report on the above issue during our analysis of the 2018 heavy
rainfall that occurred in western Japan and to provide a potential solution. The next section describes
the region of interest, the available dataset during the early disaster response, and the data collected
on subsequent days, such as additional microwave imagery, governmental reports, and the field
survey. Section 3 reports the current approaches to map flooded areas. Their limitations to discriminate
flooded and non-flooded agricultural targets are highlighted. Moreover, a new parameter is proposed
to improve the identification of flooded and non-flooded agricultural targets. The results of the
proposed metric and the performance of machine learning classification algorithms calibrated with the
new parameter is reported in Section 4. Additional comments are provided in Section 5. Finally, our
conclusions are reported in Section 6.

2. Dataset and Case Study

2.1. The 2018 Western Japan Floods

Beginning on 5 July 2018, heavy rainfall occurred in western Japan. A detailed report can be
found in [22], although a summary follows. The cause of the heavy rainfall was attributed to the
convergence of a weather front and the Typhoon No. 7. The total rainfall between 28 June and 8 July
was 2–4 times the average monthly values for July. As of 2 August 2018, 220 casualties, nine missing
persons, and 381 injuries had been reported due to the floods, mainly in Hiroshima and Okayama
Prefectures. Furthermore, 9663 houses were partially or completely collapsed, 2579 were partially
damaged, 13,983 houses were flooded to the first floor, and 20,849 houses were flooded below the first
floor. Figure 1 shows the geographical location of the region of interest (ROI) of this study, which is
located in the prefecture of Okayama. It includes the cities of Kurashiki, Okayama, and Soja. Within
Kurashiki city is located the town of Mabi, the most affected area in Okayama Prefecture during the
heavy rainfall.
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Figure 1. Geographical location of the study area. The polygons at Mabi town denotes the estimated
flooded area provided by Geospatial Information Authority of Japan (GSI). The polygons labeled as
surveyed area denotes the paddy fields that were inspected.
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2.2. The Advance Land Observing Satellite-2 (ALOS-2)

In the aftermath of the 2018 heavy rainfall event, the ALOS-2 performed observations on the
affected areas for early disaster response purposes. The ALOS-2 system was developed by the Japan
Aerospace Exploration Agency (JAXA). The ALOS-2 hosts an L-band SAR system, named PALSAR-2,
that is capable of right and left looking imaging with an incident angle range of 8◦–70◦. The revisit
time of ALOS-2 is 14 days. PALSAR-2 is able to operate in three different modes: (i) spotlight mode,
with azimuth and range resolution of 1 m and 3m, respectively; (ii) stripmap mode, which has the
ultrafine, high-sensitivity, and fine submodes; (iii) and ScanSAR mode, with low resolution for large
swaths. Figure 2a shows a RGB color composite of a pair of images acquired on 14 April 2018 (R),
and 7 July 2018 (G and B) in the ROI. The images are in Stripmap-ultrafine mode, which has a ground
resolution of 3 m, and both are in HH polarization. The gray tones are areas where the backscattering
intensity remain unchanged, whereas the red tones indicated the areas where the backscattering
intensity decreased.

The two referred images were provided at the early stage of the disaster. Later on, another
pre-event image with the same acquisition conditions was requested for this study. The third image
was recorded on 3 March 2017. Note that all the images were radiometrically calibrated, speckle
filtered, and terrain corrected.
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Figure 2. (a) Color composite of pre- and post-event ALOS-2 SAR images. The inset denotes the
location of the study area in the western Japan. (b) Thresholding-based water body identification.
The black rectangles denote confirmed flooded and non-flooded agriculture areas.
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2.3. The Sentinel-1 Satellite

To reveal the impact of the irrigation and seasonal changes, annual variations of backscattering at
the agriculture targets were investigated using Sentinel-1 data. The Sentinel-1 constellation, operated
within the European Commission’s Copernicus program, can provide dual-polarized C-band SAR
images every six days [23]. Annual changes in backscattering from paddy fields were analyzed using
ground range detected (GRD) images taken from 1 January 2017 to 31 December 2018. Note that only
the images taken from the descending path under VV polarization were extracted to reduce the effects
of the acquisition conditions. As a result, a total of 58 SAR images were selected for this study. The
preprocessing of these images consists of three steps: orbit correction, calibration, and geometric terrain
correction. First, orbit state vectors were modified using supplementary orbit information provided by
the Copernicus Precise Orbit Determination Service. This modification has a high influence on the
quality of several preprocessing steps. Second, brightness was converted into backscattering coefficient,
which represents the radar intensity per unit area in the ground range. Third, geometric distortion
derived from varying terrain were corrected using digital elevation data provided by the Shuttle Radar
Topographic Mission.

2.4. Truth Data

Currently, the Geospatial Information Authority of Japan (GSI) provides data related to the
effects of the floods [24]. A series of derived products are available in the referred data base, such as
orthophotos taken before and after the disaster, collapsed areas map, inundation range, estimation
of inundation depth, and digital elevation map. Figure 1 illustrates the extent of the flooded area in
Mabi-town. It is worth pointing out that the area delineated by GSI was performed using photos and
videos only; and thus its accuracy was not confirmed.

As seen in Figure 2a, the flooded area in Mabi town exhibit a reduction of the backscattering
intensity, which is expressed as red tones. However, many other areas exhibit the same pattern as
well. A closer look revealed that most of those areas are used for agriculture activities. Therefore,
to complement the data provided by GSI, a field survey was performed on 25 July, 18 days after the
recording of the post-event image. The location of the surveyed paddy fields is shown in Figure 1
and a closer look is shown in Figure 3. A total of 35 agricultural fields were inspected (Figure 3a).
There was no evidence of flooding, and direct communication with the inhabitants confirmed that no
flooding occurred in the surveyed area. Furthermore, it was found that the plants were in their early
stage of growth, and a layer of water was present in most of the fields (Figure 3b,c).
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Figure 3. (a): Surveyed paddy fields (red rectangles) located within the NF-area shown in Figure 2.
(b,c): Survey photos of paddy fields.
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3. Methods

3.1. Current Practice for Flood Mapping

3.1.1. Intensity Thresholding

This section begins reproducing one of the simplest approaches to estimate flooded areas in the
ROI, that is, identifying areas with low backscattering values in the ALOS-2 SAR imagery. To define a
proper threshold, permanent waterbodies from the Asahi and Oda rivers, shown as blue polygons
in Figure 2, are employed as references. As pointed out in [4] , by using water body references from
the same images, there is no effect of the acquisition conditions of the images (i.e., incident angle,
satellite path, etc.) in the results. A threshold of −16 dB for the sigma naught backscattering was
set, and the waterbodies were identified in both the pre- and post-event images with the shortest
time baseline; that is, the images recorded on April and July 2018. The permanent waterbodies in
the post-event image were removed using the waterbodies at the pre-event image. Then, the erosion
and dilatation operator, with window size of 3× 3, were applied in order to remove small objects.
Figure 2b depicts the estimated flooded areas based on changes in waterbodies. As stated previously,
there are several systematic procedures to set a threshold value. It was found, at least in this event, that
slight modifications to the threshold value (−16 dB) did not change the overall flood map significantly.
A similar flood map for Okayama Prefecture for the same event is reported in [25]. In Figure 2b,
two areas are highlighted by black rectangles. The rectangle at the left side is located in Mabi-town,
hereafter referred to as the F-area. It contains the flooded area mapped by GSI, which was confirmed as
flooded by the media immediately after the disaster occurred. The second rectangle, hereafter referred
as NF-area, corresponds to an area mainly devoted to agricultural activities. Note that the surveyed
agricultural fields are located in the NF-area. According to the flood map (Figure 2b), the NF-area was
severely affected. However, it came to our attention that there was no report of damage in this area,
neither from the government nor the media. Recall, during the field survey, that the inhabitants also
confirmed the NF-area was not flooded. Furthermore, a closer look at the SAR images showed dark
rectangular areas distributed in a rather uniform way (Figure 3a). Therefore, it is concluded that these
areas contained waterbodies used for agricultural activity and not caused by flooding. For the sake
of clarity, fields that contain waterbodies due to agricultural activities are referred as “non-flooded
agricultural targets”. Likewise, agricultural fields covered with waterbodies produced by the flood are
interpreted as “flooded agricultural targets”. Specular reflection was indeed the main backscattering
mechanism in the NF-area. Double bouncing did not occur for two reasons: the very thin stalks of
the plants and the rather large L-band wavelength (15–30 cm). The backscattering sigma naught (σ0)
intensity of the flooded area in Mabi town, and the surveyed paddy fields were measured and shown
in Figure 4. The range of the backscatter intensity in the flooded agricultural fields was almost the same
as that of the non-flooded agricultural fields. Therefore, it is expected that a pixel-based classification
approach will produce incorrect results. Some of the agricultural fields were inactive (F07, F10, F29,
F30, F34, and F35); that is, we only observed bare soil by the time of the survey, and the associated
backscattering intensities were larger than those of the remaining fields. The large intensity shown for
field F19 was attributed to artifacts of double bouncing due to a nearby building.

3.1.2. Coherence Approach

The use of complex coherence is another approach that has been frequently used in recent years
to map damaged areas [5,18]. Coherence is computed from a pair of complex SAR data using the
following expression,
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γ =
|∑(i,j) Ipre

i,j Ipos
i,j
∗|√

∑(i,j) Ipre
i,j Ipre

i,j
∗

∑(i,j) Ipos
i,j Ipos

i,j
∗ (1)

where Ipre
i,j denotes the complex backscattering of the pre-event SAR image, Ipos

i,j is the complex
backscattering of the post-event SAR image, and ∗ denotes the complex conjugate. Coherence tends to
be large in urban areas, unless significant changes have occurred, such as the condition immediately
after a large-scale disaster. In urban areas surrounded by dense vegetation, a single coherence
computed from pre- and post-event SAR imagery might not be sufficient, because vegetation also
exhibits low coherence. This pitfall can be overcome with a land cover map or an additional coherence
image computed from two pre-event images. This approach was evaluated in the present study as
well. The pre-event coherence were computed with the two pre-event SAR images (i.e., the images
recorded on March 2017 and April 2018). The co-event coherence was computed with the post-event
and the pre-event SAR images that have the shortest temporal baseline (i.e., the images recorded
on April and July 2018). Figure 5 depicts the RGB color composite constructed from both coherence
images (R: co-event coherence; G and B: pre-event coherence). The cyan tones are areas where the
pre-event coherence dominates, which is mostly observed in urban areas affected by the flood. See the
red polygons in Figure 5b for instance. The white tones are areas where both the pre-event and
co-event have high values. This pattern is observed in non-flooded urban areas. It is promising to
observe the NF-area exhibit a clear different tone than that shown in the F-area. The non-flooded
agricultural targets have low values at both the pre-event and co-event coherence, which is reflected
by dark tones. However, a closer look revealed that flooded agricultural targets exhibit dark tones
as well. For instance, see the green polygons in Figure 5b. Therefore, using coherence-based change
detection, floods in agriculture targets cannot be identified. To confirm this conclusion, Figure 6 depicts
a scatter plots of flooded agricultural areas, flooded urban areas, and non-flooded agricultural areas.
Each scatter plot were constructed from 10,000 samples randomly selected from the polygons shown in
Figure 3a,b. It is clear that there is a significant overlapping between samples from flooded (Figure 6a)
and non-flooded (Figure 6c) agriculture targets.

FLD F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35
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Figure 4. Boxplot of blackscatteringsigma naught of the flooded (FLD) and non-flooded paddy field
(F01–F35) areas.
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Figure 5. RGB color composite of co-event (R) and pre-event (G and B) coherence images. (a) Study
area. (b) Closer look of Mabi-town (yellow rectangle in panel a). Red and green dashed polygons
indicate instances of flooded urban and agricultural areas, respectively.
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Figure 6. Pre-event (γpre) and co-event (γco) coherence scatter plots computed for (a) flooded
agricultural areas, (b) flooded urban areas, and (c) non-flooded agricultural areas. Color marks
denote the frequency of occurrence. Each plot consists of 10,000 samples extracted randomly from the
polygons depicted in Figure 5b and the surveyed paddy fields (Figure 3a).
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3.2. Backscattering Dynamics of Agriculture Targets

The evidence from the field survey demonstrated that the paddy fields were filled with water by
the time the post-event image was recorded. Furthermore, Figure 2b suggests that such waterbodies
were not present by the time the pre-event image was recorded. However, there is not conclusive
evidence. If the pre-event image was taken before irrigation, the change detection approach
would include irrigation changes and flood damage. Before starting irrigation and transplanting,
the backscattering response from paddy fields is generally dominated by surface scattering of bare soil.

Fortunately, agriculture activities are associated with the seasons. Thus, the variation of the
backscattering can be modeled as a periodic signal with a period of a year. Figure 7 illustrates
the variation of the averaged backscattering intensity through the years 2017 (red line) and 2018
(blue line), corresponding to the surveyed paddy field F26. The shadowed area denotes the limits
of their standard deviation. Note the rest of the surveyed paddy fields that contained waterbodies
show the same pattern as shown in Figure 7. The time series data revealed a sudden decrease in the
intensity to approximately −17 dB between June and July in both 2017 and 2018. This downward
trend can be regarded as the start of rice planting, at which farmers irrigate paddy fields. After
irrigation, the backscattering exhibited a gradual increasing trend. Note that the Sentinel-1 (3.75–7.5 cm
wavelength) and ALOS-2 (15–30 cm wavelength) satellites use different wavelength bands; thus,
the period of lowest backscattering intensity should be larger for the ALOS-2 SAR images. Recall that
the pre-event ALOS-2 SAR image closest to the onset of the heavy rainfall was recorded on 14 April,
before the irrigation period; the floods occurred between 5 and 8 July soon after the beginning of
the irrigation period. The post-event ALOS-2 SAR image was recorded on 7 July. Therefore, we can
conclude that the onset of the irrigation period hampered the traditional change detection approach
for the identification of flooded areas.
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Figure 7. Temporal variation in backscattering from surveyed paddy field F26. The red and blue lines
denote the mean variations during the years 2017 and 2018, respectively. The shaded area denotes the
limits of the average plus/minus one standard deviation. The vertical dashed lines denote the date
of the field survey (25 July 2018) and the dates of the ALOS-2 SAR images that were provided for the
early response.
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3.3. A New Metric: Conditional Coherence

At this stage, it is clear that traditional methods may cause false detection of flooded areas
for agricultural targets. It is imperative to track the periodic activities of agricultural targets and,
consequently, be aware of the dynamics of the backscattering sigma naught. Additional information
might be useful to judge the reliability of the results. Therefore, for future references, it is strongly
recommended to verify whether a flood event occurred during the onset of the irrigation period; if that
is not the case, then the previous approaches should be adequate. In case a similar situation occurs,
new solutions are required. It is our belief that new solutions should consider the spatial arrangements
of the fields and how the waterbodies are present in flooded and non-flooded agricultural targets.
A first important fact is that the agricultural fields have a defined shape, which is often rectangular with
its edges bounded by street, roads, alleys, or buildings. Another key feature is that the waterbodies
in non-flooded fields are stored in a controlled manner; namely, they have the same shape as the
agricultural fields (Figure 3). On the other hand, waterbodies in flooded areas do not have a clear
defined shape.

The automatic detection of regular shapes, such as rectangular, might be a potential solution to
discriminate non-flooded agricultural areas from those that are flooded. There is extensive literature
regarding this purpose [26–29]. Although object detection it is a mature subject, it is worth mentioning
the edges of the agricultural fields are not clear defined in microwave images because of the speckle
noise; and thus it might not be a straightforward procedure. Current technologies such as supervised
machine/deep learning methods can overcome this issue if a proper and extensive training data is
at hand and extensive computational resources are available. Instead, we propose a novel heuristic
metric, which is based on the fact that the waterbodies in non-flooded paddy fields are stored
within the agricultural fields. Thus, the areas between consecutive paddy fields, commonly used for
transportation, and all nearby infrastructure remain dry with a more steady backscattering mechanism
over time. We then propose to recompute coherence under the following modifications.

Given the X and Y domains, defined as Lx = {0, 1, ..., Nx} and Ly = {0, 1, ..., Ny}, respectively,
a complex SAR image can be defined as a function that assigns a complex number to each pixel in
Lx × Ly; I : Lx × Ly → C. Let AT be a subset of pixel coordinates in Lx × Ly whose pixel value in the
post-event image Ipos meets the following condition,

AT = {(i, j) ∈ Lx × Ly| 20 log10 |I
pos
i,j | > T} (2)

where T is a threshold to filter out pixels with low intensity (units of dB). The coherence between Ipos

and a pre-event image Ipre computed over pixels whose coordinates belong to A is referred to in this
paper as “conditional coherence” (γT):

γT =
|∑(i,j)∈AT

Ipre
i,j Ipos

i,j
∗|√

∑(i,j)∈AT
Ipre
i,j Ipre

i,j
∗

∑(i,j)∈AT
Ipos
i,j Ipos

i,j
∗ (3)

The concept behind Equation (3) is to recompute the coherence after filtering low-intensity pixels at the
post-event SAR image using a user-defined threshold, T. A suitable option for T is the same threshold
used to create waterbodies map in Figure 2b. The low intensity pixels are filtered out because these are
the information the flooded and non-flooded agricultural targets have in common. On the other hand,
medium/large intensity pixels do have different pattern. For the purpose of identifying flooded areas
in agricultural targets, the conditional coherence must be computed over a moving window which
size (i.e., Nx and Ny) should be large enough to include paddy field edges and surrounding structures.

3.4. Machine Learning Classification

The performance of the conditional coherence as input of a machine learning classifiers to
characterize flooded and non-flooded agricultural fields is evaluated here. Two different machine
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learning classifiers that can be used in different circumstances are evaluated. In a first situation, it is
assumed that there is not information other than the remote sensing data. That is, there is no available
truth data. Then, under this context, an unsupervised machine learning classifier is a suitable option.
In a second circumstance, areas confirmed as flooded at a very early stage of the disaster are used as
input of a supervised machine learning classification.

3.4.1. Unsupervised Classification

The expectation–maximization (EM) algorithm [30,31], an unsupervised classifier, is here used to
discriminate the flooded and non-flooded agricultural targets. The EM algorithm considers that the
distribution of the conditional coherence is composed of a mixture of distributions:

p(γT) =
k

∑
i=1

p(γT |Ci)P(Ci) (4)

where k is the number of classes defined beforehand, Ci denotes a class, and P(Ci) are the mixture
proportions. The distributions are defined from an iterative optimization. For instance assuming
Gaussian distributions, the calibration of their parameters is as follows,

µl+1
i =

∑t ht
i γ

t
Ti

∑t ht
i

Sl+1
i =

∑t ht
i(γ

t
Ti
−ml+1

i )2

∑t ht
i

ht
i =

P(Ci)|Si|−1/2 exp
(
− 1/2(γt

Ti
−mi)

2S−1
i
)

∑j P(Cj)|Sj|−1/2 exp
(
− 1/2(γt

Ti
−mj)2S−1

j
)

(5)

where mi and Si denote the vector mean and variance, respectively. In this study, Gaussian distributions
are used. After a calibration of the distributions through the iterative process, each pixel sample is
associated with the class Ci that gives the maximum p(γT |Ci).

3.4.2. Supervised Thresholding

Areas recognized as flooded immediately after the floods occurred are used here to define a range
in γ−16 and use it to perform predictions. Namely, new samples that are located inside the range will
be classified as flooded; otherwise, it will be classified as non-flooded. The decision whether a sample
belong to a flooded sample is based on the sign of the following expression:,

f (γT) = w · γT + ρ (6)

where the parameters w and ρ are calculated from the following optimization problem,

min
w,ρ

1
2

w2 +
1
vl ∑

i
ξi − ρ

subject to w · γTi ≥ ρ− ξi , ξi > 0
(7)

where γTi is the conditional coherence of sample i ∈ {1, ..., N}, with N being the number of samples;
ξi is a slack variable; and ν ∈ (0, 1] denotes the upper bound of the fraction of outlier samples.
Equations (6) and (7) denote a particular case of the method proposed by Schölkopf et al. [32],
from which the case of multidimensional features is tamed.



Remote Sens. 2019, 11, 2320 12 of 19

4. Results

4.1. Conditional Coherence

Figure 8a,b shows subimages of 101× 101 pixels of two non-flooded agricultural targets located
within the NF-area. Both, the pre-event and post-event SAR images are depicted. After removing
pixels whose intensity at the post-event image was lower than −16 dB (i.e., pixels whose coordinates
do not belong to A−16), the remaining pixels consist of those located in the paths between paddy
fields and/or the infrastructure nearby. The conditional coherence computed at both pairs of images
is ~0.30. Likewise, Figure 8c,d shows subimages of flooded agricultural targets located within the
F-area. Note that, unlike the non-flooded agriculture areas, the street/roads between consecutive
fields are not visible in the post-event subimages. In Figure 8c, the area with high backscattering
intensity at the bottom-right consists of a flooded urban area. The conditional coherence computed
in this subimage is γ−16 = 0.08. The high value pixels at the top left of Figure 8d represent the
backscattering intensity from the Prefectural School of Okayama Kurashikimakibishien, which was
inundated as well. The conditional coherence at this area is γ−16 = 0.12. Note that, although in the
four examples the conditional coherence is rather low, those computed in flooded areas are lower
than those computed in non-flooded areas. Within flooded areas, large intensity pixels are mainly due
to the join effect of specular-reflection and double-bouncing backscattering mechanisms; whereas in
non-flooded areas, the medium/large intensity pixels denotes the backscattering from the street/roads
and nearby buildings.

Figure 8. Examples of conditional coherence computed with T = −16 (γ−16). The two leftmost
columns depict the pre-event and post-event SAR backscattering intensity. The two rightmost columns
show only the pixels whose location belongs to the subset A−16. (a,b) Examples of non-flooded
agriculture targets. (c,d) Examples of flooded agriculture targets.
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Figure 9 illustrates γ−16 computed over the waterbodies shown in Figure 2b. A window size
of 101× 101 pixels (approximately 300× 300 m2) was used. Recall that Figure 2b depicts the areas
with the lowest backscattering intensity, and thus the conditional coherence at each pixel in Figure 9
contains information of its surroundings rather than its location. It is observed that in both the flooded
and non-flooded areas, the conditional coherence is mostly lower than 0.5. However, it is clearly
observed that the conditional coherence in Mabi-town is much lower than that computed in the
surveyed paddy fields. Figure 10 top shows the distribution of γ−16. The distribution is slightly
skewed to the right, which is the effect of the low conditional coherence at the flooded agricultural
areas. It does not exhibit a bimodal distribution, with a distinctive peak representing the flooded
agricultural targets, because the population of non-flooded areas is much larger than that from the
flooded areas. Furthermore, although difficult to observe, there are several thousands of samples with
γ−16 greater than 0.5.

>0.4

0

0 5 102.5
Km

134°133.9°133.8°133.7°133.6°

34
.72

°
34

.62
°

34
.52

°

Figure 9. Conditional coherence γ−16 computed over the waterbodies identified in Figure 2.

4.2. Classification of Flooded and Non-Flooded Agriculture Targets

Considering the shape of the distribution of γ−16 (Figure 10a), the EM algorithm was computed
for three classes (k = 3). Then, the class that contains the lowest γ−16 is considered a flooded area,
and the other two classes are merged to represent the non-flooded areas. Figure 10b shows the
p(Ci|γ−16) for the three classes and Figure 11a shows the resulted classification map. The red pixels
denote the flooded agricultural areas, whereas the blue ones denote the non-flooded agricultural
areas. Figure 11b shows a closer look of the flooded paddy fields at the F-area. It is observed that the
resulting classification using the conditional coherence is consistent with the area delineated by GSI.
Figure 11c shows a closer look of the NF-area. Compared with Figure 2b, it is observed that most of
the false detection has been rectified. However, in the bottom right of Figure 11c, it is observed an
area classified as flooded paddy field. Figure 9 shows that indeed the area exhibit low conditional
coherence. A closer look revealed there was a significant amount of dry vegetation at a higher elevation
than the paddy fields, which certainly will exhibit medium backscattering intensity, but low coherence
and conditional coherence.
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Figure 10. (a) Distribution of γ−16 shown in Figure 9. (b) The conditional probabilities that a sample
belongs to class C1 (red line), C2 (blue line), and C3 (green line) resulted from the EM algorithm.
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Figure 11. (a) EM classification of flooded (red pixels) and non-flooded (cyan pixels) agricultural
targets. (b) Closer look of the F-area. The black polygons represent the flooded area provided by GSI.
(c) Closer look at the NF-area.
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Regarding the classification using the one-class SVM method, 30,000 samples of flooded
agricultural targets were randomly extracted from the green polygons denoted in Figure 5b. Note the
referred area was promptly confirmed as flooded, and it is located within the F-area. The parameter
ν of the Equation (7) was chosen to be 0.95. That is, the calibrated function can accept a maximum
of 5% of outliers from the input samples. Figure 12a shows the distribution of the input samples
with respect to γ−16. Figure 12b shows the calibrated f (γ−16). As mentioned previously, the value
in which f (γ−16) changes sign is the boundary between the two classes. Such value is slightly lower
than 0.2. Therefore, a lower value is classified as flooded agriculture area; otherwise, it is classified as
non-flooded agricultural area. Note, the boundary between the two classes are practically the same as
the one defined with the EM method, and therefore the map of flooded and non-flooded agricultural
targets computed from the one-class SVM method (Figure 13) is very similar to that computed from
the EM algorithm (Figure 11).
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Figure 12. (a) Distribution of γ−16 computed over pixels located in the green polygon at Figure 5b.
(b) Discriminant function (Equation (6)) calibrated from the one-class SVM method.

To evaluate the performance of the classifiers calibrated using the EM and the one-class SVM
methods, pixels within the area delineated by GSI at Mabi town and pixels within the NF-area are used
as reference pixels of flooded and non-flooded agriculture areas. A proper evaluation requires the
same amount of samples for each class. Thus, 10,000 pixels are extracted randomly from each of the
referred areas. Three scores are used for the evaluation: producer accuracy (PA), user accuracy (UA),
and F1. The PA represents the percentage of samples extracted from the GSI-area (NF-area) that were
classified as flooded (non-flooded). Similarly, the UA is the percentage of samples classified as flooded
(non-flooded) that were extracted from the GSI-area (NF-area). The F1 is computed from the following
expression, 2(UA−1 + PA−1)−1. To consider the effect of the random sampling, the evaluation was
performed a hundred times. Figure 14 reports the resulting scores. It is observed all the scores have
the value of ~81%, which indicates high accuracy. Table 1 reports the predictions over the all pixels in
the GSI-area, the surveyed paddy fields, and the NF-area.
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Figure 13. (a) One-class SVM classification of flooded (red pixels) and non-flooded (cyan pixels)
agricultural targets. (b) Closer look of the F-area. The black polygons represent the flooded area
provided by GSI. (c) Closer look at the NF-area.
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Figure 14. Producer accuracy (red lines), user accuracy (green lines), and F1 (blue lines) scores for
flooded (solid lines) and non-flooded (dashed lines) agricultural targets. (a) Scores computed from the
classification of the EM algorithm. (b) Scores computed from the classification of the one-class SVM.
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Table 1. Prediction of flooded and non-flooded areas at the areas depicted by GSI, the field survey at
the agricultural targets, and the NF-area.

EM One-class SVM Total
Flooded Non-flooded Flooded Non-flooded

GSI 327,464 60,012 327,306 65,170 392,476
Survey 319 28,476 308 28,487 28,795

NF-area 813,561 3,069,984 810,299 3,073,246 3,883,545

5. Discussion

Additional comments regarding the relevance of this study are necessary. In the aftermath of the
2018 Western Japan floods, preliminary estimations of the affected areas were published. As this study
proved, all flood maps estimated from the L-band SAR images overestimated the floods in Okayama
Prefecture. Such significant overestimation can compromise an efficient transfer of human and
material resources. It was, therefore, of great interest the identification of the factors that induced such
misclassifications. This study showed that the main factors are the use of only two images, the L-band
wavelength, and the onset of agricultural activities. Another factor that may have influenced the
large misclassifications is the use of automatic procedures without human intervention. We belief that
such an importance task should be supervised by an expert to make a proper interpretation of the
microwave imagery and the resulted flood map. For the main role of an automatic procedure is to
assist the experts on getting a fast estimation of the affected area.

Note that the definition of flooded and non-flooded vegetation in [9] differs from ours. In [9],
flooded vegetation are vegetation that contain water beneath it; whereas non-flooded vegetation does
not contain water at all. In our study, both flooded and non-flooded agriculture targets contains
waterbodies. The water in flooded areas was produced by the flood; whereas non-flooded areas
contains water from ordinary irrigation activities. The study of Pierdicca et al. [8] on the potential
of CSK to map flooded agricultural fields, see Section 1, did not consider the situation where both
the agricultural targets flooded by the natural phenomenon and those artificially flooded for irrigation
purposes occur simultaneously.

Regarding the conditional coherence, note that its value contains local information from the field
edges and nearby structures; and thus, the window size need to be large enough to include them.
As a consequence, the resolution is decreased. Furthermore, note that the window size needs to be
defined by the user in advance, which requires rough estimation of the dimensions of a standard
agriculture field. The term “conditional” to the conditional coherence is used because a condition
was imposed to the pixels used in the computation of the coherence. In this study, the condition was
associated to the intensity of the backscattering. Namely, their intensity must be larger than certain
threshold. However, other types of conditions can be used to fulfill specific needs.

6. Conclusions

We have reported a case where the change detection approach was not suitable for identifying
flooded areas in agricultural targets. It was the co-occurrence of many factors, such as the use of
only two images, the L-band wavelength, and the onset of agricultural activities, that produced such
misclassifications. Using the backscattering intensity, significant overestimation was produced, and no
changes were observed from coherence images. Furthermore, solid evidence from field survey and
Sentinel-1 SAR time series data demonstrated that this flaw might occur in future events. We strongly
recommend awareness of the dynamics of backscattering in agricultural fields to avoid false alarms.
Furthermore, we proposed a new metric, termed here as “conditional coherence”, to infer whether
a detected change is associated with non-flooded or flooded agricultural areas. The conditional
coherence is a simple modification of the well-known coherence. Thus, its computation is simple,
it is computationally efficient, and does not require additional ancillary data (such as optical images
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and/or land use map). The conditional coherence was computed over the waterbodies observed in
flooded and non-flooded agriculture targets, and then, they were used as input feature to perform
unsupervised and supervised classifications. Both methods, applied independently, showed the same
results; and thus, it confirms that the conditional coherence contains information that can be useful to
discriminate flooded agricultural targets. It was observed the resulted classification cleaned up ~81%
of the false detection of flooded areas.
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