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Abstract: Rock glaciers are widespread periglacial landforms in mountain regions like the European
Alps. Depending on their ice content, they are characterized by slow downslope displacement
due to permafrost creep. These landforms are usually mapped within inventories, but understand
their activity is a very difficult task, which is frequently accomplished using geomorphological field
evidences, direct measurements, or remote sensing approaches. In this work, a powerful method
to analyze the rock glaciers’ activity was developed exploiting the synthetic aperture radar (SAR)
satellite data. In detail, the interferometric coherence estimated from Sentinel-1 data was used as key
indicator of displacement, developing an unsupervised classification method to distinguish moving
(i.e., characterized by detectable displacement) from no-moving (i.e., without detectable displacement)
rock glaciers. The original application of interferometric coherence, estimated here using the rock
glacier outlines as boundaries instead of regular kernel windows, allows describing the activity of
rock glaciers at a regional-scale. The method was developed and tested over a large mountainous area
located in the Eastern European Alps (South Tyrol and western part of Trentino, Italy) and takes into
account all the factors that may limit the effectiveness of the coherence in describing the rock glaciers’
activity. The activity status of more than 1600 rock glaciers was classified by our method, identifying
more than 290 rock glaciers as moving. The method was validated using an independent set of
rock glaciers whose activity is well-known, obtaining an accuracy of 88%. Our method is replicable
over any large mountainous area where rock glaciers are already mapped and makes it possible to
compensate for the drawbacks of time-consuming and subjective analysis based on geomorphological
evidences or other SAR approaches.

Keywords: synthetic aperture radar (SAR); Sentinel-1; rock glacier; permafrost; unsupervised
classification; interferometric coherence

1. Introduction

Rock glaciers are the most visible geomorphological evidence of permafrost in mountainous
regions, frequently shaping the high-relief landscapes [1]. Depending on their permafrost content
and movement, rock glaciers are typically classified into three different classes (e.g., Barsch [2]):
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(i) active rock glaciers, in which the internal deformation and shear processes near the base of
internal ice produces a detectable surface displacement; (ii) inactive rock glaciers, still containing ice
but without displacement; and (iii) relict rock glaciers, without internal ice and consequently with
no movement. Active landforms are affected by downslope displacement due to the creeping of
permafrost, with surface speed rates ranging from a few centimeters to some meters per year [3].
In the last decades, a considerable acceleration has been observed on many rock glaciers of the Alps,
with several examples of destabilization and collapse of the landforms, causing in some circumstances
potential geomorphological hazards [4–9]. Since rock glaciers respond sensitively to climate forcing,
this acceleration has been attributed to a change in the climate-related drivers [10]. Therefore, in a
perspective of climate change, investigating the rock glaciers’ activity at large spatial scale (i.e., at the
scale of mountain range or wider) is an issue of increasing relevance for the high mountain geosystems.
This information can be included in rock glacier inventories and can support to answer the “where”
question in hazard assessments [11].

Many rock glacier inventories have been recently completed in the European Alps [12–17].
They contain the rock glacier outlines that are directly drawn from visual analysis of optical
satellite images, aerial orthophotos and Digital Terrain Models (DTMs), frequently checked with field
surveys [2,18–22]. Furthermore, the activity information is frequently included in the inventories,
distinguishing between active landforms (characterized by displacement) from those without
displacement (inactive and relict landforms).

The identification of active rock glaciers within inventories is usually accomplished on the
basis of geomorphological evidences [13,18,23]. Quantitative information is generally obtained by
direct measurements of surface displacement using ground-based or proximal sensing techniques
(e.g., topographic, Global Positioning System, and Terrestrial Laser Scanner surveys) [24–26]. However,
as rock glaciers are located in remote areas, direct measurements can be carried out only on a limited
number of landforms. Even the application of remote sensing techniques such as cross-correlation
on multitemporal, high-resolution orthophotos and DTMs can be applied only on small areas or on
selected time periods due to the limited availability of data [27–30]. Therefore, the detection of moving
rock glaciers over wider areas (i.e., at a regional-scale) remains largely unresolved.

Earth Observation (EO) satellite data can represent an adequate tool to fill-up this gap of
knowledge, especially with the increasing availability of high spatial and temporal resolution data
over large areas. Satellite synthetic aperture radar (SAR) platforms, thanks to their day-and-night and
all-weather-conditions availability, may help to overcome the above-mentioned constraints. Indeed,
several approaches exploiting SAR data, alone or in combination with optical data, were developed
in the last decades [28,31–35]. For example, landforms characterized by surface displacements can
be detected by supervised analysis of data exploiting Differential Interferometry (DIn-SAR) to detect
phase variations related to the displacement [28,33,35–37]. As a support to SAR, optical data are
frequently used to define the type of investigated landforms (e.g., rock glaciers, debris-covered glaciers,
and push moraines) [35]. However, DIn-SAR products are affected by some limitations that should be
properly taken into account. These are decorrelation effects caused by the terrain conditions (presence
of snow and vegetation cover), as well as atmospheric artefacts and issues related to the complex
topography of the investigated areas [38]. Moreover, in high mountain areas, the application of specific
multitemporal SAR techniques [39,40] is often restricted, if not hampered, by the scarce number of
suitable SAR images available in the snow-free period, which could be particularly short.

In this work, we propose a new SAR-based, unsupervised, replicable, and quite easy approach to
describe the activity of rock glaciers over large spatial areas, distinguishing moving and no-moving
landforms. In detail, we exploited the interferometric coherence information, which was estimated
for the rock glaciers of a wide mountainous area located in the Eastern European Alps. The method
was developed using Sentinel-1 SAR data and takes into account all the factors that may limit
the effectiveness of the coherence in describing the rock glaciers’ activity. The original application
of interferometric coherence, estimated using the rock glacier outlines as boundaries instead of
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regular kernel windows, was used as key indicator of displacement. Our new approach is able to
compensate for the drawbacks of existing methods based on subjective analysis of geomorphological
evidences, providing further information on the widely used interferometric approaches, such as the
DIn-SAR technique.

2. Materials and Methods

2.1. Study Area and Dataset

The proposed method was developed and tested over a mountainous area, encompassing the
entire South Tyrol and the western part of Trentino (Italian Alps).

South Tyrol is located in the eastern Italian Alps (Figure 1). A rock glacier inventory (South Tyrol
Inventory, STI) was recently compiled in this region, considering only the area located above 1600 m
a.s.l. [16,41]. The landforms were identified and mapped using LIDAR (Light Detection and Ranging)
DTMs (2.5 m GSD, Ground Sample Distance) and orthophotos of different dates. Descriptive features,
both numerical and qualitative, were associated to each rock glacier, including a classification into
active, inactive, and relict forms. The inventory includes 1665 rock glaciers, 230 of them (14%) were
classified by the authors as active, 198 (12%) as inactive, 1099 (66%) as relict, and 138 (8%) were not
classified (Figure 2a). Altitudinal and aspect distributions of active, inactive, and relict rock glaciers are
shown in Figure 2b,c. The STI provided the landform outlines on which our analysis was developed.
Moreover, the rock glaciers’ classification obtained by our method was compared with the classification
provided by the inventory.
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Figure 1. Geographical setting of the study area. (a) Area covered by the Sentinel-1 tracks 117 and 168,
overlaid on the permafrost probability distribution on the entire Alps according to the index provided
by the GLOBpermafrost project [46]. The red and yellow lines represent the geographical outlines of
the Trentino and South Tyrol, respectively. (b) Elevation map of the study area and distribution of rock
glaciers (red and black dots).

In Trentino, a set of 57 rock glaciers extracted from an inventory [15] (Figure 1) was used to
validate the method (Section 3.3.), thanks to their activity status known from field observations [42],
direct measurements [43], and visual analysis of multitemporal data. In detail, the visual analysis was
conducted using high-resolution aerial orthophotos (2006 and 2014, 0.5 m and 0.2 m GSD, respectively)
and LIDAR DTMs (2006 and 2013, 2 m and 0.5 m GSD, respectively). Geomorphological evidences such
as the general deformation of the landform and the visible movements of large blocks were evaluated
as signs of displacement. As a result, 29 rock glaciers were classified as moving (i.e., exhibiting certain
evidence of surface movement) and 28 as no-moving (i.e., lacking surface movement).
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Since the vegetation influences the effectiveness of our method (see Section 2.2.), over the Trentino
all the rock glaciers were selected without vegetation cover. Over the South Tyrol, vegetated rock
glaciers were recognized using a land cover map [44].

Two Sentinel-1 tracks, i.e., relative orbit 117 (ascending) and 168 (descending), cover the entire
study area from 2014 (Figure 1a). The images were acquired in Interferometric Wide swath (IW) mode
with a 250 km swath at 5 m by 20 m spatial resolution. Single Look Complex (SLC) product type and
Vertical transmit Vertical receive (VV) polarization data were used for this analysis. The availability of
both Sentinel-1A and 1B data ensure a temporal resolution of 6 days for each track. As the snow cover
is a severe limitation for using satellite SAR data, our method was developed to analyze the activity of
rock glaciers during the snow-free period, taking into account all the images covering the period from
the beginning of August to the end of September 2017 (about 20 images, Figure 3). A LIDAR-derived
DTM [45], with 2.5 m GSD was used to remove the topographic-related component during the SAR
phase differences computation.
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inactive, and relict rock glaciers; (b) altitudinal e distribution; and (c) aspect distribution. In (b),
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As additional independent dataset to evaluate the results, we used a permafrost probability map
available from the GLOBpermafrost project [46] (Figure 1a). This dataset was produced by using
satellite data, land cover information, and ground surface temperature [47], without considering the
rock glacier location. Information on permafrost distribution at a global scale, with a spatial resolution
of 1 Km, are provided by a numerical index ranging from 0 to 1. The higher is the index, the higher is
the probability that permafrost exists in a given area.

2.2. Description of the Proposed Method

In order to fulfill the requirements of the activity classification of rock glaciers as envisaged
in the former chapter (e.g., wide area, topographic issues, short snow-free period), we propose an
original application of interferometric coherence as a key indicator of displacement, able to label a
large number of rock glaciers with their activity features. For the purposes of our work and according
to our exclusively kinematic approach, we adopted two classes of rock glaciers: (i) “moving” rock
glaciers, i.e., those with displacement detectable by our method and (ii) “no-moving” rock glaciers,
i.e., those with no detectable displacement. This classification assumes to aggregate from a kinematic
point of view the “inactive” and “relict” classes proposed by Barsch [2] under the class “no-moving,”
and the “active” class under the class “moving,” without considering the permafrost content.

The coherence is a measure of the similarity between a pair of images (i.e., master and slave) [48–51].
Although the coherence is usually estimated on regular kernel windows [52], in this work we used the
rock glacier outlines as boundaries to compute this value. This was done to avoid the average estimation
of coherence and the consequent bias toward higher coherence values due to the introduction of small
areas of calculation. Furthermore, in this way each rock glacier can be associated with a single SAR
coherence value, representative of the entire area of the landform. Low coherence values indicate low
or no similarity between the images, and this may be due to (i) the presence of vegetation, (ii) changes of
the target properties (i.e., changes of the physical ground conditions), and (iii) changes of surface shape
(i.e., displacement) [34,50,51,53–57]. High coherence values indicate, instead, similarity between the
images (i.e., no movement and no changes in the surface properties of the rock glacier). Low coherence
values due to vegetation cover can be avoided excluding vegetated rock glaciers from the classification
process, for example, by means of a high-resolution land cover map.

To distinguish if a low coherence value between two images was related to the surface displacement
or to a change in the physical properties of the ground (e.g., soil moisture changes due to rainfall or
melt water from summer wet snowfalls), we used the intensity of the backscattering inside the rock
glacier outline. Indeed, the backscattering change between two images can be related to changes of
(i) target shape, (ii) orientation, or (iii) dielectric properties of the ground [48,58]. Field and remote
sensing observations demonstrated that the rock glacier displacements during the summer season
is much lower than the resolution of Sentinel-1 images used in this work (20 m GSD) [24–26,34].
Therefore, assuming that changes in shape and orientation of the rock glaciers are much lower than the
resolution of SAR images during the investigated period, the only source of backscattering change is
the difference in the dielectric properties of the ground, which is mainly caused by changes in moisture
due to rainfall or summer snowfalls [58,59]. Backscattering information can therefore be used as key
indicator to select the most suitable SAR images (i.e., without rainfall or summer snowfalls) on which
to compute the coherence.

The overall scheme followed to develop the method is shown in Figure 4, where the classification
procedure is divided into three parts: the SAR data pre-processing, the data selection, and the coherence
calculation and the classification.
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Figure 4. General block scheme of the proposed rock glaciers’ classification. Sentinel-1 datasets from
different relative orbit were pre-processed to obtain backscattering images, phase differences, and
layover-shadow mask for each pair of images, using different temporal baselines. Then for each rock
glacier, the most favorable relative orbit dataset was used. During the data selection, small or vegetated
rock glaciers or with extended layover-shadow areas were discarded. For each selected rock glacier and
for each temporal baseline, the pair of images with the sum of the absolute backscattering difference of
master and slave images close to zero was selected. Coherence is then estimated for the selected pairs
of images. Then rock glaciers were classified by the expectation maximization algorithm using the
coherence values estimated with different temporal baselines.
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2.2.1. SAR Data Pre-Processing

The Sentinel-1 SAR images were multi-looked with a window size of 4 in azimuth and
coregistered [50,60]. Then, backscattering images and layover and shadow masks were generated.
All the possible pairs of images with temporal baselines of 6, 12, 18, 24, 30, 36, 42, 48, and 54 days
were combined, and for each pair the phase difference was computed between a master and a slave
image. Topographic corrections for the phase difference and backscattering, as well as geolocation
of the data were accomplished using LIDAR DTM and Precise Orbit Auxiliary Files [49–51,60–62].
Datasets of images from different relative orbits were available for the investigated area (i.e., relative
orbits 117 and 168), providing different Line Of Sight (LOS). Therefore, the SAR data pre-processing
was applied by computing backscattering, layover and shadow masks, and phase differences for each
relative orbit dataset.

2.2.2. Data Selection

Depending on the rock glacier orientation, topographic effects such as layover and shadow can be
reduced using a favorable satellite geometric view (i.e., ascending or descending) [51,63]. Therefore,
for each rock glacier, the relative orbit dataset with the smallest layover and shadow areas and the largest
number of SAR pixels inside the rock glacier boundary was selected for the classification procedure.

Rock glaciers covered by vegetation were excluded from the classification procedure. Over the
South Tyrol, this was accomplished using a land cover map [44], which includes the vegetation classes
“grass,” “shrubs,” and “wood.” In particular, we considered as vegetated the rock glaciers with more
than 15% of the surface covered by at least one of these vegetation classes. As inactive and relict rock
glaciers have no movement and are often densely covered by vegetation [28,64], we assumed that the
vegetated rock glaciers excluded from our classification are not in motion, and therefore they were
added to the class of no-moving at the end of the classification procedure.

As small rock glaciers are more affected by decorrelation effects [38] that reduce the reliability
of coherence, we excluded those landforms with an area less than 80 SAR pixels from the analysis.
Furthermore, also rock glaciers with a layover-shadow area larger than 50% of the total area were
excluded. These thresholds were chosen as a trade-off among robustness, reliability of coherence
estimation, and number of excluded rock glaciers, i.e., non-classified.

In order to use the most suitable images to estimate the coherence, we selected for each rock
glacier and for each temporal baseline one pair of images (i.e., master and slave) with the most
similar mean backscattering values related to a reference SAR backscattering image acquired under
dry meteorological conditions. To operate this selection, we identified periods with no snowfall and
rainfall events using the precipitation and snow depth data collected by 17 weather stations distributed
over the investigated area between 2000 m and 3200 m a.s.l. In this way, one reference backscattering
image for each of the two relative orbits covering the investigated area was selected. In particular,
the reference backscattering image acquired on 22nd August 2017 was chosen for the track 117, and the
image acquired on 14th August 2017 for the track 168 (Figure 3).

For each rock glacier, we computed the sum of the absolute backscattering differences (SABD)
between the reference backscattering image and the master and slave images of each pair for any
temporal baseline. The SABD was computed as follows (Equation (1)):

SABD =

∣∣∣∣∣10· log10

(
〈Ir〉

〈Im〉

)∣∣∣∣∣+ ∣∣∣∣∣10· log10

(
〈Ir〉

〈Is〉

)∣∣∣∣∣ (1)

where, inside the rock glacier outline, 〈Ir〉 is the mean intensity value of backscattering of the reference
image and 〈Im〉 and 〈Is〉 are the mean intensity values of backscattering of the master and slave images,
respectively. The lower the SABD value, the higher physical ground conditions similarity between the
reference image and the pair of images. Then, for each rock glacier and for each temporal baseline,
the pair of images with the lowest SABD value was selected to perform the coherence estimation.
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2.2.3. Coherence Estimation and Rock Glacier Classification

For the selected pairs of images, the coherence was estimated for each rock glacier using their
outlines as follows [48] (Equation (2)):

CC =

∣∣∣∣∣∣∣∣∣
∑N

i=1 r1ir2i e j(∆ϕi)√∑N
i=1 r1i2

√∑N
i=1 r2i2

∣∣∣∣∣∣∣∣∣ (2)

where r1i and r2i are the amplitudes of the complex signals of the master and slave at pixel i inside the
rock glacier outline, ∆ϕi is the phase difference obtained at pixel i inside the rock glacier area, and N is
the number of pixels inside the rock glacier outlines. Therefore, one coherence value for each rock
glacier and temporal baseline was estimated by using the selected pair of images.

Then, the unsupervised classification of rock glaciers was performed, labeling as “no-moving”
the rock glaciers with high coherence values and as “moving” those with low coherence values.
In particular, coherence values computed with long temporal baselines enabled to detect rock glaciers
characterized by low movement rates, even if they are more affected by decorrelation effects unrelated
with displacement [38,48,51,53,65]. On the contrary, coherence values computed with short baselines
are less affected by decorrelation effects, but in this case small displacements are undetectable [35].
To identify the activity of a rock glacier, all the temporal baselines need to be exploited during
the classification. In our method, this is done by using all the coherence values as features for an
unsupervised classification based on Bayesian inferencing, thus avoiding having to select arbitrary
thresholds. In detail, the well-known Expectation Maximization algorithm (EM) [66,67] was used
as an iterative method to find the maximum likelihood estimates between moving and no-moving
rock glaciers and select an adaptive decision threshold to minimize the overall classification error.
Assuming that rock glaciers are spatially independent and that moving and a no-moving classes are
represented by Gaussian distributions of the coherence values computed with different temporal
baselines, the EM algorithm was applied for the activity classification (Figure 5).

2.3. Evaluation, Validation, and Performance Test

Assuming that moving rock glaciers are probably affected by permafrost, we adopted two different
criteria to evaluate the classification results obtained with our method. The first criterion takes into
account that the moving rock glaciers are expected to be located at higher altitudes with respect to
the no-moving ones [14,20,23]. According to this assumption, the classified rock glaciers were plotted
based on their altitudinal distribution. As a second evaluation criterion, we compared our classification
with the permafrost probability map provided by the GLOBpermafrost project [46], expecting a higher
permafrost probability for rock glaciers classified as moving.

To validate the method and highlight the wrongly-classified rock glaciers, we compared the results
of our classification with the set of rock glaciers from Trentino, whose activity status was previously
defined (Section 2.1.). We computed confusion matrices, accuracies (i.e., percent of correctly classified
rock glaciers with respect to the total number) and Kappa coefficient. The last one is a more robust
measure than simple percent accuracy calculation, because it takes into account the possibility of the
accuracy occurring by chance. The coefficient ranges between 0 and 1, the higher the value, the higher
is the quality of the classification. Good classifications have kappa coefficient higher than 0.6 [68].

A large and suitable dataset of SAR images is not always available for high mountain regions,
where the snow-free period can be very short. Therefore, in order to simulate the conditions of a region
with an extended snow cover period, we tested the performance of our method on a shorter period,
using Sentinel-1 images acquired in only one, snow-free month. We performed two separate tests,
using images from August and September 2017; hence the maximum temporal baseline available was
24 days. As with the former complete dataset, the analysis was performed on the whole study area
and the results were validated on the set of rock glaciers from Trentino.
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Figure 5. Gaussian distributions of the coherence values. The coherence values are showed by the
x-axis and the frequency values by the y-axis. The Gaussian distribution of moving and no-moving
rock glaciers obtained by the application of the Expectation Maximization (EM) algorithm are shown
by red and green lines, respectively. Each graph shows the coherence distributions obtained with the
same temporal baseline.

3. Results

3.1. Rock Glaciers Classification and Comparison with the South Tyrol Inventory

In this section, we present the rock glacier classification using the landforms mapped in the STI.
In addition, we show the comparison between our activity classification and that provided by the STI.

Out of the 1665 rock glaciers included in the inventory, more than 500 landforms were classified
by our method. The remaining rock glaciers were not classified because they are covered by vegetation
(1057), are too small (73), are in layover and shadow conditions (1), or are in both the two last conditions
(7). According to our method, 270 rock glaciers were classified as moving and 257 as no-moving
(Figures 6 and 7b). The 1057 vegetated rock glaciers excluded from our classification were added to the
class of no-moving (Figure 7c) (Section 2.2.2.). This assumption is supported by the classification of the
STI, for which the 96% of the 1057 vegetated rock glaciers are labeled as inactive and relict (Figure 6).
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Figure 6. The length of the horizontal bars represent the number of rock glaciers classified as moving and
no-moving by our method, the vegetated rock glaciers, and the not-classified rock glaciers. Inside the
horizontal bars, the comparison between the number of labeled rock glaciers and the classification of
the South Tyrol Inventory (STI) is shown by different colors, and the level of agreement is shown by
the percentages.
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Figure 7. (a) Rock glaciers mapped in the STI. (b) Rock glaciers classified by our method and divided
in moving (red dots) and no-moving (black dots). Vegetated rock glaciers are not displayed. (c) Rock
glaciers classified by our method and vegetated rock glaciers (green dots), which were added to the
no-moving class. (d) Rose diagram of aspect distribution of moving and no-moving forms, including
the vegetated ones.
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The comparative analysis between our classification and that included in the STI was carried out
comparing our moving class with the active rock glaciers of the inventory, and our no-moving class
with the inactive and relict. Out of the 270 rock glaciers classified as moving by our method, in the STI,
152 (56%) were classified as active, i.e., in classification agreement, and 72 (27%) as inactive or relict,
i.e., disagreement (Figure 6). The remaining (17%) were not labeled and only our classification could
provide the activity information. We classified 257 rock glaciers as no-moving, and the agreement with
STI (i.e., rock glaciers labeled as inactive and relict) is 61%. The disagreement of 22% consists of rock
glaciers, which were labeled as active in the STI, while the remaining 17% of rock glaciers in the STI
were not labeled. Among the 81 rock glaciers not classified by our method, 4 (5%) were classified as
active in the STI, 53 (65%) as inactive or relict, and 24 (30%) were not classified.

3.2. Evaluation of the Rock Glacier Classification with Altitude and Permafrost Probability

According to the first evaluation criterion (Section 2.3.), the classified rock glaciers were plotted
based on their altitudinal distribution (Figure 8), including the vegetated landforms added to the
no-moving class. Landforms classified as no-moving are located at an altitude between 1800 and
3100 m, with a mean of 2409 m, whereas the moving landforms are located between 2200 and 3100 m
of altitude, with a mean altitude of 2700 m. Rock glaciers classified as moving are therefore located
300 m above the no-moving ones, and this difference supports the robustness of our analyses.
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Figure 8. Altitudinal distribution of moving (red line) and no-moving rock glaciers (included the
vegetated ones, green line). The average (AVG) and the standard deviation (STD) of the altitude for the
two classes are shown.

For the second evaluation criterion, we plotted the permafrost probability distribution of moving
rock glaciers (Figure 9). According to the probability map, the rock glaciers classified as moving are
located in areas with high permafrost probability values, with an average of 0.81. A small number
of moving rock glaciers show low permafrost probability values (i.e., 17 rock glaciers have values
lower than 0.5). The low permafrost probability of some rock glaciers may be due to a combination of
classification errors and the low resolution of the permafrost probability map (1 Km).

3.3. Validation with the Trentino Dataset

Out of the 57 rock glaciers of Trentino, 21 were classified as moving and 28 as no-moving (Table 1).
The remaining (8 rock glaciers) were not classified because they are too small (less than 80 SAR pixels)
or have a layover or shadowing area higher than 50%. The validation results display an accuracy of
88% and a Kappa coefficient of 0.76 (Table 1). The number of rock glaciers misclassified as no-moving
by our method (5) is overestimated with respect to the number of those misclassified as moving (1).
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Table 1. Confusion matrix between the coherence-based classification and the Trentino dataset.

Accuracy 88%
Kappa 0.76 Trentino Dataset

Moving No-Moving

Coherence
Classification

Moving
21 (39%) 20 1

No-moving
28 (47%) 5 23

Not classified
8 (14%) 4 4

3.4. Performance Test with a Restricted Dataset of Images

Using only the images of August 2017, 161 rock glaciers were classified as moving and 366 as
no-moving in South Tyrol (Figure 10a). The validation results obtained using the Trentino rock glaciers
provided an accuracy value of 71% and a Kappa coefficient of 0.43, both being lower than the values
obtained using the complete dataset (Table 1). The confusion matrix shows that our method correctly
classified 14 rock glaciers as moving and 21 as no-moving, whereas the misclassification consists of 11
rock glaciers labeled as no-moving and 3 rock glaciers labeled as moving (Table 2).

Table 2. Confusion matrix between the coherence-based classification and the Trentino dataset using
the images of August (left) and September (right) 2017.

Trentino Dataset
August September

Coherence
Classification

Accuracy 71%, Kappa 0.43 Accuracy 86%, Kappa 0.72
Moving No-moving Moving No-moving

Moving 14 3 19 1

No-moving 11 21 6 23
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Figure 10. Results of the rock glacier classification in Trentino and South Tyrol using the restricted
dataset of images acquired in August (a) and September (b) 2017.

The second performance test was conducted using only the images acquired in September
2017. In South Tyrol, 301 rock glaciers were classified as moving and 226 as no-moving (Figure 10b).
The validation performed using the set of Trentino rock glaciers showed an accuracy value of 86%
and a Kappa coefficient of 0.72, which are only slightly lower than those obtained with the complete
dataset (Table 1). As shown by the confusion matrix (Table 2), our method correctly classified 42 rock
glaciers (19 as moving and 23 as no-moving), whereas the misclassification consists of 7 rock glaciers.
Therefore, using a restricted dataset of images, the no-moving rock glaciers are overestimated, and the
accuracies and kappa coefficients are overall lower than those obtained with the complete dataset.

As a useful example to clarify the better results of the tests conducted with the restricted datasets
of images, the SABD and the coherence trends for two rock glaciers of Trentino recognized as moving
(Section 2.1.) were plotted over time for three temporal baselines (6, 12, and 18 days) (Figure 11).
Results showed three evidences. First, an overall decrease in the coherence values by increasing the
temporal baseline is observable. Second, as expected, an opposite trend between the SABD and the
coherence is visible. In particular, a decrease in the coherence values from August to September is
visible, especially for the shorter temporal baselines (i.e., 6 and 12 days). Third, despite a SABD trend
is observable, the SABD difference over time between the images selected by our method (using both
the complete and reduced datasets) is very low, compared to the total variation.

The coherence trends shown in Figure 11a are referred to a rock glacier classified as moving
using both the complete dataset (two months) and the reduced dataset (August or September 2017).
A decrease in the coherence values from August to September is visible along with a slight increase of
SABD. The example shown in Figure 11b is referred to a rock glacier classified as no-moving in the
August images, and as moving in the September images. For each temporal baseline, the coherence
values of the images selected for August are higher than those of September and this may explain
the different classification. This rock glacier was classified as moving using the complete dataset,
despite the images selected for the complete dataset (red circles) are the same to those selected for the
reduced dataset of August (red diamonds). This different classification is due to the larger temporal
baselines (i.e., 30, 36, 42, 48, and 54 days) used with the complete dataset.
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Figure 11. Coherence trends (black lines) and sum of the absolute backscattering differences (SABD)
trends (blue lines) for three temporal baselines (6, 12, and 18 days) of two selected rock glaciers
in Trentino. Red circles indicate the pair of images selected with the complete dataset (2 months),
while the red diamonds indicate the pair of images selected with the reduced dataset (1 month).
Horizontal dashed lines indicate the time interval for each pair of images (master and slave). In most
cases, the image selected for the complete dataset is the same to that selected for the reduced dataset.
(a) A rock glacier classified as moving using both the complete dataset (2 months) and the reduced
dataset (August or September 2017). (b) A rock glacier classified as no-moving in the August images,
and as moving in the September images. For the same temporal baseline, the ranges of coherence
values between (a) and (b) are different.
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4. Discussion

In this work, a SAR-based, unsupervised method to classify the activity of rock glaciers was
developed. The potential of the interferometric SAR coherence of Sentinel-1 images was exploited
to distinguish moving and no-moving landforms over large mountainous areas. We developed and
tested our method in the Eastern Italian Alps, where the geographical location and the outline of rock
glaciers was extracted from existing inventories [15,16].

As suggested by Villarroel et al. [35], the information on the activity of rock glaciers can be
derived from the analysis of multitemporal optical data and the interpretation of geomorphological
evidences, such as, among others, inclination of the frontal slope, presence or absence of vegetation,
and degree of development of furrows and ridges over the rock glacier surface. However, one of
the main weaknesses of such criteria is that they are based on subjective interpretations and can
therefore lead to erroneous interpretations. At a large scale, displacement information can be obtained
using differential interferometry [28,33,36–38,69,70]. SAR data processing through the interferometric
techniques is often difficult in high mountain regions, especially for the unwrapping processes [35,38].
Our coherence-based method is able to solve the erroneous interpretation due to the subjective analysis
of geomorphological evidences, avoiding at the same time the complicated unwrapping processes.

A SAR-based approach such as that used in our work is affected by layover and shadow effects
because of the SAR imaging geometry and the complex topography of high mountain regions [60,71].
Consequently, extended areas with these effects can potentially decrease the number of landforms
that can be investigated. In order to reduce these effects, Rott et al. [71] and Strozzi et al [28] suggest
the use of the most appropriate image geometries (i.e., ascending and descending) depending on
the orientation of the objects to be investigated. In this work, two datasets with different relative
orbits were used, thus increasing the number of classified rock glaciers by using the most appropriate
geometry. Indeed, our findings show that, exploiting the relative orbit 117 and 168 (Figure 1a), only 17%
of all the investigated rock glaciers were excluded because of extensive layover and shadow effects.
Therefore, at a large scale, a key element to reduce the number of unclassified landforms is the use of
different relative orbit datasets.

In our work, an original application of the interferometric coherence, estimated with different
temporal baselines, was used to investigate the activity of rock glaciers. To define the activity status of
rock glaciers, the strength of our approach relies in the use of the interferometric coherence, which can be
easily estimated. Other widely used interferometric approaches, such as the DIn-SAR, allow obtaining
displacement maps, from which the activity of rock glaciers could be indirectly estimated by visual
interpretation [28,36,70]. However, although these approaches are the most established, they could be
somewhat subjective and may lead to misinterpretations. Therefore, our approach may help overcome
these limitations.

An innovative point of our method is the use of the rock glacier outlines as boundaries to
estimate the coherence, which is usually estimated using regular kernel windows [52,60]. In order
to avoid the averaging estimation of coherence in the kernel window and the possible biases toward
higher coherence values, we estimated the coherence using as window the outline of the rock
glaciers (Equation (2)). The single estimated SAR coherence value is therefore representative of the
entire area of each investigated rock glacier. However, this outline-dependent approach requires an
accurate definition of the rock glacier perimeters, and this may represent a limitation if this is poorly
accomplished. Indeed, the use of inaccurate rock glacier outlines (e.g., perimeters excluding parts
of the landform or including external parts) may conduct to non-representative coherence measure,
thus making an incorrect classification. Currently, the geographical outlines can be drawn from the
analysis of orthophotos and DTMs (e.g., [14,15,18]); however, the criteria to map the rock glaciers
are still not standardized and large margins of uncertainty and subjectivity still remain [72]. In the
inventories used for our work [15,16], the landforms were also mapped from the interpretation of aerial
orthophotos and DTMs. The experience and training of the operators in compiling these good quality
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inventories have contributed to reduce the potential misclassifications due to the coarse definition of
the rock glacier outlines.

The validation procedure with the Trentino dataset highlighted a slight overestimation of rock
glaciers classified as no-moving by our method. This can be explained by three reasons.

The first is the SAR geometric view, because the LOS orientation compared to the rock glacier
orientation is frequently not favorable to detect deformations [28,71]. For example, for those rock
glaciers with the main axis aligned around the North–South direction, the displacement may not be
detectable. Therefore, in correspondence to the North–South direction, no-moving rock glaciers could
be overestimated. This limiting factor can be reduced by using the most appropriate SAR geometry
depending on the rock glacier orientation [28,71]. In this work, we used two different geometries
(i.e., relative orbits 117 and 168) and the results show that, in correspondence to the North–South
direction, no-moving rock glaciers are not overestimated, with the number of moving rock glaciers not
strongly reduced (89 moving rock glaciers are distributed around the North–South direction ± 30◦,
Figure 7d). Therefore, in our work, the SAR geometric view cannot explain the observed overestimation
of no-moving rock glaciers.

The second reason is the particular spatial displacement pattern that characterizes some rock
glaciers. As suggested by Touzi et al. [52], a homogeneous displacement inside the boundary used to
estimate the coherence does not lead to a decrease in the coherence value. Therefore, rock glaciers
exhibiting a homogeneous displacement pattern are classified as no-moving, because the coherence
values estimated in their perimeter do not decrease over time. This kind of displacement pattern was
recognized for small- to medium-sized rock glaciers composed by a single debris lobe, which moves
with similar velocities over time. They were called “monomorphic” rock glaciers by Frauenfelder and
Kääb [73]. Some of them were identified from multitemporal orthophotos and DTMs in the Trentino
dataset, and this may partly explain the resulting overestimation of no-moving rock glaciers in the
validation procedure.

The third reason is the existence of rock glaciers with very small displacement rates, that could
not be detected using short temporal baselines [60]. To detect small displacements, Villarroel et al. [35]
suggest using large temporal baselines (e.g., up to 60 days). In our work, different baselines were used,
and the overestimation of no-moving rock glaciers was reduced using the larger ones (e.g., 30, 36, 42, 48,
and 54 days), with the ability to detect very small displacements as well. Indeed, our findings showed
that, among the three classification tests conducted using (i) the complete dataset of Sentinel-1 images,
(ii) the images acquired only in August and (iii) those acquired only in September, the best classification
performance was obtained using the complete dataset, and the number of no-moving rock glaciers
was slightly overestimated using the two restricted datasets. For example, a rock glacier from the
Trentino dataset surveyed with a laser total station and having an average velocity of 0.09 m y−1 [43]
was classified as moving using the complete dataset, while using the images acquired only in August
(maximum temporal baseline of 24 days) the displacement was not detected.

On the contrary, an overestimation of moving rock glaciers could be generated by the presence
of vegetation, because decorrelation effects due to vegetation reduce the coherence values [74,75].
To mitigate this problem, heavily vegetated rock glaciers can be excluded from the processing by using,
if available, a land cover map, as was done in our work. Alternatively, the Normalized Difference
Vegetation Index (NDVI) can also be used. In this work, an overestimation of moving rock glaciers was
not observed. A negligible number of rock glaciers were misclassified as no-moving by our method
(Table 1 and 2), probably because of decorrelation effects unrelated with the displacement [51,53,65].

An alternative hypothesis that can partly explain the observed overestimations can be due to
possible switch of the rock glaciers’ activity level in the period of the visual analysis conducted on
Trentino (2006–2014) and the period investigated by SAR images (summer 2017). However, changes
in the level of activity are not expected in such a short period, and this is supported by the direct
measurements conducted on two rock glaciers [43].
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The two rock glaciers used as examples in the Section 3.4. showed a decrease in the coherence
values from August to September (Figure 11). This loss of coherence may be explained by a different
activity behavior of the two landforms, with a possible acceleration in the last part of the investigated
period (i.e., in September). The number of studies documenting variations in rock glacier velocity
over short periods (i.e., seasonal or sub-seasonal) is very limited. However, recent continuous
measurements conducted on some rock glaciers in the Alps [26,76] suggest sub-seasonal velocity
variations, with an increase during the summer and maximum velocities at the beginning of autumn.
Therefore, our findings suggest that, at least for the two investigated landforms, the decreasing trend
of the coherence is probably related to an increase of sub-seasonal displacements and demonstrate that
the coherence is sensitive to short-term displacement variations.

Among the two classification tests conducted by using the restricted dataset of Sentinel-1 images
(i.e., the images acquired only in August and only in September), the validation procedure with the
Trentino dataset obtained the best performance using the images of September, with an accuracy of
86% and a kappa coefficient of 0.72. In August, a higher overestimation of no-moving rock glaciers
is observable. This result may be explained by the decrease in the coherence values from August to
September observable from the two investigated rock glaciers (Figure 11). As rock glacier velocities
increase during the summer, displacement rates are lower in August and higher in September. Therefore,
rock glaciers moving at low velocities are easier identified in September because their displacement
rates are higher than in August. This may have caused an overestimation of the no-moving rock
glaciers in the analyses based on the August dataset.

5. Conclusions

In this study, an original, unsupervised method to classify the activity of rock glaciers by using a
SAR remote sensing approach was developed. Backscattering and coherence of Sentinel-1 data were
exploited in order to classify rock glaciers in moving (i.e., with detectable displacement) and no-moving
(i.e., without detectable displacement). This method is applicable at a regional-scale, thus enabling the
rock glacier classification over large areas, where only the geographical location of the landforms is
known and no information about their activity is available. If a rock glacier inventory already includes
the information on activity, our method is able to reduce the uncertainties and improve its reliability.

Our method was developed in South Tyrol, where 1665 rock glaciers were mapped within an
inventory, and we classified 270 landforms as moving and 1314 as no-moving. The method was
validated by using an independent dataset of rock glaciers from a neighboring area (Trentino), for which
an accuracy of 88% and kappa coefficient of 0.76 was obtained.

We used an approach based on the SAR coherence, which has the main advantage to provide
an objective detection of the rock glacier activity status, avoiding the subjectivity and the potential
misinterpretations that characterize, for example, the visual interpretation of DIn-SAR products.
In addition, a SAR coherence approach enables to overcome the complicated phase unwrapping
process, required by the traditional DIn-SAR interferometry.

Further work is needed to exhaustively define the activity status of rock glaciers at a regional-scale
(i.e., their activity and ice content), a key task that is still lacking in the inventories. Future work
may involve the integration of the information on the activity obtained from our method with other
approaches for ice content detection.
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