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Abstract: Vegetation and Environmental New micro Spacecraft (VENµS) and Sentinel-2 are both
ongoing earth observation missions that provide high-resolution multispectral imagery at 10 m
(VENµS) and 10–20 m (Sentinel-2), at relatively high revisit frequencies (two days for VENµS and five
days for Sentinel-2). Sentinel-2 provides global coverage, whereas VENµS covers selected regions,
including parts of Israel. To facilitate the combination of these sensors into a unified time-series,
a transformation model between them was developed using imagery from the region of interest.
For this purpose, same-day acquisitions from both sensor types covering the surface reflectance
over Israel, between April 2018 and November 2018, were used in this study. Transformation
coefficients from VENµS to Sentinel-2 surface reflectance were produced for their overlapping spectral
bands (i.e., visible, red-edge and near-infrared). The performance of these spectral transformation
functions was assessed using several methods, including orthogonal distance regression (ODR),
the mean absolute difference (MAD), and spectral angle mapper (SAM). Post-transformation, the
value of the ODR slopes were close to unity for the transformed VENµS reflectance with Sentinel-2
reflectance, which indicates near-identity of the two datasets following the removal of systemic bias.
In addition, the transformation outputs showed better spectral similarity compared to the original
images, as indicated by the decrease in SAM from 0.093 to 0.071. Similarly, the MAD was reduced
post-transformation in all bands (e.g., the blue band MAD decreased from 0.0238 to 0.0186, and in the
NIR it decreased from 0.0491 to 0.0386). Thus, the model helps to combine the images from Sentinel-2
and VENµS into one time-series that facilitates continuous, temporally dense vegetation monitoring.
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1. Introduction

We are entering a golden age of high-quality public domain earth observation (EO) data.
The increase in the number of EO satellite sensors provides an opportunity to combine the images
from the various sensors into a temporally dense time-series. This combination of data significantly
improves the temporal resolution of EO and enhances our ability to monitor land surface changes [1,2].
Many studies have previously noted the advantageous use of information at a high spatial and temporal
resolution for land cover change [3–5], agricultural management [6–8], and forest monitoring [9,10].
The availability of public-domain imagery archives on the one hand, and the development of
high-performance computing systems on the other, have allowed scientists to work with large volumes
of EO data for continuous monitoring and analysis of earth surface phenomena [11–15]. Nevertheless,
this progress creates new challenges: To analyze a time-series of images acquired by different sensors,
the images must undergo radiometric harmonization—i.e., the spectral differences between their
corresponding bands must be minimized [16].
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The most common way of integrating data from two sensors is by developing empirical
transformation models [17–19]. Harmonizing datasets, from two different sensors, requires geometric
and radiometric corrections [16]. A BDRF normalization is an important step in the radiometric
correction process performed in many studies [16,19–22]. Additionally, co-registration of both
datasets is important in order to minimize misregistration issues during the comparison of the image
pairs [16,18,19]. These studies also emphasize the importance of using a large and representative
dataset in the creation of the transformation functions [16,19,21]. Sentinel-2 and the Landsat series, for
example, are public-domain optical spaceborne sensors, predominantly used for land cover monitoring.
In order to combine imagery from these sensors into a unified time series, previous studies have
developed transformation functions between the different Landsat sensors [17,23], and also, between
Landsat ETM+ and OLI with Sentinel-2 [16,18,19,24–26]. Nevertheless, many studies have highlighted
that the difference in reflectance is not only a function of the band response but also of the target
pixels. When there is a time-lag between the acquisitions of the images, during which the land-cover
changes, the resulting differences in spectral reflectance between the images are not only caused by the
difference in the response of the sensors. Accordingly, this time-lag should be as small as possible,
since a latent assumption in the development of the transformation models is that the bias is related to
the sensor differences rather than land-cover change. In addition, the prevalent land-cover types in the
images used in the model development will determine the model’s generality. Thus, the empirical
models developed to integrate data from two sensors are often region-specific and less applicable to
other locations [18,19,26]. Hence, regional transformation coefficients should be derived in order to
combine datasets from different sensors. This paper describes the development of band transformation
functions between the VENµS and Sentinel-2 satellite sensors over Israel.

VENµS is a joint satellite of the Israeli and French space agencies (ISA and CNES). Launched in
August 2017, it is a near-polar sun-synchronous microsatellite at a 98◦ inclination, orbiting at an altitude
of 720 km. The satellite has a two-day revisit time and the sensor covers a swath area of 27 km with a
constant view angle. The VENµS sensor is a multispectral camera with 12 narrow spectral bands in the
range of 415–910 nm. The surface reflectance product is provided at a spatial resolution of 10 m for all
bands [27,28]. The major focus of the VENµS mission is vegetation monitoring (with an emphasis on
precision agriculture applications that are expected to benefit from the red-edge bands [29]) and the
measurement of atmospheric water vapor content and aerosol optical depth [30].

Sentinel-2 is an EO mission from The European Space Agency (ESA) Copernicus program. It
includes two satellites, each equipped with a Multi-Spectral Instrument (MSI), namely Sentinel-2A
(launched June 2015) and Sentinel-2B (launched March 2017). Both sun-synchronous satellites are
orbiting the earth at an altitude of 786 km [31]. Sentinel-2A and Sentinel-2B have a combined revisit
time of five days. The push broom MSI sensor has a 20.6◦ field of view covering a swath width of
290 km. MSI has 13 spectral bands with varying spatial resolution, 10 m for visible (red, blue, green)
and broad near-infrared (NIR); 20 m for red-edge, narrow NIR and short-wave infrared (SWIR); and
60 m for water vapor and cirrus cloud bands. VENµS and Sentinel-2 sensors produce 10-, and 12-bit,
radiometric data, respectively.

VENµS has a relatively narrow view angle compared to Sentinel-2, the latter acquiring images
at nadir with a wider view angle of ±10.3◦ from nadir. This wider field of view may cause
bidirectional reflectance effects because most of the land surface consists of non-Lambertian surfaces.
For better cross-sensor calibration, bidirectional reflectance distribution effects need to be minimized.
Roujean et al. [32] explained an observed the reflectance variation across the swath as the bidirectional
reflectance distribution function (BRDF). Roy et al. [21] examined the directional effects on Sentinel-2
surface reflectance in overlapping regions of adjacent image tiles and concluded that the difference
in reflectance due to BDRF effects may introduce significant noise for monitoring applications if the
BRDF effects are not treated. Studies by Claverie et al. [33] and Roy et al. [20] reported that a single set
of global BRDF coefficients has shown satisfying BRDF normalization. These global coefficients have
been derived for the visible, NIR and SWIR bands [20] and the red-edge bands [22]. Claverie et al. [16]
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and Roy et al. [21] reported that the use of these global coefficients for the BDRF correction resulted in
a stable and operationally efficient correction for Sentinel-2 data.

The above literature review suggests that a BDRF correction would be required to produce
a harmonized product of VENµS and Sentinel-2 surface reflectance. Accordingly, the aim of this
study was to develop a transformation model, based on near-simultaneously acquired imagery, from
these sensors over Israel. The specific objectives of this study were (1) to create a harmonized (both
geometrically and radiometrically corrected) surface reflectance product of VENµS and Sentinel-2
imagery by adapting protocols previously established for other sensors, (2) to derive the transformation
model coefficients for the overlapping spectral bands, and (3) to assess the model performance.

2. Materials and Methods

2.1. Description of the Sentinel-2 and VENµS Dataset

The state of Israel is covered by seven Sentinel-2 tiles and 27 VENµS tiles (Figure 1). As a first step,
same-day acquisitions from VENµS and Sentinel-2 were inventoried. Eleven dates of near-synchronous
acquisitions were found for the period from April 2018 to November 2018. In total, 77 Sentinel-2 and
230 VENµS images were used to derive the band transformation model (Table A1). Atmospherically
corrected reflectance products from both sensors were used in this analysis. VENµS level-2 products
were obtained from the Israel VENµS website maintained by Ben-Gurion University of the Negev
(https://venus.bgu.ac.il/venus/). Sentinel-2 level-2A data were obtained from the European Space
Agency’s Copernicus Open Access Hub website (https://scihub.copernicus.eu/dhus/#/home). Table 1
lists the overlapping spectral bands of the VENµS and Sentinel-2 sensors and their attributes. Figure 2
illustrates the spectral response functions of the VENµS and Sentinel-2 bands.
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tiles covering Israel. Tile footprints are demarked in red and their names are inscribed in blue.
The grey-shaded regions in the overlap between Sentinel-2 tiles were used in the NBAR correction
assessment (shown in Figure 4).
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Table 1. Comparison of vegetation and environmental new micro spacecraft (VENµS) and Sentinel-2
surface reflectance products.

VENµS Sentinel-2

Central
Wavelength

(nm)

Band
Width
(nm)

Spatial
Resolution

(m)

Central
Wavelength

(nm)

Band
Width
(nm)

Spatial
Resolution

(m)

Band 3 (Blue) 492 40 10 Band 2 (Blue) 490 65 10

Band (Green) 555 40 10 Band
3 (Green) 560 35 10

Band 7 (Red) 666 40 10 Band 4 (Red) 665 30 10

Band 8
(Red-edge-1) 702 40 10 Band 5

(Red-edge-1) 705 15 20

Band 9
(Red-edge-2) 741 40 10 Band 6

(Red-edge-2) 740 15 20

Band 10
(Red-edge-3) 782 30 10 Band 7

(Red-edge-3) 783 20 20

Band 11 (NIR) 861 16 10

Band 8
(Broad NIR) 842 115 10

Band 8A
(Narrow NIR) 865 20 20
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Figure 2. Relative spectral response functions of VENμS and Sentinel-2 bands. Sources: Sentinel-2: 
(ref: COPE-GSEG-EOPG-TN-15-0007) issued by European Space Agency Version 3.0, accessed from: 
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-
/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses.  VENμS: accessed from: 
http://www.cesbio.ups-tlse.fr/multitemp/wp-content/uploads/2018/09/rep6S.txt. 
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Figure 2. Relative spectral response functions of VENµS and Sentinel-2 bands. Sources: Sentinel-2:
(ref: COPE-GSEG-EOPG-TN-15-0007) issued by European Space Agency Version 3.0, accessed
from: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/
Wk0TKajiISaR/content/sentinel-2a-spectral-responses. VENµS: accessed from: http://www.cesbio.ups-
tlse.fr/multitemp/wp-content/uploads/2018/09/rep6S.txt.

VENµS and Sentinel-2 bands were grouped into two categories based on spatial resolution (10 m
and 20 m). Most of the bands preserved their native resolution, such that the original reflectance values
were retained. However, the VENµS red-edge and NIR bands were resampled to 20 m to match the
Sentinel-2 red-edge and narrow NIR bands.

The following considerations were made during the development of the transformation functions
for Sentinel-2 and VENµS reflectance: (1) In order for the regression model input to be representative
of the reflectance variance in Israel, large spatial and temporal coverages were considered; (2) the

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
http://www.cesbio.ups-tlse.fr/multitemp/wp-content/uploads/2018/09/rep6S.txt
http://www.cesbio.ups-tlse.fr/multitemp/wp-content/uploads/2018/09/rep6S.txt
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difference in reflectance values between the different sensors over non-lamebrain surfaces was corrected;
(3) errors from defective or misregistered pixels were removed [25]. Figure 3 presents the steps in the
development of the transformation model.
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Sentinel-2 reflectance imagery. * The VENµS red-edge bands (8–10) and near infra-red (NIR) band (11)
were resampled to 20 m. ** The Sentinel-2 broad NIR and narrow NIR bands (i.e., bands 8 and 8A)
were compared with the VENµS NIR band (11).

The Level-2 products used in this study were atmospherically corrected before dissemination
by their respective agencies: The level-2A Sentinel-2 images were atmospherically corrected using
Sentinel-2 Atmospheric Correction (S2AC) and the VENµS level-2 images were corrected using the
MACCS-ATCOR Joint Algorithm (MAJA). Since these atmospherically corrected reflectance products
were used to develop the transformation, atmospheric correction is not listed as a step in the process.

2.2. BRDF Correction

The BRDF correction was carried out using the c-factor technique that uses global coefficients [20,22].
Table 2 lists global coefficients that have been previously validated for Sentinel-2 and Landsat [16].
Since the VENµS bands are spectrally similar to Sentinel-2, we applied the same coefficients to the
VENµS imagery. In the current work, nadir BRDF-adjusted reflectance (NBAR) values were derived
for both Sentinel-2 and VENµS.

Table 2. Bidirectional reflectance distribution function (BRDF) model coefficients used in the c-factor
method for the nadir BRDF-adjusted reflectance Nadir BRDF Adjusted Reflectance (NBAR) correction.

Bands fiso fgeo fvol Reference

Blue 0.0774 0.0079 0.0372

[20]Green 0.1306 0.0178 0.058
Red 0.169 0.0227 0.0574
NIR 0.3093 0.033 0.1535

Red-edge 1 0.2085 0.0256 0.0845
[22]Red-edge 2 0.2316 0.0273 0.1003

Red-edge 3 0.2599 0.0294 0.1197
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The NBAR reflectance and c-factor were calculated as:

ρ
(
λ,θNBAR

)
= c(λ) × ρ

(
λ,θSensor

)
(1)

c(λ) =
fiso(λ) +

(
fgeo × kgeo

(
θnadir

))
+

(
fvol × kvol

(
θnadir

))
fiso(λ) +

(
fgeo × kgeo(θSensor)

)
+ ( fvol × kvol(θSensor))

(2)

where ρ(λ) is the spectral reflectance for wavelength λ, θSensor is the actual sensor’s sun-illumination
geometry (i.e., angles of view zenith, sun zenith, and view-sun relative azimuth), θnadir is the sensor’s
sun-illumination geometry at nadir position (when the view zenith angle equals zero), and c(λ) is the
correction factor for wavelength λ. kvol and kgeo are the volumetric and geometric kernels and fiso, fvol,
and fgeo are the constant values of BRDF spectral model parameters (Table 2). The volumetric and
geometric kernels are the functions defined by the view and sun illumination geometry [32]. A detailed
explanation of these kernel functions is given in the theoretical document of MODIS BDRF/Albedo
product [34]. In the Equation (2) nominator, the view zenith angle is set to nadir (zero) and the average
value of the solar zenith angle is applied in order to normalize the VENµS and Sentinel-2 reflectance.
This radiometric normalization addresses the difference in reflectance that is the result of BRDF effects.

2.3. Spatial Co-Registration and Cloud Masking

The VENµS and Sentinel-2 NBAR products were co-registered to a sub-pixel precision of <0.5
pixels (RMSE) using the AutoSync Workstation tool in ERDAS IMAGINE. A second order polynomial
transformation model was used in conjunction with the nearest neighbor resampling method. Tie-points
with significant bias were eliminated, while the remaining tie-points were well-distributed throughout
the image space to ensure proper geometrical registration. Table 3 shows the number of tie-points
used for co-registration with the corresponding RMSE values.

Table 3. Summary statistics for the co-registration tie-points used to register the VENµS and Sentinel-2
NBAR products.

10 m 20 m

Number of Tie-Points Per
Image Pair RMSE Number of Tie-Points Per

Image Pair RMSE

Minimum * 15 0.14 7 0.07
Maximum 454 0.49 182 0.43
Average 150 0.27 40 0.17

* VENµS cloudy image with a very small cloud-free region.

Shadow and cloud contaminated pixels were masked out of the analysis by using scene quality
information from the VENµS QTL file and the Sentinel-2 scene quality flags.

2.4. Transformation Models

In each VENµS image, 3000–6000 random points were generated with a minimum distance of
60m between every two points. The regression model between VENµS and Sentinel-2 reflectance was
produced based on 90% of these points, while the remaining 10% were used for validation. Overall,
733,562 pixels from 175 VENµS-Sentinel-2 image pairs were processed using Ordinary Least Square
(OLS) regression.

ρSentinel−2 = c0 + c1ρVENµS (3)

where ρSentinel−2 is the Sentinel-2 NBAR; ρVENµS is the VENµS NBAR; c0 and c1 are the OLS regression
coefficients.
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Since some degree of misregistration is expected, possible outliers in the dataset were removed
using Cook’s distance method [35]. Cook’s distance (Di) is defined as the sum of all the changes in the
regression model when observation i is removed.

Di =

∑n
j=1 (Ŷ j − Ŷ j(i))

2

ρMSE
(4)

where Ŷ j is the jth fitted response value, Ŷ j(i) is the jth fitted response value, obtained when excluding
i, MSE is the mean squared error, and ρ is the number of coefficients in the regression model.

The threshold used to remove the outliers in the training dataset was three times the mean Di.
Values above those thresholds were removed. To remove outliers from the validation dataset, the
mean Di was set as the threshold. As a result, a higher proportion of the data was removed relative
to the training data. This was done to accentuate the differences in model performance—i.e., model
performance using the full validation dataset (similar to the real-world data) as compared to model
performance when the outliers are removed (similar to the dataset used to train the model, but slightly
more refined).

Once the outliers were excluded using Cook’s distance, the final coefficients were derived based on
a regression model using the remaining training pixels. These values were used to transform the VENµS
reflectance in the set of validation pixels. The VENµS pixels were compared with the corresponding
Sentinel-2 pixels prior to the transformation, and again post-transformation. The performance of
the resulting VENµS to Sentinel-2 transformation model was subsequently assessed in three ways.
First, orthogonal distance regression (ODR) was performed to assess the average proportional change
between the two reflectance datasets [17]. Unlike the OLS regression, used to derive the model, the
ODR slope value does not favor one variable over the other, and is only used to assess the relative
divergence between the two datasets. Second, the mean absolute difference (MAD) was used to
measure the difference in reflectance before and after transformation. Finally, the similarity index
derived from spectral angle mapper (SAM) [36] was used to compare the reflectance values pre- and
post-transformation, where smaller angle values denote higher similarity. MAD and SAM values were
calculated as:

MAD =
Σn

i=1

∣∣∣ (ti − ri)
∣∣∣

n
(5)

where ti represents the test reflectance (i.e., reflectance values after transformation), ri denotes the
reference reflectance (i.e., original reflectance values), and n represents the number of pixels considered
in each band.

SAM = cos−1

 Σn
λ=1tiri√

Σn
λ=1ti2

√
Σn
λ=1ri2

 (6)

where ti represents the testing reflectance value of band i (i.e., reflectance values after transformation),
ri denotes the reference reflectance (i.e., original reflectance values), and n represents the number
of bands.

ODR, MAD, and SAM were only calculated for the validation set of pixels. A hypothetical perfect
agreement between two sensors is expected to produce a MAD value of zero, an ODR slope of one and
a SAM of zero.

3. Results

A BRDF correction was carried out for the co-acquired VENµS and Sentinel-2 imagery. The NBAR
products were evaluated by comparing the Sentinel-2 NBAR reflectance images in the overlapping
zones of adjacent tiles marked as grey-shaded regions in Figure 1. The mean absolute difference value
for all the pairs of Sentinel-2 NBAR products was derived. To quantify the performance of the BRDF
correction, the mean absolute difference found in this study was compared against previously reported
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values for Sentinel-2 [21,22] and our correction showed better performance (Figure 4). Accordingly, the
uncertainty of this correction for Israel is significantly smaller than for the areas where this correction
was originally tested.
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Figure 4. Mean absolute difference between Nadir BRDF Adjusted Reflectance (NBAR) in the
overlapping regions of Sentinel-2 imagery (shown in Figure 1) during the months of April and August,
which represent the spring and the summer (high vegetation coverage in spring vs. low vegetation
coverage in summer). The values found in this study are compared against the values reported in
Roy et al. [21,22] for the month of April. RE denotes Red-edge.

The VENµS and Sentinel-2 NBAR products were co-registered with acceptable precision as shown
in Table 3. In total, 733,562 training points and 89,198 validation points were randomly distributed
over the imagery footprint. An example of outlier removal is shown for the green band reflectance in
Figure 5. Cook’s distances that were higher than the threshold of three times the average distance were
treated as outliers and excluded from the regression model (Figure 5D). The scatter plots in Figure 5A,C
demonstrate the effect of outlier removal on the data distribution in the scatter plot. Table 4 presents
the training and validation datasets by the band. The number of outliers for each band is slightly
different because the Cook’s distance distribution is slightly different for each band.
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Table 4. The number of points used for model training and validation. Percentage values in the brackets show the proportion of outliers excluded from the randomly
created dataset using Cook’s distance method.

Training Pixels Validation Pixels

Bands Training Points
(Outlier Excluded) Outliers Vegetation

Pixels
Non-Vegetation

Pixels
Validation Points

(Outlier Excluded) Outliers Vegetation
Pixels

Non-Vegetation
Pixels

10 m

Blue (490 nm) 704,853 28,709 (3.9%) 251,523 453,330 78,599 10,599 (11.9%) 30,954 47,645

Green (560 nm) 707,191 26,371 (3.6%) 254,378 452,813 79,270 9,928 (11.1%) 32,365 46,905

Red (665 nm) 691,747 41,815 (5.7%) 246,404 445,343 77,564 11,634 (13%) 31,708 45,856

NIR (842 nm) 707,058 26,504 (3.6%) 247,627 459,431 73,135 16,063 (18%) 28,044 45,091

20 m

Red-edge 1 (705 nm) 698,320 35,242 (4.8%) 252,604 445,716 77,093 12,105 (13.6%) 31,916 45,177

Red-edge 2 (740 nm) 703,819 29,743 (4.1%) 250,359 453,460 75,072 14,126 (15.8%) 30,116 44,956

Red-edge 3 (783 nm) 704,302 29,260 (4%) 247,121 457,181 73,681 15,517 (17.4%) 28,299 45,382

NIR (865 nm) 706,113 27,449 (3.7%) 247,107 459,006 72,597 16,601 (18.6%) 27,734 44,863

Note: The initial number of pixels per band (prior to outlier removal) was 733,562 and 89,198 for the training and validation sets, respectively. Vegetation and non-vegetation pixels were
grouped based on Sentinel-2 scene classification values 4 and 5. (https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm).

https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm
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OLS regression was performed to derive the transformation function between corresponding
VENµS and Sentinel-2 bands in the visible, red-edge and NIR spectral regions. The transformation
coefficients are presented in Table 5. A gradual decrease in slope, in conjunction with an increase of the
intercept values, can be observed from the blue to the NIR region. Li et al. [37] also observed a similar
trend for Landsat 8 to Sentinel-2 transformation. However, this trend does not appear in other Landsat
and Sentinel-2 studies [16,18,19].

Table 5. Coefficients for the linear transformation from VENµS to Sentinel-2 surface reflectance.

Bands (Central
Wavelength) Slope ME for Slope * Intercept ME for Intercept *

10 m

Blue (490 nm) 1.0307 0.0010 0.0194 0.0001
Green (560 nm) 1.0035 0.0009 0.0271 0.0002
Red (665 nm) 0.9588 0.0007 0.0287 0.0002
NIR (842 nm) 0.8082 0.0013 0.0768 0.0005

20m

Red-edge 1 (705 nm) 0.9589 0.0009 0.0481 0.0002
Red-edge 2 (740 nm) 0.8632 0.0012 0.0648 0.0004
Red-edge 3 (783 nm) 0.8347 0.0013 0.0796 0.0004

NIR (865 nm) 0.7841 0.0013 0.0980 0.0005

Note: * ME denotes margin of error, and represents the 99% confidence interval.

Similar to the OLS regression, the pre-transformation ODR slopes in Figure 6A were in the
range of 0.77 (NIR-865 nm) to 1 (blue). While the plurality of the data prior to the transformation
(represented in yellow in Figures 6 and 7) is centered close to the identity line, some scatter is observed
in all of the bands. Figure 6B shows the scatter plots of all bands after applying the transformation
by using the coefficients in Table 5. The post-transformation values of ODR slopes were all closer
to 1, indicating that VENµS reflectance was transformed to become closer to Sentinel-2 reflectance.
Thus, this transformation removed part of the systemic bias that is caused by the differences between
the sensors.

The model performance was assessed for the full validation dataset following the outlier removal.
Figure 7 shows the marginal improvement of the ODR slope values following the removal of outliers
from the validation dataset. By lowering the Cook’s distance threshold even more, a higher proportion
of data points was removed as outliers from the validation dataset compared to the training dataset.
This was done to accentuate the differences between the full validation dataset and the remaining
data after outlier removal. Despite the emphasis on these differences, the model coefficients did not
change significantly. The ODR slopes prior to outlier removal and post-outlier removal, presented in
Figures 6B and 7B, respectively, show a minor change of less than 0.05. Accordingly, the coefficients
given in Table 5 are expected to perform well for real-world data that contain some outliers.
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(A) prior to the transformation; and (B) post-transformation. The red line is the orthogonal distance
regression (ODR) slope line showing the bias relative to the identity line (black-dashed line). A high
point density is marked in yellow tones, while a low point density is marked in blue tones. * This margin
of error represents the 99% confidence interval.
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The MAD values between the pre-transformed VENµS and Sentinel-2 reflectance show an
increasing trend as a function of the wavelength that ranges from 0.024 (Blue) to 0.049 (NIR) for the full
dataset, and 0.020 (Blue) to 0.041 (NIR) post-outlier removal. This MAD decreased post-transformation
to 0.019 (Blue) and 0.039 (NIR) for the full dataset, and 0.015 (Blue) to 0.029 (NIR) post-outlier removal
(Figure 8). It is evident that the transformation reduces the MAD, whether the outliers are removed
or not, but that the removal of outliers further reduces the MAD. The SAM angle value for the
post-transformation decreased, relative to the pre-transformed VENµS and Sentinel-2 reflectance
(Figure 9). This indicates that our model transformation function increased the spectral similarity
between the reflectance spectra. Therefore, the transformation developed in this paper seems to
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decrease systematic bias due to sensor differences, while outlier removal seems to decrease the
differences by removing other sources of variation. These include atmospheric conditions that were
not completely corrected, residual BRDF effects that remain untreated by the constant coefficients used
in the C-factor method, and misregistration between the images.
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4. Discussion

In this study, we developed a transformation model for VENµS and Sentinel-2 sensors over Israel.
The new model coefficients provide an opportunity to use observations at high temporal resolutions
for land surface monitoring by combining Sentinel-2 and VENµS observations. The availability of
the red-edge spectral bands in both sensors is significant for precision agriculture applications like
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irrigation management [38] and LAI assessment [29]. The same-day VENµS and Sentinel-2 image
pairs were acquired during April 2018 to November 2018 and used to calibrate the transformation
model. A total of eight spectral bands, namely three bands from the visible region, three red-edge
bands and two from the NIR region showed an increased spectral similarity post-transformation.

The broad and narrow NIR bands of Sentinel-2 MSI were compared against the VENµS NIR band.
Even though the narrow NIR has a better spectral overlap with the VENµS NIR band (Figure 2), it
is not very different from the Sentinel-2 broad NIR (Figures 6–8). However, Claverie et al. [16] and
Li et al. [37] highlighted that the Sentinel-2 narrow NIR band has shown better performance than has
the broad NIR band. Flood [18] highlighted that the difference in reflectance values of Landsat 7-ETM+

and 8-OLI for the Australian landscape was smaller than for the entire globe. In our study, more
than 60 percent of the data were non-vegetated surfaces (Table 4). Thus, the transformation function
developed in this study is expected to perform better for barren surfaces than for vegetation. This
model can be applied for landscapes that are similar to those of Israel, i.e., Mediterranean regions. Its
applicability for different environments warrants further examination.

One strength of this study is the use of near-synchronously acquired VENµS and Sentinel-2 image
pairs. This minimizes changes to the land-surface, the atmosphere and sun position and, therefore,
reduces any bias between the image pairs that may be caused by the temporal delay between the
acquisitions of the pair of images. Accordingly, the differences between the images can largely be
attributed to systematic sensor bias rather than actual changes to the ground leaving reflectance, which
is expected to be minimal [18]. In this respect, this study presents an advantage over studies conducted
using image pairs taken a few days apart [16,23,37].

The dissemination of a 5 m native resolution VENµS Level-2 product is expected in the near
future. Mandanici and Bitelli [26] pointed out that a difference in spatial resolution can also affect the
transformation function. Hence, the transformation function developed here would need to be tested to see
if the change in the products’ spatial resolution has an effect, especially for the red-edge bands (VENµS-5
m to Sentinel-20 m). In addition, hyperspectral high spatial resolution imagery can be used to assess the
influence of spectral resolution differences, as suggested by Claverie et al. [16] and Zhang et al. [19].

5. Conclusions

A first-of-its-kind cross-sensor calibration study for VENµS and Sentinel-2 surface reflectance data
for Israel is presented. An effective processing chain that considers radiometric and geometric
corrections was employed to derive the cross-sensor surface reflectance transformation model.
Post-transformation, the ODR slopes were close to unity, the spectral similarity has increased as
demonstrated by a reduction of the SAM value from 0.093 to 0.071, and the MAD between VENµS
and Sentinel-2 reflectance was substantially decreased in all bands. This indicates that the models
presented here can successfully be used to create a dense time-series of VENµS and Sentinel-2 imagery.
The combined dataset of VENµS and Sentinel-2 provides high-frequency multispectral imagery that
can support crop and vegetation monitoring studies, with the added advantage of red-edge bands that
are absent from veteran sensors such as the Landsat series.
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Appendix A

Table A1. List of VENµS and Sentinel-2 images used for the transformation study.

Image
Acquisition Date

VENµS Eastern Strip Tiles * VENµS Image Western Strip Tiles *

E01 E02 E03 E04 E05 W01 W2 W03 W04 W05 W06 W07 W08 W09 W10 W11 W12

16 April 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
15 June 2018 Y Y Y Y
25 June 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
15 July 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y
25 July 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

04 August 2018 Y Y Y Y Y Y Y Y Y Y Y
24 August 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

13 September 2018 Y Y Y Y Y Y Y
13 October 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

12 November 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
22 November 2018 Y Y Y Y Y Y

Image
Acquisition Date

VENµS Image Southern Strip Tiles * Sentinel-2 Image Tiles *

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 RXT RXU RXV SXA SXB SYA SYB

16 April 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
15 June 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
25 June 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
15 July 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
25 July 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

04 August 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
24 August 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

13 September 2018 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
13 October 2018 Y Y Y Y Y Y Y Y Y Y

12 November 2018 Y Y Y Y Y Y Y Y Y Y Y
22 November 2018 Y Y Y Y Y Y Y Y Y Y Y Y

* The footprint of individual tiles is shown in Figure 1.
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