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Abstract: Drought is a natural hazard disaster that can deeply affect environments, economies,
and societies around the world. Therefore, accurate monitoring of patterns in drought is important.
Precipitation is the key variable to define the drought index. However, the spare and uneven
distribution of rain gauges limit the access of long-term and reliable in situ observations. Remote
sensing techniques enrich the precipitation data at different temporal–spatial resolutions. In this study,
the climate prediction center morphing (CMORPH) technique (CMORPH-CRT), the tropical rainfall
measuring mission (TRMM) multi-satellite precipitation analysis (TRMM 3B42V7), and the integrated
multi-satellite retrievals for global precipitation measurement (IMERG V05) were evaluated and
compared with in situ observations for the drought monitoring in the Xiang River Basin, a humid region
in China. A widely-used drought index, the standardized precipitation index (SPI), was chosen
to evaluate the drought monitoring utility. The atmospheric water deficit (AWD) was used for
comparison of the drought estimation with SPI. The results were as follows: (1) IMERG V05
precipitation products showed the highest accuracy against grid-based precipitation, followed by
CMORPH-CRT, which performed better than TRMM 3B42V7; (2) IMERG V05 showed the best
performance in SPI-1 (one-month SPI) estimations compared with CMORPH-CRT and TRMM 3B42V7;
(3) SPI-1 was more suitable for drought monitoring than AWD in the Xiang River Basin, because its
high R-values and low root mean square error (RMSE) compared with the corresponding index based
on in situ observations; (4) drought conditions in 2015 were apparently more severe than that in 2016
and 2017, with the driest area mainly distributed in the southwest part of the Xiang River Basin.
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1. Introduction

Droughts usually occur over months to years in a region, including high and low precipitation
regions, and cause damage to ecosystems and human well-being. The influence of climate change has
led to an increasing trend of temperature, which is expected to significantly affect the spatial–temporal
pattern of precipitation and the intensity of droughts [1]. Droughts might be further aggravated around
the world, including in humid regions [2,3]. Therefore, it is essential to accurately monitor and predict
drought because of its importance in risk management.

Precipitation plays an important role in drought monitoring as the primary factor affecting the
formation and persistence of droughts and the estimation of drought indices [4,5]. Conventionally,
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precipitation data are derived from rain gauge observations through in situ gauge networks. However,
the spare and uneven distribution of rain gauges limit the access of long-term and reliable ground-based
precipitation measurements [6,7]. This phenomenon is particularly common in remote regions of
developing countries. Moreover, unlike air pressure and temperature, precipitation always features
large spatial–temporal variation and high uncertainty [8], thus, the spatial–temporal interpolation
cannot always accurately capture the dynamics of precipitation data.

The development of remote sensing techniques enriches precipitation data at different spatial
and temporal resolutions. In recent decades, satellite-based precipitation datasets have been widely
applied for drought and flood forecasting [9–12], hydrological modelling [13,14], and water resource
exploration [8]. There are now many distinct satellite-based precipitation products available, with some
of them being widely used and having large-scale coverage with high spatial and temporal resolutions,
such as the National Aeronautics and Space Administration (NASA) tropical rainfall measuring mission
(TRMM) multi-satellite precipitation analysis (TMPA) [15], the climate prediction center morphing
(CMORPH) technique [16] and integrated multi-satellite retrievals for global precipitation measurement
(IMERG) [17]. The TRMM precipitation datasets have been available since November 1997 and many
researchers have proved its ability for drought monitoring [18–24]. For example, Zeng et al. [18]
evaluated the TRMM multi-satellite precipitation analysis (TMPA) in drought monitoring in Lancang
River Basin. They discovered that one-month and three-month scale standard precipitation indexes
(SPI) obtained from the version 6 monthly TMPA product from 1998 to 2009 both agreed well for
most of the grid points in Lancang River Basin. Obtaining a drought index using solely CMORPH
precipitation products has also been utilized for drought monitoring in many regions worldwide [25–29].
Lu et al. [26] compared the CMORPH-based SPI with the SPI estimate using in situ precipitation
observations from 2221 meteorological stations across China from 1998 to 2014. They found that the
CMORPH-based SPI values were generally consistent with the SPI obtained with in situ measurements,
which suggested that the SPI estimate using CMORPH precipitation data products could be applied
to drought assessment and monitoring. The IMERG precipitation products were characterized with
high temporal and spatial resolutions (0.1◦ × 0.1◦, 30 min) and its capability of real-time drought
monitoring [30–32]. Among them, Jang et al. [31] calculated the SPI based on the global precipitation
measurement (GPM) IMERG data and compared them with the results obtained from the in situ
observations. They confirmed that the GPM IMERG-based SPI correlated well with the SPI, based on
the ground precipitation observations.

Hunan province is located at the Yangtze River Basin, a humid region in China with the highest
incidence of drought [33]. Xiang River is the largest river in Hunan province, China, and is one of
the eight tributaries of the Yangtze River. The Xiang River Basin suffered moderate drought events
before the 1990s and the condition has become drier since 2003 [34]. Therefore, it is urgent and
significant to investigate the spatial–temporal distribution characteristics of droughts in the Xiang
River Basin. In recent years, a variety of studies have been conducted on drought monitoring in the
Xiang River Basin [7,26,33,35–37]. However, most of them explored the drought monitoring with in
situ precipitation observations [7,33,35,36], some of them with satellite soil moisture [37] and some of
them with TMPA and CMORPH-BLD precipitation products [26]. As far as we know, there are few
works evaluating the efficiency of CMORPH-CRT or IMERG V05 in drought monitoring in Xiang River
Basin. Therefore, it is critical to explore the utility of satellite-based precipitation products for more
effective drought monitoring and forecasting in Xiang River Basin.

The aim of this study is to investigate and compare the drought monitoring utility of CMORPH-CRT,
IMERG V05, and TRMM 3B42V7 precipitation estimates with the drought index, which is standard
precipitation index (SPI). The remaining structure of the paper is organized as follows. The descriptions
of the study area, the in situ observations, and three satellite-based precipitation products are presented
in Section 2; the methodology and evaluation indices are introduced in Section 3; Section 4 provides
the results and discussions; and conclusions are drawn in Section 5.
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2. Study Area and Data

2.1. Study Area

The Xiang river is located in the south of the Yangtze River Basin and is the largest river in Hunan
province and the Dongting Lake water system [33,37]. As the main tributary of the Yangtze River Basin,
the Xiang river originates from the mountainous area in the southwest and flows into the northeast of
Xiang River Basin [36]. The Xiangtan discharge station is the control station of the Xiang River Basin
and the streamflow in this basin (Figure 1). As shown in Figure 2, the annual rainfall ranges from 1500
to 1800 mm and is unevenly distributed, with approximately 60% of annual rainfall falling from April
to September. The average annual temperature is 18.4 ◦C and annual evaporation is about 932 mm.
The uneven distribution of rainfall has led to frequent floods and droughts in the Xiang River Basin [7].
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2.2. Data Sources

2.2.1. In Situ Observations

The daily in situ observations used in this study are collected from fourteen meteorological
stations provided by the China National Meteorological Information Center (https://data.cma.cn) from
2015 to 2017. All the selected stations have complete records of daily precipitation, average daily
temperature, maximum and minimum daily temperature, average pressure, average relative humidity,
and solar radiation. The in situ observations are used as the reference to evaluate the accuracy of
satellite-based precipitation and satellite-based drought indices at station scale.

2.2.2. Grid-Based Precipitation

In order to comprehensively illustrate the accuracy and drought monitoring utility of the
selected satellite-based precipitation datasets on grid scale, the dataset of daily 0.5◦ × 0.5◦ grid-based
precipitation over China from 2015 to 2017 is selected as the reference. It is developed by the China
Meteorological Administration (CMA) and generated from the daily precipitation observations from
2472 stations using Thin Plate Spline. The dataset has been evaluated and used for exploring the spatial
and temporal distributions of the precipitation over China and the results claim that the dataset can be
used in meteorological monitoring and hydrological studies [38].

2.2.3. TRMM 3B42V7

The tropical rainfall measuring mission (TRMM) multi-satellite precipitation analysis (TMPA) is
a satellite-based precipitation product providing the estimation of quasi-global rainfall (50◦N–50◦S)
with high spatial and temporal resolution (0.25◦ × 0.25◦, 3 h). The available data covers the period
from 1998 to present. The TRMM 3B42 series products are the main precipitation products obtained
from TRMM merged with other satellite estimates [15]. Two main 3B42 precipitation products are
the near-real-time 3B42RT and the post-real-time 3B42V7. The 3B42RT product is generated from
the satellite remote sensing information, while the post-real-time 3B42V7 is corrected by the Global
Precipitation Climatology Centre (GPCC) gauge precipitation [39]. This study only focuses on the
post-real-time 3B42V7 product. The datasets of this product from 2015 to 2017 are available on the
NASA website (https://pmm.nasa.gov/data-access/downloads/trmm).

2.2.4. CMORPH-CRT

The CMORPH products, with high resolution (0.25◦ × 0.25◦, 3 h) and near total global coverage
(60◦N–60◦S), are generated by the National Ocean and Atmospheric Administration (NOAA) Climate
Prediction Center’s MORPHing technique [16,40]. CMORPH products estimate the global precipitation
from passive microwave satellite scans [14]. CMORPH has two versions, Version 0.x and Version 1.0.
The former starts from December 2002 and presents satellite-only products, while the latter starts
from January 1998 and contains three individual precipitation products [16,41]. CMORPH Version
1.0 includes raw (CMORPH-RAW), bias-corrected (CMORPH-CRT), and gauge satellite-blended
(CMORPH-BLD) precipitation products. In this study, 0.25◦and daily CMORPH-CRT product from
2015 to 2017 is utilized and the CMORPH-CRT datasets are freely downloaded (ftp://ftp.cpc.ncep.noaa.
gov/precip/).

2.2.5. IMERG V05

The GPM mission, as a successor to the TRMM satellite, was launched on Feb 2014 by NASA
and JAXA, aiming at providing an accurate and reliable global precipitation estimation with both
active and passive microwave sensors [15,42,43]. There are four levels of GPM products based on
different algorithms. The IMERG products are the GPM level 3 products with high spatial–temporal
resolution (0.1◦ × 0.1◦, 30 min) within a 60◦N–60◦S latitude–longitude band [15,44,45]. IMERG provides

https://data.cma.cn
https://pmm.nasa.gov/data-access/downloads/trmm
ftp://ftp.cpc.ncep.noaa.gov/precip/
ftp://ftp.cpc.ncep.noaa.gov/precip/
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three types of products: Near-real-time Early Run (IMERG-E, with a latency of 6 h), reprocessed
near-real-time Late Run (IMERG-L, with a latency of 12 h), and gauged-adjusted Final Run (IMERG-F,
with a latency of 2.5 months). Among these three products, IMERG-F usually provides more accurate
precipitation datasets compared to the other two products [6,15]. Therefore, the latest version of
IMERG-F from 2015 to 2017, namely IMERG V05, is selected for this study. This can be obtained from
the Precipitation Measurement Missions website at https://pmm.nasa.gov/data-access/downloads/gpm.

Considering the available daily precipitation data of IMERG V05 is from 2015, while the accessible
data of in situ meteorological observations ends at 2017, the time period of this study is from 2015
to 2017.

3. Methodology

As mentioned above, the in situ observations and grid-based precipitation data from CMA are
used as reference datasets to evaluate the accuracy of TRMM 3B42V7, CMORPH-CRT, and IMERG V05
precipitation products and their performance on drought monitoring. Generally, 1–2 month SPI and
3–6 month SPI are suitable for exploring meteorological and agricultural droughts, respectively [46].
In this study, SPI-1 is selected for drought monitoring in the Xiang River Basin due to the short records
of satellite-based precipitation data. The SPI-1 obtained from these three precipitation products are
compared with the SPI-1 calculated from the reference datasets. For comparison, the atmospheric
water deficit (AWD) is also used to illustrate the drought conditions. Considering that potential
evapotranspiration is required to calculate AWD, the AWD is only analyzed at station scale. Because
the grid-based observations just provide precipitation data instead of other variables (e.g., temperature),
there is no grid-based potential evapotranspiration data available. Based on the evaluation results,
the best product among the three is then selected to analyze the drought conditions in the Xiang
River Basin.

The analysis was accomplished on both temporal and spatial scales. Figure 3 shows the flow-chart
of the main steps of the study. The detailed steps are as follows:

(1) Evaluate the accuracy of TRMM 3B42V7, CMORPH-CRT, and IMERG V05 precipitation products;
(2) Evaluate the accuracy of SPI-1 calculated from TRMM 3B42V7, CMORPH-CRT, and IMERG V05

precipitation products;
(3) Calculate the AWD values with in situ observations and compare the performance of AWD and

SPI at station scale;
(4) Analyze the temporal and spatial drought conditions in the Xiang River Basin.
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3.1. Standard Precipitation Index (SPI)

The SPI is a widely used drought index developed by McKee et al. [47], which is calculated with
accumulated precipitation observations over a time period (e.g., one month). This index is a valuable
tool for the determination of the intensity and duration of different droughts [48]. It is generally
accepted that the calculation of SPI needs a minimum data-record period of 30 years [47]. However,
this index has also been shown to be of use in drought monitoring on small time scales [48]. Rhee and
Carbone [30] also confirmed that short data records of precipitation can be used for the estimation
of SPI. Therefore, even though the IMERG data records are relatively short compared with rain gauge
observations and the other two satellite-based precipitation products, the estimation of SPI based on
IMERG precipitation data for drought monitoring in the Xiang River Basin is still worth exploring.

SPI can be measured at different time periods, i.e., 1 month, 3 months, 6 months, or 12 months,
with monthly precipitation data [49]. The SPI is defined as follows:

SPI =
Xi −X

s
(1)

where Xi is the accumulated precipitation observations of a time period and X and s are the mean
and standard deviation of precipitation data obtained from the time series of monthly precipitation
dataset, respectively.

The SPI is calculated based on the gamma probability density function, so SPI < 0 reflects drought
conditions and SPI > 0 implies wet conditions [47]. According to McKee et al. [47], the levels of wet
and drought conditions and their corresponding categories are listed in Table 1.

Table 1. Drought categories defined for SPI values.

SPI Values Drought Category

0 to −1 Mild drought
−1 to −1.5 Moderate drought
−1.5 to −2 Severe drought

< = −2 Extreme drought

3.2. Atmospheric Water Deficit (AWD)

Atmospheric water deficit is the difference between precipitation (P) and potential
evapotranspiration (ET0). Atmospheric water deficit is claimed to be a suitable index to reflect
the drought condition related to meteorological parameters [50]. The AWD value is calculated by P
minus ET0 on a weekly scale and the daily ET0 was computed using the Penman–Monteith equation:

AWDi = Pi − ETi, (2)

ET0 =
0.408∆(Rn −G) + γ 900

T+273 u2
(
e0
− ea

)
∆ + γ(1 + 0.34u2)

(3)

where i represents the week of the study period, Pi and ETi denote the sum of precipitation and
sum of evapotranspiration (ET0) of week i, respectively, Rn is the net radiation, ∆ is the slope of the
vapor pressure curve, G is the soil heat flux, u2 is the wind speed at 2 m above ground level, γ is
the psychometric constant, T is the temperature, e0 is saturation vapor pressure at air temperature,
and ea is actual vapor pressure. The Penman–Monteith equation is useful for computing ET based on
temperature, humidity, wind speed, and solar radiation [51]. The condition is defined as drought when
AWD is lower than 0. Extreme drought occurs when AWD is lower than −50 mm [52]. As mentioned
above, no grid-based ET0 is available, therefore, the AWD values on meteorological stations are
calculated and compared with the SPI-1 at station scale.
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3.3. Evaluation Indices

Multiple statistical indices are used to evaluate the accuracy of the three satellite-based
precipitation products and the performance of their SPI estimates. These indices include Pearson
correlation coefficient (R-value), relative bias (BIAS), root mean square error (RMSE), Nash–Sutcliffe
efficiency (NSE), the probability of detection (POD), and the false alarm ration (FAR). The six indices
are defined as follows:

R =

∑n
i=1

(
Xi −X

)(
Yi −Y

)
√∑n

i=1

(
Xi −X

)2
√∑n

i=1

(
Yi −Y

)2
, (4)

NSE = 1−

∑n
i=1(Xi −Yi)

2∑n
i=1

(
Xi −X

)2 (5)

BIAS =

∑n
i=1(Xi −Yi)∑n

i=1 Xi
(6)

RMSE =

√∑n
i=1(Xi −Yi)

2

n
(7)

POD =
A

A + C
(8)

FAR =
B

A + B
(9)

where Xi and Yi represent the in situ dataset (or grid-based dataset) and satellite-based dataset,
respectively, and X and Y represent the mean values of these two datasets, respectively. For POD
and FAR, A means “hits”, B means “false alarms”, and C means “misses”.

4. Results and Discussion

4.1. Evaluation of Satellite-Based Precipitation Products

To investigate the efficiency of the selected three satellite-based precipitation datasets on the
drought monitoring in the Xiang River Basin, the accuracy of these precipitation products needs to
be evaluated against the in situ observations and grid-based precipitation firstly. The accuracy of
precipitation estimates of TRMM 3B42V7, CMORPH-CRT, and IMERG V05 from January 2015 to
December 2017 are compared and evaluated using in situ observations and grid-based precipitation as
the references at catchment scale and grid/station scale, with the mentioned evaluation indices.

At the catchment scale, the areal daily satellite-based precipitation estimates are compared with
those calculated with precipitation from the fourteen meteorological stations (Figure 4). The daily
precipitations from CMORPH-CRT, IMERG V05, and TRMM 3B42V7 are rather consistent with gauge
measurements, with high R-values, POD, and NSE values (R-values > 0.58, POD > 0.87, and NSE
> 0.91), and low BIAS, FAR, and RMSE values (BIAS between −23.3% and 5.6%, FAR < 0.16, and
RMSE between 6.6 and 6.97). The results show that the CMORPH-CRT and the IMERG V05 have a
comparably good performance next to TRMM 3B42V7 at the Xiang River Basin. The TRMM 3B42V7
and the CMORPH-CRT both underestimate the daily precipitation, while the IMERG V05 overestimates
the daily precipitation. Figure 5 shows the time series of monthly average precipitation based on
three satellite-based precipitation products and in situ observations. It can be seen that heavy rains
mainly occur in June and July. As for temporal variation, IMERG V05 and CMORPH-CRT show
similarly good performances in capturing the dynamics of monthly precipitation and the former has a
slight advantage, as CMOPRH-CRT has some minor underestimation. The TRMM 3B42V7 shows the
worst performance relatively, exhibiting underestimation, especially in November 2015, June 2016,
and June 2017.
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Figure 5. Temporal comparison of monthly average precipitation between satellite-based precipitation
products and in situ observations.

Regarding the grid scale, the spatial distributions of R-value, BIAS, RMSE, and NSE based on
the satellite-based precipitation products and daily 0.5◦ × 0.5◦ grid-based precipitation are shown
in Figure 6. In terms of R-values, around 40%, 78%, and 56% of the grids are higher than 0.4 [53]
for the CMORPH-CRT, IMERG V05, and TRMM 3B42V7 techniques, respectively. The central and
southwest parts of the Xiang River Basin show high agreement with larger R-values. The IMERG
V05 presents the highest accuracy, followed by the TRMM 3B42V7. Regarding the results of BIAS,
CMORPH-CRT presents a relatively poor performance, with underestimation among most parts of the
basin. The BIAS values of IMERG V05 range from −20% to 10%, while the values range from −20% to
20% for TRMM 3B42V7. IMERG V05 underestimates most parts of the basin, while TRMM 3B42V7
shows the opposite pattern.

In terms of RMSE, TRMM 3B42V7 shows the smallest RMSE values compared with IMERG V05
and CMORPH-CRT. Small values of RMSE are observed in the central part of the basin with IMERG V05,
the eastern part with TRMM 3B42V7, and the southwest part with CMORPH-CRT. As for NSE, it is
obvious that all three satellite-based precipitation products exhibit good performance (NSE > 0.8) over
the whole basin. Approximately 82%, 90%, and 95% of grids showed a high value of NSE (>0.9) for the
CMORPH-CRT, IMERG V05, and TRMM 3B42V7 techniques, respectively. Higher NSE values between
satellite-based precipitation products and in situ observations were mostly observed in the south and
north parts of the Xiang River Basin. Poor performance of NSE values were mainly illustrated in the
eastern basin with the highest elevation.

Above all, these three satellite-based precipitation products are satisfactory in terms of R-value,
BIAS, RMSE, and NSE for both catchment and grid scale, with acceptable accuracy and relatively good



Remote Sens. 2019, 11, 1483 9 of 17

performance in most of the Xiang River Basin. Among these three products, generally, IMERG V05
performs the best based on the results of evaluation indices.
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4.2. Evaluation of the Performance of Satellite-Based Precipitation on Drought Monitoring

4.2.1. Evaluation with Meteorological Stations

The SPI-1 was calculated based on CMORPH-CRT, IMERG V05, TRMM 3B42V7 and in situ
observations at catchment scale and station scale in the Xiang River Basin from 2015 to 2017. As stated
above, the SPI-1 is used to explore the drought conditions. R-value, RMSE, and NSE are utilized to
evaluate the performance of the satellite-based precipitation products on drought monitoring against
the in situ observations. There are no BIAS values because the cumulative precipitation distribution is
transformed to a normal distribution with a mean of zero [44]. The comparison of areal SPI-1 is shown
in Figure 7.
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Similar to the results of evaluation about the accuracy of precipitation estimates, IMERG V05
shows the best performance in SPI-1 estimations compared with CMORPH-CRT and TRMM 3B42V7,
with the highest R-value (0.96) and NSE (0.8) and the lowest RMSE (0.29) (Figure 7). The SPI-1 estimates
based on CMORPH-CRT and TRMM 3B42V7 are also in good agreement with those based on in situ
observations. CMORPH-CRT performs better than TRMM 3B42V7, withSPI relatively higher R-value
and NSE and a low RMSE. These results indicate that all the three satellite-based precipitation products
are suitable for drought monitoring in the Xiang River Basin, while IMERG V05 performs the best on
drought monitoring.

Because of the common time period of the selected three precipitation datasets and the reason
mentioned above, only SPI-1 is used to investigate their application on drought monitoring. However,
since CMORPH and TRMM data cover longer time periods, other SPI time periods are also utilized
to justify whether the results based on SPI-1 are solid. Therefore, based on the available data of in
situ observations, TRMM 3B42V7, and CMORPH-CRT, the common time period is from 1998 to 2013.
The SPI-3, SPI-6, and SPI-12 based on in situ observations, TRMM 3B42V7, and CMORPH-CRT are
calculated at catchment scale over Xiang River Basin. Figure 8 shows the R-value, RMSE, and NSE
results based on the comparison between in situ observations and satellite-based precipitation products.
Similar to the results of evaluation about the SPI-1 estimates from CMORPH-CRT and TRMM 3B42V7,
the CMORPH-CRT performs better than TRMM 3B42V7, especially the SPI-6 and SPI-12. The SPI-6 and
SPI-12 of CMORPH-CRT shows similar performance, which indicates that a longer time scale of SPI
based on CMORPH-CRT does not have a significant impact on its performance of drought monitoring.
However, the longer the time scales of SPI, the worse the performance of TRMM 3B42V7 on drought
monitoring. Short time scale of SPI (e.g., SPI-1 or SPI-3) might more suitable for TRMM 3B42V7 for
drought estimations at catchment scale over Xiang River Basin.

The short-term records of precipitation from IMERG limited its investigation for long-term drought
monitoring, however, in this study, the high resolution but short-term IMERG precipitation product
shows the best performance in both precipitation detection and drought monitoring over Xiang River
Basin. Thus, the use of the IMERG precipitation product for further application in drought monitoring
is still worth exploring.

Based on the above analysis, it can be seen that the SPI-1 has comparable performance with other
SPI time periods. Therefore, considering the short available time period of IMERG, the following
analysis is just based on SPI-1.

Time series of SPI-1 values from the three satellite-based precipitation products and in situ
observations are shown in Figure 9. This illustrates that SPI-1 based on IMERG V05 captures the
variations well, indicating that IMERG V05 can be an alternative precipitation source instead of in situ
observations for drought monitoring. Compared with IMERG V05 and CMORPH-CRT, TRMM 3B42V7
is less suitable for drought monitoring over the Xiang River Basin, because of the disparities along
the time.

With regard to the capability of drought detection at station scale, 10 meteorological stations within
the Xiang River Basin were selected for statistical metric calculation (Table 2). NSE values for the SPI-1
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based on IMERG V05 are mainly between 0.42 and 0.78. However, the values of NSE for SPI-1 based on
CMORPH-CRT are between 0.11 and 0.51 and for SPI-1 based on TRMM 3B42V7, the values are between
0.06 and 0.39. These results indicate that IMERG V05 apparently has better capability in drought
monitoring than those of CMORPH-CRT and TRMM 3B42V7. Moreover, SPI based on the IMERG V05
shows a higher correlation with in situ observations than TRMM 3B42V7 and CMORPH-CRT, with the
R-values ranging from 0.58 to 0.95. As for RMSE, similar to the above results, the RMSE values of
IMERG V05 are lower than those of CMORPH-CRT and TRNN 3B42V7 in most meteorological stations.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 18 
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Figure 9. Temporal comparison of 1-month SPI values between satellite-based precipitation products
and in situ observations.
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Table 2. SPI-1 comparison between satellites and in situ in each meteorological station.

Station CMORPH IMERG TRMM Station CMORPH IMERG TRMM

R-value 0.73 0.95 0.49 R-value 0.70 0.76 0.57
Malingpo RMSE 0.73 0.32 1.00 Hengyang RMSE 0.77 0.69 0.93

NSE 0.50 0.78 0.24 NSE 0.51 0.49 0.27
R-value 0.39 0.66 0.61 R-value 0.61 0.76 0.48

Shaoyang RMSE 1.10 0.82 0.88 Changning RMSE 0.88 0.69 1.01
NSE 0.16 0.43 0.39 NSE 0.36 0.48 0.20

R-value 0.25 0.69 0.49 R-value 0.53 0.70 0.57
Shuangfeng RMSE 1.22 0.79 1.02 Daoxian RMSE 0.97 0.78 0.93

NSE 0.11 0.51 0.27 NSE 0.32 0.42 0.30
R-value 0.43 0.71 0.24 R-value 0.54 0.58 0.51

Nanyue RMSE 1.06 0.77 1.23 Chenzhou RMSE 0.97 0.93 1.00
NSE 0.25 0.49 0.06 NSE 0.35 0.42 0.23

R-value 0.63 0.78 0.52 R-value 0.71 0.62 0.34
Yongzhou RMSE 0.85 0.67 0.97 Lianxian RMSE 0.75 0.88 1.15

NSE 0.43 0.59 0.37 NSE 0.44 0.48 0.11

For comparison between two different drought indices, the atmospheric water deficit (AWD)
was also used to estimate the drought conditions at catchment (Figure 10) and station scale (Table 3).
Figure 10 shows the comparison results of the one-week AWD calculated from the satellite-based
precipitation products and in situ observations. CMORPH-CRT-based AWD presents similar values
of R-value and RMSE with those of IMERG V05, with a high R-value of nearly 0.9 and a low RMSE
below 6.1. BIAS of both CMORPH-CRT and IMERG V05 based AWD are lower than TRMM 3B42V7
(−50.6%), with bias values between −2% and 12%. Apparently, AWD based on the IMERG V05
shows a higher correlation with in situ observations than TRMM 3B42V7 and CMORPH-CRT, with the
R-value ranging from 0.7 to 0.99 (Table 3). As for BIAS and RMSE, the TRMM 3B42V7-based AWD
shows very high bias values in most meteorological stations. The values of BIAS and RMSE for
IMERG V05-based AWD is relatively low compared to those of CMORPH-CRT in most meteorological
stations. These results indicate that the IMERG V05 is superior to TRMM3B42V7 and CMORPH-CRT
in AWD estimates.
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Figure 10. Comparison of the one-week AWD calculated from the satellite-based precipitation products
and in situ observations.

Above all, SPI-1 based on satellite-based precipitation products have good performance in both
temporal and spatial analyses with acceptable accuracy and capability for drought monitoring in
the Xiang River Basin. Even though the R-value of satellite-based AWD is not much higher than
satellite-based SPI, the RMSE values of satellite-based AWD are much larger than those of SPI-1
based on satellite-based precipitation products. Therefore, SPI-1 might be more suitable for drought
monitoring in the Xiang River Basin.
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Table 3. One-week AWD comparison between satellites and in situ observations at each
meteorological station.

Station CMORPH IMERG TRMM Station CMORPH IMERG TRMM

R-value 0.53 0.90 0.96 R-value 0.47 0.69 0.51
Malingpo Bias 24.55 37.02 12.13 Hengyang Bias −44.28 −25.55 −110.89

RMSE 15.55 7.49 5.29 RMSE 19.34 15.44 20.00
R-value 0.71 0.81 0.71 R-value 0.97 0.99 0.97

Shaoyang Bias 33.12 37.38 33.12 Changning Bias −25.24 21.86 −50.23
RMSE 9.25 7.54 9.25 RMSE 13.76 12.97 11.35

R-value 0.56 0.71 0.62 R-value 0.96 0.98 0.98
Shuangfeng Bias −28.46 −26.75 −83.04 Daoxian Bias −18.77 −22.78 −44.85

RMSE 16.02 12.88 16.09 RMSE 20.84 13.58 10.50
R-value 0.65 0.73 0.77 R-value 0.97 0.98 0.93

Nanyue Bias 128.59 128.60 −124.50 Chenzhou Bias 64.18 53.12 −59.03
RMSE 12.42 10.23 8.00 RMSE 15.54 10.86 10.25

R-value 0.71 0.82 0.74 R-value 0.96 0.98 0.93
Yongzhou Bias −4.97 16.02 −112.60 Lianxian Bias −52.17 7.03 −65.48

RMSE 9.14 7.28 8.59 RMSE 10.59 10.75 10.61

4.2.2. Evaluation with Grid-Based Precipitation

To further evaluate the accuracy of three satellite-based precipitation products on drought
monitoring, the spatial patterns of R-value, RMSE, and NSE of SPI-1 based on these products are
conducted and shown in Figure 11.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 18 

 

 R-value 0.71 0.82 0.74  R-value 0.96 0.98 0.93 

Yongzhou Bias –4.97 16.02 –112.60 Lianxian Bias –52.17 7.03 –65.48 

 RMSE 9.14 7.28 8.59  RMSE 10.59 10.75 10.61 

4.2.2. Evaluation with grid-based precipitation 

To further evaluate the accuracy of three satellite-based precipitation products on drought 
monitoring, the spatial patterns of R-value, RMSE, and NSE of SPI-1 based on these products are 
conducted and shown in Figure 11.  

It is obvious that the spatial distributions of R-value, RMSE, and NSE of SPI-1 based on TRMM 
3B42V7 are similar to those of IMERG V05, with high R-values and NSE values in the south basin 
and relatively low R-values in the west basin. Poor performances of R-value, NSE, and RMSE are 
observed in CMORPH-CRT product, with low R-values and NSE values and high RMSE values in 
most of the basin. These results indicate that IMERG V05 and TRMM 3B42V7 are more suitable for 
drought monitoring with SPI-1 than CMORPH-CRT at grid scale. However, these satellite-based SPI 
values all show good performance in the southern Xiang River Basin, which is located in a region 
with relatively low altitude compared to surrounding regions. The values of R-value and NSE are 
high and the RMSE values are low in the southern Xiang River Basin, implying that satellite-based 
precipitation products can be used to monitor drought in the southern basin, while uncertainties are 
much larger in the western basin.  

 

 

 

Figure 11. Spatial distribution of the R-values and RMSE values based on an evaluation of daily
0.5◦ × 0.5◦ grid-based precipitation data.

It is obvious that the spatial distributions of R-value, RMSE, and NSE of SPI-1 based on TRMM
3B42V7 are similar to those of IMERG V05, with high R-values and NSE values in the south basin
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and relatively low R-values in the west basin. Poor performances of R-value, NSE, and RMSE are
observed in CMORPH-CRT product, with low R-values and NSE values and high RMSE values in
most of the basin. These results indicate that IMERG V05 and TRMM 3B42V7 are more suitable for
drought monitoring with SPI-1 than CMORPH-CRT at grid scale. However, these satellite-based SPI
values all show good performance in the southern Xiang River Basin, which is located in a region with
relatively low altitude compared to surrounding regions. The values of R-value and NSE are high and
the RMSE values are low in the southern Xiang River Basin, implying that satellite-based precipitation
products can be used to monitor drought in the southern basin, while uncertainties are much larger in
the western basin.

4.3. Analysis of Drought Conditions in the Xiang River Basin

The SPI-1 based on IMERG V05 are selected for catchment drought studies from 2015 to 2017.
As Zhu et al. [34] mentioned, August basically represents the driest period in the Xiang River Basin.
Therefore, the spatial distributions of SPI-1 in August from 2015 to 2017 are selected to be compared.

As shown in Figure 12, August of 2015 suffered the most severe and wide range of droughts,
with the driest area mainly in the southwest part of the Xiang River Basin. However, the driest part
of the basin in 2015 tended to become wet in 2016, but the northern basin still remained under mild
drought in August 2016. During August of 2017, the severity of drought in the north part of was
relieved compared to 2015 and 2016, but the moderate drought shifted from the north to the southwest
part of the basin. As a whole, drought conditions in 2015 were apparently more severe than in 2016
and 2017 and the severity and range of droughts in the Xiang River Basin present a decreasing trend
from 2015 to 2017. Even though the severity of drought was reduced in August 2017, there still remains
a small area with moderate drought in the southwest basin.
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5. Conclusions

In this study, the accuracy of three satellite-based precipitation products, namely CMORPH-CRT,
IMERG V05, and TRMM 3B42V7, was evaluated with the in situ observations and the datasets of daily
0.5◦ × 0.5◦ grid-based precipitation over China obtained from CMA. Their applications on drought
monitoring were also evaluated with grid-based SPI-1. In addition, the efficiency of satellite-based
SPI-1 values were explored by comparing with the AWD based on meteorological variables at station
scale. Moreover, the drought conditions in August from 2015 to 2017 were analyzed based on IMERG
V05 SPI-1 values. The main conclusions are as follows:

(1) IMERG V05 precipitation product shows the highest accuracy in the Xiang River Basin.
CMORPH-CRT performs better than the TRMM 3B42V7 precipitation product at both catchment
and grid scales.

(2) Based on evaluation results of SPI-1, IMERG V05 shows the best performance in SPI-1 estimations
at both station and grid scales. The CMORPH-CRT has a better performance than TRMM 3B42V7
on drought monitoring at station scale, but shows the worst performance at grid scale.
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(3) The drought conditions of the Xiang River Basin in 2015 were apparently more severe than in
2016 and 2017, with the driest area mainly in the southwest part of the basin. The severity and
range of droughts in the Xiang River Basin present a decreasing trend from 2015 to 2017.

In summary, IMERG V05 precipitation product is more suitable for drought monitoring in the
Xiang River Basin. The performances of CMORPH-CRT and TRMM 3B42V7 are acceptable but the
application for drought estimation of these two products still needs further determination.
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