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Abstract: Underground coal mining of gas-bearing coal seams is accompanied by the emission of large
amounts of methane, which increases with depth. Coal seam methane is not only a major cause of
major accidents in coal mines, but is also a greenhouse gas that has a significant negative impact on the
Earth’s atmosphere. Analysis of the efficiency of underground coal mining suggests that as the depth
of mining increases, the productivity of a longwall decreases by a factor of 3–5 or more, while the
specific volume of methane emitted increases manifold and the efficiency of methane management
decreases. Effective management of coal seam methane can only be achieved by monitoring its
content at key points in a system of workings. Monitoring of methane not only eliminates the risk
of explosions, but also lets us assess the effectiveness of using methane management techniques
and their parameters to improve efficiency and reduce the cost of methane management (including
a methane drainage) for ensuring sustainable underground coal mining. The aim of this article is
to develop a software and hardware complex for monitoring methane in a coal mine by creating
a simulation model for monitoring methane. The Arduino Uno board and the methane sensor
MQ-4 were used for this purpose. In this article, the causes of methane emissions in coal mines, gas
control systems, the structure of the mine monitoring system, and the causes of risks and occurrence
of accidents in coal mines are considered. As a result of the work, the mathematical model of the
methane measurement sensor was developed; the Arduino Uno board developed a simulation system
for methane monitoring; and the numerical results of the research are presented in the graphs.

Keywords: coal mine; coal seam methane; environmental management; sensors; monitoring systems;
Arduino; diagnostics

1. Introduction

Coal has long been a significant source of primary energy in the world. In the near
future, the major industrialized countries of the world, countries with emerging markets
and economies in transition will depend on coal-based energy resources. Coal supplies
now cover 25% of the world’s primary energy demand, 40% of global electricity demand
and almost 70% of global steel and aluminum energy demand. According to International
Energy Agency projections, in emerging markets, energy demand will increase by 93% by
2030; this is mainly due to increased demand in China and India, and coal may become the
main energy source, which will meet growing demand [1,2]. However, as reserves were
depleted, coal plaques had to be worked out at deep depths with a high gas content in
less favorable geological conditions, owing to the continued dependence of enterprises
on solid fuel. At the same time, the rest of society demanded and wished to improve
the safety of mining conditions and to show greater environmental responsibility for the
coal industry [3,4]. Best practices for reducing the frequency of methane-related accidents
and explosions—which all too often accompany underground coal mining—include the
application of best practices in methane source drainage, refining and recovery; this could
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also help to protect the environment by reducing greenhouse gas emissions [5–7]. Recently,
methane has gradually become the subject of research due to its significant contribution to
the greenhouse effect. On a 20-year time scale, the global warming potential of methane
was 86 times greater than that of carbon dioxide [8,9]. As a result, reducing methane
emissions is an effective strategy to slow the rate of climate warming in the short term, and
a necessary means to meet the temperature targets of the Paris Agreement [9–11].

Mining companies seek to minimize the likelihood of accidents, especially those related
to methane explosions. In order to ensure the economic impact of the extraction and sale
of raw materials, it is necessary to ensure safe and continuous production. This includes
effective risk management. Despite the differences in geological and mining conditions,
there are opportunities to significantly reduce the risk of accidents at enterprises mining
gas-bearing coal seams [1,12,13].

Safety in the event of accidents and catastrophes is one of the main tasks of the
ventilation systems.

As a result of the accident, the ventilation system of the shaft shall provide:

(1) Prevention of the gases’ spread into the mine;
(2) Quick and reliable change of direction of ventilation jets;
(3) Prevention of formation of dangerous concentrations of explosive gases [4,14,15].

Specialized methane monitoring systems were needed to address the problems en-
countered in the development of gas-bearing coal seams. At that time, the monitoring
systems in place in many coal mines were ineffective, as evidenced by the high number
of accidents [16,17]. It is necessary to predict the risk of occurrence of dangerous physical
processes, which will ensure the effective, uninterrupted operation of the enterprise. Table 1
summarizes quantitative data on the main causes of accidents.

Table 1. Classification by types of accidents at Russian coal mines [18–20].

Main Causes of Accidents Average Annual Number of
Accidents Proportion (%)

Sudden outbursts of coal or gases 137 39
Destruction and landslides, accidents in the

faces and in the places of mining 112 32

Underground fires 71 21
Sparks and flash fires 9 3

Accumulation and collapse of water 4 1
Methane explosion, coal dust explosion 4 1

Other reasons 12 3

Table 1 shows that a large number of accidents are related to sudden outbursts of coal
or gases, sparks and flash fires. In addition, a significant share is related to underground
fires. These data indicate that mine atmosphere monitoring, observations and analysis of
physical processes are underutilized. Therefore, the aim of the research is to develop a
software and hardware complex for monitoring methane in a coal mine [21,22].

Table 2 shows the largest fatal coal mine accidents in the world over the last 20 years.
More than 55% of accidents are caused by accumulation of methane.

Thus, the main task of the research can be formulated as follows: the development of
a hardware–software complex of methane monitoring in a coal mine. To develop this, it is
necessary to solve the following tasks:
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Table 2. Largest coal mine accidents in the world over the last 20 years [23,24].

Sl No. Year Country Mine Name Accident Cause Fatality

1 2004 Russia Tayzhina Accumulation of firedamp 47
2 2004 Ukraine Donbass Accumulation of firedamp 36

3 2005 China Shenlong Mine
Accumulation of firedamp in the shafts to reach the
density of explosion and wire sparks induced the

blast
83

4 2006 China Lin Jiazhuang Coal
Mine

Explosion in a sealed of area due to not using
explosion-resistant seals 54

5 2006 India Bhatdee Colliery
Accumulation of methane due to incomplete

stowing and high amount of coal dust generation,
leading to explosion

50

6 2006 México Pasta de Conchos
Mine Accumulation of methane 65

7 2006 Kazakhstan Mittal’s Lenin Accumulation of methane 41
8 2007 Ukraine Zasyadko Accumulation of methane 101

9 2007 Russia Yubileynaya A pocket of methane gas exploded as methane
drainage was not done 39

10 2007 Colombia Norte de Santander Accumulation of methane followed by roof fall 32

11 2007 Russia Ulyyanovskaya
Accumulation of firedamp due to deliberate
disabling of a methane detector by the mine
management to avoid costly work stoppages

108

12 2009 China Heilongjiang Mine Inadequate ventilation leading to accumulation of
methane 108

13 2009 Indonesia Sarana Arang Sejati Accumulation of methane with suspected source of
ignition being cigarette lighter/generator spark 32

14 2010 Russia Raspadskaya Mine Buildup of methane in an unventilated tunnel 90
15 2010 Colombia San Femando Accumulation of methane 73
16 2011 Pakistan Sorange Mine Accumulation of methane and mine collapse 52

17 2012 China Xiaojiawan Coal Mine Accumulation of methane and carbon monoxide
poisoning 47

18 2013 China Babao Mine Gas leakage from seals induced explosion 53

19 2014 Turkey Soma Coal Mine,
Manisa

Accumulation of methane, fire and carbon
monoxide poisoning 301

20 2015 Ukraine Zasyadko Accumulation of methane 33
21 2016 Russia Vorkuta Mine Accumulation of methane 36
22 2016 China Jinshangou Coal Mine Accumulation of methane 32

23 2017 Iran Zemestan-Yort Mine
Accumulation of methane and spark generated due

to powering of a locomotive using an external
battery

42

24 2021 Russia Listvyazhnaya Accumulation of methane 51
25 2023 Kazakhstan Kostenko Accumulation of methane 46

1. Analyze the existing technologies of the coal mines’ methane concentration monitor-
ing. To choose and adapt the technology, taking into account the peculiarities of the
mine selected as the subject of the study.

2. To develop a hardware–software complex of methane monitoring. The peculiarity of
the developed device should be the possibility of spatial diagnostics, which allows
real-time monitoring of methane passage along the shaft of a coal mine.

3. To collect the information from the coal mine and build models for predicting the
concentration of methane in the mine [25–28].

The solutions of these tasks allows expansion of the possibilities of diagnostic devices’
application to other areas of the coal industry.

2. Materials and Methods

Following is a description of the technological process. The mining industry de
facto includes both underground and open pit methods, or a combination of both. The
underground coal mining industry is a mine and the open mine is a mine [29,30]. As of



Sustainability 2024, 16, 3457 4 of 22

2022, there are 160 coal-producing enterprises in Russia, including 107 open pit mines and
53 underground mines [2,31].

Almost all work in coal mines is performed by special machines, which differ from
each other in many parameters. The choice of special equipment depends on the physical
condition of the mined rock [32,33]. In underground coal mining, shearers are mainly used.
These cut a coal seam and grind the coal. The destruction of the coal mass is affected by the
mechanical properties of coal seam and rock, the thickness and depth of a seam, the gas
content, the advance rate, etc. Currently, more than 90% of underground coal production
in Russia is carried out with the use of a longwall mining method. The division of the
coal seam is carried out by ventilation and transport workings. At the same time, the
increased reliability and energy efficiency of coal mine treatment equipment has increased
the productivity of coal mines under favorable mining and geological conditions. The most
common technology is the retreat mining system, which uses fully mechanized longwall
mining [34,35].

Intensive longwall mining is accompanied by a constant increase in the depth of
mining operations, which leads to deterioration of mining geological conditions; above
all, the frequency of dangerous manifestations of rock pressure increases, as does methane
abundance of mine workings, which increases the risk of accidents [36–38].

Methane is an explosive gas that presents a hazard in 5–15% of the Voc-Spirit con-
centrations. Transport, collection or treatment should occur at concentrations not more
than 2.5 times below its lower limit or not more than twice its upper limit, because of the
explosive nature of methane at such concentrations.

The practice of safe mining at coal-bed methane mining facilities aims to reduce the
risk of methane explosion by preventing the occurrence of explosive mixtures and their
early dilution to non-hazardous concentrations (using ventilation systems and schemes).
Pre-drainage of coal seams is also used [39–41].

At present, most of the work of miners is taken over by automatic and automated
systems, so there is more and more self-propelled equipment in the mines.

The categorization of gas mines comprises the distribution of coal mines into different
hazard levels, which are determined by the level of gas present in coal mines and in mines
in general. Underground coal mines are classified by methane content [42].

In the first category, the volume emitted is up to 5 m3/t. The second category implies
the presence of methane in sizes from 5 to 10 m3/t. In the third category, methane content
ranges from 10 to 15 m3/t. The fourth category (considered to be a supercategory) implies
the methane content of the mine greater than 15 m3/t or the presence of sulfur gas emissions.
The fifth category is defined as mines with non-hazardous coal and gas emissions. Mines
with coal outburst and methane emissions are classified in the sixth category. Figure 1
shows the division of coal mines by methane content [2,43,44].
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The productivity of the longwalls is constantly increasing. In that context, the quality
requirements for the preparation and development of mining projects and the implementa-
tion of occupational safety requirements were being met. Mining planning should be given
a greater role, as often the multiple coal seams influence on each other are mined, resulting
in a redistribution of rock pressure and a change in the methane content of the formations
as they are mined [45–47].

In a large number of underground coal mines, at the present time, the schemes for the
preparation of the seams are operated by coupled workings, leaving the non-recoverable
pillars, which provide a fairly high efficiency and safety of operation in the coal mine [48].

Methane explosion can occur at a volume concentration of 5–15% in a mixture with
air, and it is almost 2 times lighter than air. Methane is dangerous because even at high
concentrations, coal mine workers cannot detect it on their own, because methane is
characterized by an absence of smell and color. Various ventilation systems and gas
monitoring systems are used to dilute the methane jet stream in the coal mine to minimum
concentrations and safe mining operations [49,50].

It is also known that combustible coal dust is an explosive aerosol, so coal dust
increases the explosive properties of methane. Powdered coal or coal dust causes various
respiratory diseases, which is a serious occupational hazard. Coal dust is generated by the
impact of the drums of a shearer during coal mining, loading, transport of coal and drilling.

Methane explosions have a more negative impact on the material condition of the
enterprise, leading to the loss of coal and injuries of miners. Explosions also cause huge
emissions of gas and dust in the Earth’s atmosphere. The products isolated due to methane
explosions were transported significant distances by wind, so air pollution was added to all
the consequences. As a result of coal combustion, the resulting substances are discharged
into reservoirs that are placed on the surface, thus polluting the water of the Earth [51–53].
That is why early prediction and prevention of methane–air mixtures is important to reduce
the impact of coal mines on the Earth’s atmosphere.

Typically, an underground explosion causes a fire and, conversely, an endogenous fire
can ignite and detonate methane. In order to predict the possible explosion of a mixture
of methane and air in a coal mine, technological mining development systems and bed
ventilation systems are put into operation [54,55]. Drainage systems are also used to drain
excavated areas and to ensure reliable insulation of waste areas. In order to prevent fires
and methane explosions prematurely, it is necessary to operate electrical equipment in an
explosion-safe mode, not to allow open fire and sparks, to minimize drilling and blasting
operations and to produce all requirements of dust and gas operation of the mine [56–58].

To prevent coal mine dust from igniting, the use of irrigation systems, water curtains,
as well as rational vent schemes for local workings is required [59,60].

Gas monitoring systems have been used in modern coal mines since the late 20th
century. At the same time, enterprises operate different types of information technology-
based systems to control the level of methane in coal mines [61–63]. Different types of
sensors are used to analyze mine atmosphere. Table 3 summarizes the sensors used to
measure the indicators, as well as the MAC (maximum allowable concentration) for each
indicator [64,65].

Table 3. Basic sensor parameters.

Name Sensor MAC (g/m3) MAC (ppm)

MQ-2 Methane 0.5% 500
MQ-4 Methane 0.5% 500
MQ-7 Carbon dioxide 0.0017% 1.7
MQ-9 Propane 2.2% 2200

MQ-135 Carbonic gas 2% 2000

Methane monitoring sensors are installed at various locations in the mine, such as a
longwall face, roads and ventilation workings, etc. Air sensors are installed in the same
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place as the methane sensors and additionally in the main ventilation fan shafts. If the gas
concentration threshold is exceeded, the power supply is cut off [66–68].

The materials presented in Table 4 were used to create the simulation model.

Table 4. Materials for the simulation model.

Materials Number of Units

Arduino UNO board 1
MQ-4 sensor 1

LED 2
Buzzer 1

Resistor 3 220 Ohm 3
Jumper wires 6

Methane concentration determination 1

The main task is to develop a software and hardware complex for monitoring methane
in underground coal mines by creating a simulation model for monitoring methane in
domestic conditions with the help of the Arduino Uno board and the methane sensor
MQ-4 [69–71]. The specifications of the MQ-4 sensor are presented in Table 5.

Table 5. Specifications of the MQ-4 sensor.

Device Characteristic Value

Detecting concentration 300 to 10,000 ppm
Power 150 mA

Input voltage 5 VDC
Digital output voltage TTL digital 0 and 1 (0.1 V and 5 V)

Analog output voltage (relatively clean) 0.1 V to 0.3 V
Analog output voltage (highest concentration) 4 V

3. Results

Mathematical model. The input value for modeling an optoelectronic sensor is the
measured gas level, which is the integral transmittance of the gas cell’s optical radia-
tion [24,72,73].

The block diagram of an optoelectronic sensor for measuring methane is shown in
Figure 2.
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The EOS (electro-optical system) and a photodiode are source for measuring the
concentration of methane by a simulated sensor, which in turn is a radiation receiver.

Light and photodiodes are located on the same optical axis. The exit and entrance
pupils of both the light and the photodiode are respectively directed to each other. To reduce
sensitivity to other gases present, the EOS has the ability to activate a light filter [74,75].
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An approach to modeling the EOS of measuring gas concentration consists in calculat-
ing the spectral transmittance using the Bouguer–Lambert–Beer law, based on data on the
spectral absorption coefficient of a gas mixture [5]:

τ(λ) =
Φ(λ)

Φ0(λ)
= e−k(λ)LC, (1)

where Φ0(λ)—spectral flux of probing radiation, W; Φ(λ) is the spectral flux of radiation
(W) passing through a gas with concentration C (in volume fraction), spectral absorption
coefficient of the gas mixture k(λ)(m−1) with an absorption path length L(m).

The following dependence determines the transfer function of the sensor [6]:

τ(C) =

∫ λ2
λ1 Si(λ)·Φ0(λ)·τcf(λ)·e−k(λ)LC·∏N

1 e−ki(λ)LCi dλ∫ λ2
λ1 Si(λ)·Φ0(λ)·τcf(λ)dλ

, (2)

where Si(λ) is the spectral sensitivity of the photodetector (photodiode), A/W; Φ0(λ) is
the spectral flux of the probing radiation of the source (EOS), W; τcf (λ) is the spectral
transmittance of the light filter; k(λ)—spectral absorption coefficient of the studied gas,
m−1, L—length of the absorbing gas layer, m; C is the concentration of the studied gas;
ki(λ)—spectral absorption coefficient of the i-th foreign gas, m−1; Ci is the concentration of
the i-th foreign gas [76–78].

Based on the transfer function of the EOS of the gas concentration, the sensitivity, the
absolute and relative error in measuring the gas concentration, and the detection threshold
are estimated.

The sensitivity of the sensor is determined by the slope of the transfer characteris-
tic S(C) = ∂τ

∂C . From this ratio, the sensitivity value ∆C = ∆τ
S(C)

is determined.
For a given sensor signal–noise ratio µ, the minimum recorded change ∂τ is 1/µ,

and the absolute measurement error and detection threshold are calculated based on the
following dependencies [79,80]:

∆C =
1

µ·S(C)
, (3)

LOD =
1

µ·S(C → 0)
, (4)

The value of the relative error of the result obtained is defined as—δ = ∆C/C.
Information about the spectral flux emanating from the radiation source, the sensitivity

of the photodetector, the absorption coefficient of methane and the calculation of the signal–
noise ratio is needed in order to calculate the transfer function value and the measurement
deviation of the optoelectronic methane measurement sensor.

The value of the main gas mixture composition’s presence is established, including
the replacement of the emitted gases O2 and N2 in the atmosphere during the process of
modeling the sensor for determining the level of concentration of the main gases [79–81].

The decrease in the concentration of oxygen in the mine atmosphere due to methane
emissions is calculated using the following ratio:

CO2 = 0.21(1 − CCH4), (5)

and the decrease in nitrogen according to this formula:

CN2 = 0.70(1 − CCH4), (6)

The signal–noise ratio at the output of the CTC of the simulated sensor is calculated
by the formula:

µ =
Ucvc

Ush
(7)
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where Ucvc is the useful signal at the CVC output when the input of the photodiode is
exposed to radiation from the source (in the absence of an absorbing medium), V; Ush—
root-mean-square value of the noise at the CVC output, V.

The CVC output signal can be calculated based on the formula:

Ucvc = Kcvc·(Id + If), (8)

where Id is the dark current of the photodiode, A; If—photocurrent due to external radiation,
A; Kcvc—CVC conversion factor, V/A.

The photocurrent generated by the EOS photodiodes is calculated by the formula:

IΦ = keoc·kL·
∫ λ2

λ1
SI(λ)·Fe0(λ)∆λ, (9)

where λ1, λ2 is the spectral range in which radiation is received by the photodiode; SI(λ)
is the spectral current sensitivity of the photodetector, A/W; Fe0(λ)—spectral radiation
flux from the EOS, W; keos = 0.1—coefficient of efficiency of the optical system; kL is the
coefficient that determines the dependence of the photocurrent on the distance l between
the EOS and the photodiode (from 0 to 1) [82,83].

From the data given in the technical documentation for optocouplers (EOS-photodiode,
we know the coefficient kL) (Figure 3) [84–86].
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·∆f, (10)

where (U*
y)

2
is the noise spectral density by voltage OA, V2/Hz; R—equivalent resistance,

Ω; Roc is the resistance of feedback, Ω; Ce is the equivalent capacitance, F; (Ie*)2 is the total
noise current spectral density A2/Hz; k is the Boltzmann’s constant, 1.38064852 × 10−23,
J·K−1; T is the photodiode temperature, K; ∆f is the bandwidth of the circuit, Hz.

Figures 4–6 present research data for sensors of carbon monoxide, carbon dioxide
and methane.
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The data obtained as a result of experimental studies on the transfer functions for
sensors of carbon monoxide, carbon dioxide and methane are consistent with the results of
the simulation [85,86]. The relative error of modeling the carbon dioxide sensor is less than
5%, carbon monoxide is less than 5% and methane is less than 4%.

A comparative analysis of the calculated values of the signal–noise ratio with experi-
mental data was also carried out.

Thus, based on the significant agreement between the results of modeling the transfer
functions and the signal–noise ratio with experimental data, the adequacy of the computer
model is confirmed [87,88].

The development of hardware and software systems. To create a simulation model
for determining the concentration of methane in the atmosphere, an Arduino UNO board,
an analog MQ-4 methane concentration determination sensor, 2 LEDs, a buzzer, 3 220
Ohm resistors, 6 jumper wires and methane concentration determination tool were used.
To develop the code for the program for determining the concentration of methane, the
Arduino IDE development environment was used.
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In the Arduino IDE development environment, the program code for the functioning
of the methane monitoring installation was written. The program code looks like this:
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#define MQ4pin (0)
#define redLed (12)
#define greenLed (11)
#define buzzer (10)
float sensorValue;
void setup()
{

Serial.begin (9600);
Serial.println(“Gas sensor warming up!”);
Delay (20,000);

}
void loop()
{

sensorValue = analogRead (MQ4pin);
if (sensorValue > 300)
{

Serial.print (“Methan: “);
Serial.print (sensorValue);
Serial.println (“ | Exceedance concenration!”);
digitalWrite (redLed, HIGH);
digitalWrite (greenLed, LOW);
tone (buzzer, 1000, 200);

}
else
{

Serial.print (“Methan: “);
Serial.println (sensorValue);
digitalWrite (redLed, LOW);
digitalWrite (greenLed, HIGH);
noTone (buzzer);

}
Delay (2000);

}
1. At first, we determine the analog numbers of the Arduino pin to which the MQ-4

methane sensor, red and green LEDs, and the buzzer module are connected. SensorValue—
variable for storing MQ-4 sensor values.

#define MQ4pin (0)
#define redLed (12)
#define greenLed (11)
#define buzzer (10)
float sensorValue;

In the setup () function, we activate serial communication with the PC and wait 20 s to
warm up the sensor.

void setup () {
Serial.begin (9600);
Serial.println (“Gas sensor warming up!”);
Delay (20,000);

}
2. The serial port monitor when the sensor warms up looks like this (Figure 8):
3. In the loop () function, using the analogRead () function, we read the sensor value

and write it to the sensorValue variable.
void loop () {

sensorValue = analogRead (MQ4pin);
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4. Next, check the sensor value for exceeding the concentration threshold. When the
concentration is high enough, the sensor detects a value above 300. To track the excess
concentration, the “if” statement can be used. If the sensor reading exceeds 300, then
in the serial port monitor we display the sensor value with the message “Ex-ceedance
concentration!”, the red LED lights up and the buzzer sounds. If the sensor reading is
below the concentration limit, then the green LED is on and only the sensor value is
displayed on the serial port monitor (Figures 9 and 10). Due to the fact that it is impossible
to create real conditions in a coal mine in domestic conditions, the concentration of methane
in the atmosphere is very low, so it is necessary to use a third-party source of methane, the
methane concentration determination tool in this case. When gas is opened near the sensor,
an increase in methane is observed.

if(sensorValue > 300)
{

Serial.print (“Methan: ”);
Serial.print (sensorValue);
Serial.println (“ | Exceedance concentration!”);
digitalWrite (redLed, HIGH);
digitalWrite (greenLed, LOW);
tone (buzzer, 1000, 200);

}
else
{

Serial.print (“Methan: ”);
Serial.println (sensorValue);
digitalWrite (redLed, LOW);
digitalWrite (greenLed, HIGH);
noTone (buzzer);

}
The value of the sensor shown on the Figure 11 and the results of its functioning,

which are shown on the Figure 12 approved the fact that the alarm activation when the
methane concentration reaches 300 mol/dm is working correctly.
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As a result of the work, a simulation model for monitoring the methane concentration
was developed. The values of the sensor, which measures the level of methane in the
atmosphere, are displayed in the monitor of the serial port. When the methane level
is normal, the green LED lights up; when the concentration limit, which is 300 ppm, is
exceeded, the red LED lights up, the buzzer emits a signal and in the serial monitor. In
addition to the methane concentration value, the message about exceeding the limit value
is displayed—“Exceedance concentration! (Excess concentration!)”.

A hardware–software complex for methane monitoring has been developed using the
Arduino Uno platform and the MQ-4 methane level sensor. The developed complex can
improve the safety of the works in the coalmines.

The accumulated amount of knowledge and systems for monitoring methane concen-
trations can be used to ensure the safety of the coal gas-bearing seams exploitation process,
as well as for the possible scientific research in this subject area.

It should be noted that, as a result of the work, a patent for the invention “Method for
developing a thick flat layer of mineral resources” was issued [89]. Also, the license of the
computer program “Assessment of the economic efficiency of using the oil separator in the
Arctic zone” registration, using the Arduino platform, was received [90].

Analysis of the literature on the research subject revealed that there are several full-
featured products capable of monitoring gas concentration [91–93]. The advantages of
such developments are a large number of monitoring functions. But the problem is the
complexity of implementation of such systems. These systems have a high cost [94–101].
The use of monitoring systems implies changes in every step of the production process. As
a result of this work, a prototype including using the Arduino Uno platform and the MQ-4
methane level measurement sensor was created and tested.

Data collection and construction of the predictive model. Data on methane concen-
tration in a coal mine is collected using special gas analyzers that measure the methane
content in the air. Hard coal is used as a source of gas. The following algorithm of data
collection on the simulator is used:

1. Equipment Setup: Ensure that the analyzer is in good working order and calibrated
according to the manufacturer’s specifications. Also make sure that the sensors and
probes are clean and ready for use.

2. Safety: All necessary precautions should be taken and safety rules observed before
beginning data collection, as methane is a highly explosive gas.

3. Positioning the gas analyzer: The gas analyzer should be placed at the desired point
in the mine where the methane concentration is to be measured. This is usually the
location where dangerous methane concentrations are most likely to occur.

4. Measurement: After installing the gas analyzer, it is necessary to wait for the readings
to stabilize. The gas analyzer can then be used to obtain continuous or periodic
measurements of the methane concentration in the mine.

5. Data recording: Methane concentration data obtained should be recorded with the
time and location of the measurements. This allows tracking changes in methane
concentration in different parts of the mine and analyzing potential hazards.

By performing the above algorithm, the methane concentration data were obtained.
The obtained data are presented in Table 6.

The results have shown that the developed hardware–software system will allow us
to identify the methane distribution in space. Let us build a predictive model of methane
movement and its concentration. To build this model we will use the methods of system
analysis presented in [102–107]. By conducting a number of experiments and comparing
all the data as shown in [108,109], a logarithmic dependence of the methane content was
obtained. Thus, the correctness of the developed device is confirmed.



Sustainability 2024, 16, 3457 16 of 22

Table 6. Data obtained experimentally.

Time
Sensor Number

1 2 3 4 5 6 7 8 9 10 11

10 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0
30 0.1 0 0 0 0 0 0 0 0 0 0
40 0.1 0.1 0 0 0 0 0 0 0 0 0
50 0.1 0.1 0 0 0 0 0 0 0 0 0
60 0.3 0.1 0.1 0 0 0 0 0 0 0 0
70 0.3 0.1 0.1 0 0 0 0 0 0 0 0
80 0.3 0.3 0.1 0.1 0 0 0 0 0 0 0
90 0.3 0.3 0.1 0.1 0 0 0 0 0 0 0
100 0.3 0.3 0.3 0.1 0.1 0 0 0 0 0 0
110 0.3 0.3 0.3 0.1 0.1 0 0 0 0 0 0
120 0.3 0.3 0.3 0.3 0.1 0.1 0 0 0 0 0
130 0.3 0.3 0.3 0.3 0.1 0.1 0 0 0 0 0
140 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0 0 0 0
150 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0 0 0 0
160 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0 0 0
170 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0 0 0
180 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0 0
190 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0 0
200 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0

4. Discussion

One of the most important problems in coal mines is the presence of sources of
methane; a dangerous gas that can pose a serious threat to the lives and health of miners.
Methane, although a mineral also known as natural gas, is highly flammable and can cause
explosions and fires in mines. Therefore, methane monitoring in coal mines is critical to
ensure worker safety and prevent catastrophic accidents. Highlighting the key aspects of
the importance of methane monitoring, we would like to note the following.

First, methane monitoring helps us to detect the concentration of gas in the air in a
timely manner. If the concentration exceeds safe limits, it can lead to a fire or explosion.
When using modern monitoring systems, even small changes in methane levels can be
automatically detected, which allows taking prompt action to prevent emergencies and
evacuate employees.

Second, methane monitoring is a key aspect of a coal mine prevention and safety
plan. Regular measurements of methane concentrations can identify high hazard areas
and take the necessary steps to prevent methane buildup. For example, if high methane
levels are detected in a particular area, additional ventilation can be implemented, barriers
can be created to prevent the gas from spreading, or work in the area can be temporarily
suspended until the situation normalizes.

Third, methane monitoring allows the mine administration to evaluate the effective-
ness of the ventilation system and other safety measures. By installing methane sensors
in different areas of the mine, the data can be analyzed to determine where additional
attention and enhanced safety measures are needed.

However, methane monitoring requires not only the installation of appropriate sensors
in mines, but also the training of personnel, as well as the development and implementation
of strict protocols and regular inspection of monitoring systems. To reduce the importance
of the human factor in recording gas concentrations, it is advisable to use automated
systems for collection, storage and decision support. Within the framework of this study a
hardware–software complex was developed, which allows gas monitoring without human
participation [110–112]. Thus, the presence of human factors is minimized. The key feature
of the developed complex is the possibility of diagnostics of gas advancement along the
mine shaft. As practice has shown, such possibility will allow us to use the ventilation
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system more rationally. We would like to note that in a number of cases forced ventilation
of the mine was carried out in the wrong direction, toward people. The developed complex
allows predicting the movement of methane cloud and controlling its movement.

In the literature, there are quite a lot of works in this area, but the presented work is fa-
vorably distinguished by the extension of the functionality of monitoring systems [113–116].
Thus, the presented work can be useful for both specialists in the field of information tech-
nology and the organization of mining production.

5. Conclusions

Effective management of coal seam methane, based on monitoring of methane concen-
trations, creates conditions not only to reduce the risk of methane explosions, but also to
improve the efficiency of methane recovery and utilization and minimize methane emis-
sions to the atmosphere. Therefore, continuous efficient monitoring of methane is key to
ensuring sustainable underground mining of gas-bearing coal seams.

As a result of this work, research has been conducted on methane monitoring sys-
tems in coal mines. Characteristics and structure and technological process of systems for
monitoring the atmosphere of coal mines, causes of risks and accidents at coal mines have
been studied. Methane detection and prevention systems, existing methane monitoring
systems and underground coal mine methane utilization methods, characteristics of differ-
ent sensors for mine atmosphere detection has been analyzed. The numerical results of the
research are presented by the graphs.

A software and hardware system for monitoring methane in coal mines has been
developed using the Arduino Uno platform and the MQ-4 methane level measurement
sensor. Using a methane monitoring system in coal mines would make it possible to ensure
the efficient and safe mining of gas-bearing coal seams using high-performance longwalls.

The presented research is one step toward full-featured control and monitoring system
development. Future research will be related to the involve validation of a full-featured
monitoring system in the active underground mines.

6. Patents

Sirenko Yu.G., Sidorenko S.A., Denisova A.I., Mironovich M.P. Invention Patent №
2760450, publication date 21 November 2021, request № 2021115475/03 (31 May 2021),
«Method for developing a thick flat layer of mineral resources».
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