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Abstract: Smart buildings have a large number of dispatchable resources, both for power production
and consumption functions, and the energy consumption of intelligent building clusters has a good
complementary and interactive relationship, which can better promote the local consumption of
distributed energy. In order to realize the goal of “dual-carbon” and promote the construction of a
new power system mainly based on renewable energy, this paper takes the Business Smart Building
(BSB) cluster with photovoltaic (PV) power generation as the research object. A peer-to-peer (P2P)
energy trading model with shared energy storage (SES) for BSBs is constructed, and the potential risk
of the stochastic volatility of photovoltaic power generation to BSBs is evaluated using conditional
value-at-risk (CVaR). Finally, the optimal strategy for P2P energy sharing among BSBs is obtained by
distributed solving using the alternating direction multiplier method (ADMM). The results show that
the proposed model can minimize the operating cost of the multi-BSB alliance and realize win–win
benefits for building users and shared energy storage operators. Meanwhile, the proposed CVaR
gives a trade-off between benefits and risks, which can satisfy the needs of decision-makers with
different risk preferences in making decisions.

Keywords: business smart building (BSB); shared energy storage (SES); P2P energy trading model;
conditional value-at-risk (CVaR)

1. Introduction

With the continuous acceleration of China’s urbanization and the improvement of
people’s standard of living comfort, new buildings and existing buildings emit a large
amount of carbon dioxide during their construction and operation [1,2]. According to
the Research Report on Energy Consumption and Carbon Emission of Buildings in China
(2023), published by the China Building Energy Efficiency Association, the energy use of
housing buildings in China will account for 36.3% of the total national energy consumption
in 2021, and their carbon emissions will account for 38.2% of the total national carbon
emissions [3]. As for high-energy-consuming buildings, commercial intelligent buildings
have abundant and widely distributed roof resources, which have a huge potential for
developing and constructing rooftop photovoltaics [4,5]. Therefore, the green and low-
carbon development of commercial buildings plays a crucial role in realizing the “dual-
carbon” goal and promoting the consumption of new energy.

Photovoltaic output has randomness and uncertainty, and its output curve and the
electricity load curve in the building cannot match exactly [6]. To realize a continuous
and stable power supply, it needs strong and powerful energy storage technology as a
support. In recent years, China has proposed the use of new energy and energy storage,
promoting the rapid development of the energy storage industry [7,8]. However, at this
stage, energy storage equipment has the disadvantages of high construction cost, low
utilization rate, long payback period, inconspicuous short-term economic benefits, and low
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motivation to configure energy storage, which makes it difficult to realize the self-supply
of energy storage in each commercial intelligent building [9]. Shared energy storage is the
introduction of the concept of a “sharing economy”, which was first proposed by the State
Grid Qinghai Electric Power Company in 2018 [10]. The separation of ownership and usage
of shared energy storage is the essential feature of shared energy storage that distinguishes
it from self-distributed energy storage. The literature [11] allocates shared energy storage on
the generation side of wind and PV renewable energy sources to store surplus power from
non-dispatchable generators and provide auxiliary services. The results show that a shared
energy storage plant can reduce the cost of coal-fired power generation by $10.8 million,
wind power generation by 10.2%, and solar power generation by 14.2%. The literature [12]
investigated the economically optimal scheduling of shared energy storage applied to
microgrid clusters and showed that a microgrid cluster equipped with a shared energy
storage system saves 17.23% of the total electricity cost. And the more microgrids connected
to the shared energy storage system, the more electricity consumption costs can be saved.
The literature [13] configures shared energy storage on the residential consumption side
and incorporates P2P trading between residences to enable distributed energy owners to
share excess energy with other local residential buildings. However, most of the above
studies on shared energy storage have focused on centralized shared energy storage at the
source, grid, and load sides, while less research has been conducted on distributed shared
energy storage with multiple subjects at the power and load sides.

There are two forms of transactions involved in BS buildings: centralized and decen-
tralized. The difference between decentralized transactions and centralized transactions is
that decentralized transactions are direct P2P transactions between energy producers and
consumers, which achieve decentralization and make transactions more flexible [14,15].
The literature [16] studied the willingness of community users to participate in P2P trading
and the trading preferences of different target groups. The results of the study showed
that 77.4% of users were willing to participate in P2P transactions. The literature [17]
established a demand response strategy model for an electric vehicle fleet under a P2P
energy sharing mechanism; the results showed that the power purchase cost of the electric
vehicle fleet in the P2P energy sharing model was reduced by $1094.73 compared with the
traditional model, and the rate of PV’s close-by consumption was increased to 87.72%. The
literature [18] proposed a two-level network-constrained P2P energy inter-transaction in
multi-microgrids and modeled the solution of the P2P energy trading process between
multiple BSBs using the multi-leader, multi-follower Stackelberg game method. Most of the
above studies on P2P trading focus on electricity trading; except for electricity trading, joint
P2P trading of electricity and carbon emissions can both promote new energy consumption
and reduce carbon emissions.

Uncertainty of PV output within the BSB can pose a risk to the safe and stable operation
of the power system, which, in turn, affects the operational profitability of the system [19].
Conditional value-at-risk (CVaR) is an improved risk analysis method developed from the
value-at-risk (VaR) method [20]. CVaR effectively overcomes the shortcomings of the VaR
method in describing the degree of loss and its subadditivity insufficiencies [21], and CVaR,
as an effective risk metric, has been widely used in risk avoidance, risk measurement, and
risk constraints of power system risk management [22,23]. The literature [24] considered
the uncertainty of solar power generation and energy demand in an integrated energy
system and added the CVaR method to the system optimization model for risk management.
The results were obtained by comparing the CVaR method with the traditional stochastic
planning method. Due to the better ability of the system to withstand shocks caused
by uncertainty, the total system cost of the system that considers the CVaR method is
relatively larger, but it improves the flexibility of the system. The literature [25] developed
a microgrid-based distribution robust CVaR framework under renewable energy output
uncertainty to help decision-makers understand the risk level of different decisions and
maximize the total profit of the microgrid. The literature [26] proposes a risk-aversion-based
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forecasting of renewable energy generation using CVaR to assess the extreme forecasting
errors of the model to reduce the risk of financial losses under extreme forecasting errors.

In summary, this paper proposes an optimal scheduling decision for a cluster of BS
buildings with the participation of shared energy storage, which makes it possible to
conduct transactions between BS buildings P2P and between BS buildings and shared
energy storage operators. In this paper, firstly, the energy trading model for BS building
clusters, including shared energy storage, is established by integrating the characteristics of
distributed generation and producers and sellers. Secondly, a P2P trading model between
BSBs is constructed, which includes carbon emissions trading in addition to electric energy
trading, adding trading varieties, and broadening the way of trading, which is conducive
to the realization of the economy and low carbon. Then, from the perspective of the risk
management method, CVaR theory is integrated into the BSB trading model to avoid the
risk caused by the uncertainty of PV output within BSBs. Finally, to protect the privacy
of the subject, a distributed algorithm is used to solve the model. A scenario analysis is
established to verify the rationality and effectiveness of the multi-BSB electric-carbon P2P
trading mechanism considering shared energy storage.

2. Energy Trading Framework for BSB Clusters

In this paper, we take clusters of BSB as the object of study. With the large number
of rooftop PV accesses, BSBs are transformed from a single consumer of electric energy to
a producer and seller [27,28]. Due to the existence of good complementary characteristics
and interactions between the energy usage of different BSBs, BSBs with excess electricity are
regarded as sellers, and BSBs with shortages of electricity are regarded as buyers at different
periods. The supply and demand sides are matched, and the BSBs prioritize trading P2P
electricity with other BSBs to promote the nearness of the consumption of electricity among
the BSBs. When the BSB cluster as a whole has a surplus or shortage of electricity, it then
trades with the shared energy storage and the electricity market. Similarly, BSBs with high
carbon emissions are regarded as buyers, BSBs with low carbon emissions are regarded as
sellers, and BSBs are prioritized to trade with other BSBs in P2P carbon trading. When the
carbon quota of the BSB cluster as a whole is surplus or insufficient, it then participates in the
carbon market for trading [29]. The trading framework of the BSB cluster considering shared
energy storage participation is shown in Figure 1. Each BSB is equipped with distributed PV,
Heating Ventilating and Air Conditioning (HVAC) loads, and flexible loads, in addition to a
shared energy storage system configured outside the cluster of BSBs [30]. Each BSB can switch
between buyers and sellers according to its own supply and demand status of electricity and
carbon emissions and can freely choose to trade electricity or carbon emissions, while the
electricity and carbon prices can incentivize power generation and consumption behaviors in
real-time, thus stimulating the vitality of the market.
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3. Energy Trading Model for BSB

In this paper, business smart buildings containing distributed PV, HVAC, and flexible
loads are studied.

3.1. Objective Function

This chapter addresses the ith BSB whose optimization objective is to minimize the
total cost of BSBi. The expression is shown below:

minCi =
S

∑
s=1

T

∑
t=1

ρs(CE
i,t + CC

i,t + CSES
i,t + CPV

i,s,t + CHVAC
i,s,t + CRES

i,s,t ) (1)

where s is the scenario of the PV output; S is the total number of PV output scenarios; t
is the trading session; T is the total number of trading sessions, taken as T = 24 h; ρs is
the probability of PV output scenario s; Ci is the total cost of BSBi; CE

i,t is the transaction
cost of BSBi with the electricity market; CC

i,t is the transaction cost of BSBi with the carbon
emission market; CSES

i,t is the service fee paid by BSBi to the charging and discharging
behavior of the SES; CPV

i,s,t is the operating cost of the PV; and CHVAC
i,s,t , CRES

i,s,t are the costs
incurred in regulating HVAC and flexible load comfort, respectively.

(1) Electricity transaction cost

CE
i,t = σb

t Pbuy
i,t − σs

t Psell
i,t (2)

where σb
t , σs

t are the purchased and discharged electricity prices from BSBi to the grid at
time t. To prevent BSB arbitrage, generally σb

t > σs
t ; Pbuy

i,t , Psell
i,t are the purchased and sold

electricity from BSBi to the grid at time t, respectively.

(2) Carbon trading costs

CC
i,t = µb

t Ebuy
i,t − µs

t Esell
i,t (3)

where µb
t , µs

t are the unit price of carbon emissions purchased and sold to the carbon market
by BSBi at time t, and Ebuy

i,t , Esell
i,t are the carbon emissions purchased and sold to the carbon

trading market by BSBi at time t, respectively.

(3) SES charge/discharge costs

CSES
i,t = νc

t Pc
i,t + νd

t Pd
i,t (4)

where νc
t and νd

t are the price of battery loss due to the charging and discharging behaviors
of the shared energy storage power station, respectively; Pc

i,t and Pd
i,t are the amount of

charging and discharging of the energy storage power station from BSBi, respectively.

(4) PV operating costs

CPV
i,s,t = λPV PPV

i,s,t (5)

where λPV is the annual unit operating cost of PV power generation; PPV
i,s,t is the amount of

electricity generated by the PV in period t under scenario s for BSBi.

(5) HVAC and flexible load conditioning costs

CHVAC
i,s,t = m1(Tin

i,s,t − Tre f
i )

2

CRES
i,s,t = m2(PRES

i,s,t − PRES,base
i,t )

2 (6)
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where m1 and m2 are user discomfort coefficients; Tin
i,s,t is the indoor temperature value of

BSBi at time t; Tre f
i is the most comfortable temperature value of BSBi; PRES

i,s,t is the value of

the flexible load in BSBi; and PRES,base
i,t is the value of the load base in BSBi.

3.2. Constraints

(1) Electrical power balance constraints

PHVAC
i,s,t + PRES

i,s,t + Pc
i,t + Psell

i,t = PPV
i,s,t + Pd

i,t + Pbuy
i,t (7)

where PHVAC
i,s,t and PRES

i,s,t are the operating power of the HVAC and flexible loads in BSBi at
moment t, respectively.

(2) Carbon emission constraints

BEi,s,t = κPPV
i,st (8)

where BEi,s,t is the carbon emission reduction of PV power generation in BSBi; κ is the CO2
emission factor of regional grid power generation.

BEi,s,t + Ebuy
i,t ≥ Eload

i,t + Esell
i,t (9)

where Eload
i,t is the carbon emissions from the loads within BSBi.

(3) Charge and discharge power and capacity constraints for SES



0 ≤
N
∑

i=1
Pc

i,t ≤ γc
t Pmax

c

0 ≤
N
∑

i=1
Pd

i,t ≤ γd
t Pmax

d

γc
t + γd

t ≤ 1

γc
t ∈ {0, 1}, γd

t ∈ {0, 1}

(10)

where Pmax
c and Pmax

d are the maximum charging and discharging power of the SES; γc
t and

γd
t are the charging and discharging states of the SES at moment t, which are 0–1 variables

to ensure that the energy flow between the BSBi and the SES at the same moment can only
be unidirectional.

Charge state continuity constraints for SES:
Et = Et−1 + ηc

N
∑

i=1
Pc

i,t −
1

ηd

N
∑

i=1
Pd

i,t

Emin ≤ Et ≤ Emax

E0 = E24

(11)

where Et is the charging state of the SES at time t; ηc and ηd are the charging and discharg-
ing efficiencies of the energy storage, respectively; Emin and Emax are the minimum and
maximum capacity of the SES, respectively; E0 and E24 are the initial energy storage of the
energy storage plant and the end storage energy of the SES operation cycle, respectively,
which ensures the continuity of the energy storage equipment from the initial state to the
end state during the scheduling cycle, to ensure that the energy storage equipment can be
operated normally in the next scheduling cycle.

(4) Constraints on HVAC
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Tin
i,s,t = e−

βi
γi Tin

i,s,t−1 + (1 − e−
βi
γi )(

αi,t
βi

− σi PHVAC
i,s,t
βi

)

Tin,min ≤ Tin
i,s,t ≤ Tin,max

(12)

where αi,t, βi, and γi are parameters of meteorological conditions related to the building
characteristics of BSBi and the outdoor temperature; σi is the energy efficiency ratio of the
HVAC unit in BSBi; PHVAC

i,s,t is the power of the HVAC in BSBi. Tin,min and Tin,max are the
minimum and maximum indoor temperature values of the building, respectively.

(5) Constraints on flexible loads

T
∑

t=1
PRES

i,s,t =
T
∑

t=1
PRES,base

i,t

PRES,min
i,t ≤ PRES

i,s,t ≤ PRES,max
i,t

(13)

where PRES,min
i,t and PRES,max

i,t are the adjustable lower limit and adjustable upper limit of
the flexible load in BSBi, respectively.

4. BSB Cluster Energy Trading Model with P2P Transactions
4.1. Objective Function

The optimization objective of energy trading for BSB clusters containing P2P transac-
tions is to minimize the total cost of BSB clusters:

min C1 =
N

∑
i=1

T

∑
t=1

(CE
i,t + CC

i,t + CSES
i,t + CPV

i,s,t + CHVAC
i,s,t + CRES

i,s,t + CP2P
i,t ) (14)

where C1 is the total cost of the BSB cluster; CP2P
i,t is the cost of P2P transactions between

BSBi and other buildings.
The P2P transaction costs are approximated as a linear function of the transactions

between the BSBs [31]:

CP2P
i,t =

Ni

∑
j=1,j ̸=i

(aijPi,j,t + bijEi,j,t) (15)

where CP2P
i,t is the P2P transaction cost of BSBi; aij and bij are bilateral transaction coefficients

indicating the difference between BSBi and BSBj; Pi,j,t and Ei,j,t are the amount of electricity
and carbon emissions traded between BSBi and BSBj at time t, respectively. Pi,j,t > 0
denotes that at moment t, BSBi buys electricity from BSBj; Pi,j,t < 0 denotes that at moment
t, BSBi sells electricity to BSBj; and Pi,j,t = 0 denotes that at moment t, no electricity is
traded between BSBi and BSBj.Ei,j,t > 0 indicates that BSBi buys carbon emissions from
BSBj; Ei,j,t < 0 indicates that BSBi sells carbon emissions to BSBj; and Ei,j,t = 0 indicates
that there is no carbon trading between BSBi and BSBj. Ni is the total number of BSBs
involved in the transaction.

4.2. Constraints

The purchase and sale of energy by each BSB needs to be constrained to maintain
user balance:

Pi,j,t + Pj,i,t = 0 (j ̸= i)

Ei,j,t + Ej,i,t = 0 (j ̸= i)

PHVAC
i,s,t + PRES

i,s,t + Pc
i,t + Psell

i,t = PPV
i,s,t + Pd

i,t + Pbuy
i,t +

N
∑

j=1,j ̸=i
Pi,j,t

BEi,t + Ebuy
i,t +

N
∑

j=1,j ̸=i
Ei,j,t ≥ Eload

i,t + Esell
i,t

(16)
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In summary, the energy trading model of a cluster of business smart buildings con-
taining P2P transactions is composed of the objective function (14) and constraints (2)–(6),
(8), (10)–(13), and (15)–(16).

5. CVaR-Based Energy Trading Model for a Cluster of Business Smart Buildings
5.1. Risk Assessment Model for CVaR

VaR reflects the potential maximum loss of the system for a given confidence level
α [32]. Let f (x, y) be the loss function, where x is the decision variable y is the random
variable, and let ρ(y) be the probability density function of the PV outturn of the random
variable y. The distribution function of the loss function f (x, y) less than or equal to the
threshold δ is as follows:

φ(x, δ) =
∫

f (x,y)≤δ

ρ(y)dy (17)

For a given confidence level α ∈ (0, 1), the value of the VaR function can be obtained
from the following equation:

VVaR−α = min{δ ∈ R : φ(x, δ) ≥ α} (18)

where VVaR−α is the VaR value at confidence level α.
VaR can adjust for risk by adjusting the confidence level α, but it cannot monitor

tail cases when losses are higher than this value. CVaR is an improvement on VaR that
compensates well for the shortcomings of the VaR value. For a given confidence level
α ∈ (0, 1), the CVaR function value can be obtained from the following equation:

VCVaR−α =
1

1 − α

∫
f (x,y)≥VVaR−α

f (x, y)ρ(y)dy (19)

where VCVaR−α is the CVaR value at confidence level α.
Since it is very difficult to solve the VaR value accurately in the actual solution process,

the auxiliary function Fα(x, δ) is constructed to simplify the CVaR function.

Fα(x, δ) = δ +
1

1 − α

∫
y∈Rm

[ f (x, y)− δ]+ρ(y)dy (20)

where [ f (x, y)− δ]+ ≜ max{ f (x, y)− δ, 0}, δ is the VaR value; Rm is the m-dimensional
real number space.

Due to the difficulty of solving the ρ(y)-analytic equation, calculated by substituting
integrals at sampling points, discretization of the auxiliary function Fα(x, δ) is calculated
as follows:

F̃α(x, δ) = δ +
1

NΩ(1 − α)

NΩ

∑
ω=1

[ f (x, yω)− δ]+ (21)

where NΩ is the total number of samples; yω is the ωth sample of the random variable y.
Then, VCVaR−α = minF̃α(x, δ).

5.2. Energy Trading Strategies for a Cluster of BSB Considering CVaR

The CVaR method was used to measure the risk associated with the uncertainty of PV
output in BSB. Use θi to denote the CVaR value of the BSBi cost:

θi = ϕi +
1

1 − α

S

∑
s=1

ρszi,s (22)
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where ϕi is the VaR value of BSBi costs; zi,s is the value of BSBi cost over VaR, which is
broken down into the following two equations for ease of calculation:

zi,s ≥ 0

zi,s ≥
T
∑

t=1
(CC

i,t + CE
i,t + CSES

i,t + CPV
i,s,t + CHVAC

i,s,t + CRES
i,s,t + CP2P

i,t )− ϕi
(23)

Ultimately, the transaction model for the BSB cluster considering CVaR is as follows: min C = (1 − L)
N
∑

i=1

T
∑

t=1
(CE

i,t + CC
i,t + CSES

i,t + CPV
i,s,t + CHVAC

i,s,t + CRES
i,s,t + CP2P

i,t ) +
N
∑

i=1
Lθi

s.t. (2) ∼ (6), (8), (10) ∼ (13), (15) ∼ (16), (22) ∼ (23)
(24)

where C is the total cost of the BSB cluster after considering CVaR; L is the risk preference
coefficient, which indicates the decision-maker’s attitude toward the risk—L ∈ [0, 1], with
a small L (L < 0.1), indicates that the decision-maker is risk-loving, and a large L (L > 0.5)
indicates that the decision-maker is risk-averse [33].

6. Example Analysis

In this section, the simulation is carried out with BSB cluster load data as an example
to verify the feasibility of the BSB cluster optimization decision model considering shared
energy storage. The arithmetic case analysis is based on the Matlab 2018b platform, and
the modeling and solving are carried out by the solver Cplex12.8 and the solver MOSEK,
with the PC hardware environment of an Intel Core i5 2.40 GHz CPU and 16.0 GB RAM.

6.1. Parameter Setting and Scene Description

(1) Parameter setting

In this paper, a cluster of business smart buildings in a southern part of China is
selected to contain three buildings, N = 3, and each building contains rooftop PV, central
air-conditioning, and flexible loads. The load of one of the commercial intelligent buildings
is 0 at 24:00 p.m.–7:00 a.m. [34]. The baseline values of the flexible loads are shown in
Figure 2 [35], and the Monte Carlo method is utilized to generate five sets of predicted PV
output values for different scenarios, as shown in Figure 3. The parameters related to the
shared energy storage system are shown in Table 1 [36]. The time-of-day electricity price
in the electricity market is referenced to the general industrial and commercial electricity
price; the carbon trading price is set to 57 yuan/t [37], which is considered to be 1.5 times
the carbon selling price for BSBs’ carbon purchase price in the carbon market. To show
the P2P transaction between BSBs more clearly, the arithmetic example only shows the
optimized operation results from 08:00 to 18:00 (PV working hours).
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Table 1. Parameters of the SES system.

Parameters Retrieve Value

minimum volume/(kW·h) 300
maximum volume/(kW·h) 1350

maximum charging and discharging power/kW 50
charging and discharging efficiency/% 95

charge/discharge operating cost/(yuan/kW·h) 0.15

(2) Scene description

Case 1: Each BSB trades power directly with the electricity market without considering
inter-building P2P energy trading.

Case 2: Each BSB trades electricity and carbon with the electricity market and carbon
market, respectively, without considering inter-building P2P energy trading.

Case 3: BSB trades electricity with the electricity market and between other buildings.
Case 4: Electricity–carbon trading between BSBs and electricity markets, carbon

markets, and other buildings.
Case 5: BSBs trade electricity and carbon with the electricity market, the carbon market,

and other buildings, and each building is equipped with independent energy storage.
Case 6: BSBs engage in electricity–carbon trading with electricity markets, carbon

markets, and other buildings, and SES is involved.

6.2. Analysis of Simulation Results
6.2.1. Total Cost Analysis of BSBs in Different Cases

The costs of the BSB clusters in each different case are shown in Table 2. Case 2
compared to Case 1 and Case 4 compared to Case 3 add carbon emissions trading in
addition to electricity trading. The building clusters have increased carbon trading benefits
due to the sale of carbon reductions from PV output by BSB to the carbon market. Therefore,
the total cost of building clusters in Case 2 and Case 4 is lower than in Case 1 and Case 3.
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Table 2. Transaction costs of BSB.

Cases Electricity Trading
Costs/(yuan)

Carbon Trading
Costs/(yuan)

Running
Costs/(yuan)

Total
Costs/(yuan)

1 4200.18 0 766.4 4966.58
2 4103.34 −1479.02 758.16 3382.48
3 3899.67 0 756.24 4655.91
4 3932.2 −1452.06 739.98 3220.12
5 3845.19 −1401.63 996.55 3440.11
6 3834.5 −1450.13 715.5 3099.87

From the comparison of Case 1 and Case 3 and Case 2 and Case 4, it can be concluded
that the consideration of P2P trading among BSBs reduces the cost of electricity trading.
Because P2P trading adds a new trading channel for BSBs, BSBs will flexibly change
their purchasing and selling roles according to the supply and demand status of electric
energy and carbon emissions. When the P2P transaction price is smaller than the price of
purchasing electricity from the grid or larger than the price of selling electricity to the grid,
BSBs will favor P2P transactions and reduce electricity transactions with the grid through
the complementarity of surplus generation power and shortage power, which ultimately
makes the total cost of BSBs lower.

In addition, from the comparison of Cases 5 and 6, it can be found that the total cost of
building clusters under Case 5 is higher than the total cost of building clusters under Case
6 because when each building is configured with the energy storage mode, each building
needs to bear the initial investment and construction costs of energy storage on its own,
whereas the construction cost of configuring independent energy storage is on the high side
and the payback period is longer. Through third-party investment and construction of a
shared energy storage power station, it is possible to not only realize the centralized sharing
of electric energy but also to improve the enthusiasm of building users to apply energy
storage. The comparison results of different scenarios illustrate that electricity–carbon
P2P trading between clusters of BSB and the configuration of shared energy storage can
minimize the transaction cost.

6.2.2. Analysis of the Results of P2P Energy Trading between BSBs

Figure 4 illustrates the P2P electricity–carbon trading between BSBs in Case 6. A
positive value of shared energy between the two buildings in the figure indicates that the
BSB buys products through P2P transactions, and a negative value indicates that the BSB
sells products through P2P transactions. Among them, Figure 4a shows the electricity
trading between BSBs, and the electricity trading between buildings mainly occurs between
building 1 and other buildings, and BSB1 sells electricity to BSB2 and BSB3 between 11:00
and 17:00 when the PV output is higher in the building. Figure 4b shows the trading of
carbon emissions between BSBs. The carbon trading between BSBs mainly focuses on 8:00
and 19:00, and BSB1 buys carbon emissions from BSB2 and BSB3, which is because, at this
time, the PV output is low and the carbon emission quota allocated to BSB1 is insufficient;
thus, BSB1 needs to buy carbon emissions to make up for the shortfall.

6.2.3. Capacity Changes in SES

Figure 5 shows the capacity change curve of SES at 8:00–18:00. The capacity of SES
continues to increase in the 12:00–16:00 time period, which is a higher PV output time.
BSBs have surplus power and choose to charge the shared energy storage. In the grid, the
price is in the low valley or the valley time, and the energy storage will choose to purchase
power from the grid to be used when the price peaks. The SES capacity shows a decreasing
trend during 09:00–11:00 and 16:00–18:00 h. When the load in the smart building increases,
the PV output can no longer meet the building load, and the shared energy storage charges
the BSB.
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6.2.4. Analysis of Transaction Results Considering CVaR Values

As can be seen in Figure 6, as L increases, the sum of the costs of the BSB’s day-
ahead and intraday phases increases, and the CVaR value decreases. When L is small, the
BSB behaves as risk-loving, and its ability to bear risk is higher, making the sum of the
BSB’s costs in the day-ahead and intraday phases also lower; when L is large, the BSB
behaves as risk-adverse and tends to reduce the value of the CVaR to increase the ability
to withstand risk, making the BSB’s total cost higher, but the slope of its cost increase is
gradually decreasing.
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Table 3 compares the costs of the BSB deterministic and CVaR models. The determinis-
tic model does not consider the PV output uncertainty in the day-ahead decision-making;
thus, in the intraday phase, when the real PV output value is lower than the predicted
value, each BSB has to buy the insufficient generation at a high price, which makes the
intraday BSB cost and total cost increase significantly. The CVaR model takes the PV output
uncertainty into account in day-ahead decision-making, and the intraday dispatch cost and
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total cost are lower than those of the deterministic model, thus proving the economy of the
CVaR model.

Table 3. Comparison of deterministic and CvaR models.

Categories
Deterministic Model CvaR Model

Day before
Stage/yuan

Intraday
Stage/yuan

BSB
Costs/yuan

Day before
Stage/yuan

Intraday
Stage/yuan

BSB
Costs/yuan

BSB1 −1580.5 1650.6 70.1 −1376.2 931.2 −445.0
BSB2 1745.9 381.9 2127.8 1758.2 146.8 1905
BSB3 1540.5 317.0 1857.5 1689.8 191.4 1881.2

Total costs 1705.9 2349.5 4055.4 2071.8 1269.4 3341.2

7. Conclusions

In this paper, a P2P energy sharing optimization model for building clusters consid-
ering shared energy storage is constructed for BSB clusters, and the CVaR model is used
to assess the risk faced by the uncertainty of the PV output within the BSB. The following
conclusions are obtained by analyzing the arithmetic examples:

(1) The shared energy storage system can store power during the lower hours of the
building load and release power during the peak hours of electricity consumption,
which can effectively level out the deviation of PV output and realize the cost of
purchasing power for the building clusters.

(2) The P2P energy sharing transaction reduces the dependence on external energy
sources, reduces the operating costs of the BS building cluster as well as each building
while meeting the building loads, and improves the flexibility of the building cluster
operation as well as the level of in-building PV consumption.

(3) P2P energy sharing itself has the advantage of carbon reduction, and the text couples
carbon trading into P2P energy trading, which can further explore the potential of
BSBs to reduce emissions and lower the operating costs of BSBs.

(4) The introduction of the CVaR model allows for the quantification of BSB returns and
risks under PV output uncertainty, providing different risk management measures
for decision-makers with different risk appetites, thus assisting decision-makers
in determining risk appetites that meet their own psychological expectations and
corresponding trading decisions.

Future work will focus on the following aspects: energy sharing between clusters of
smart buildings with different functions (office, industrial, agricultural buildings, etc.) can
be considered to further improve the local consumption of renewable energy; with the
gradual increase in the scale of electric vehicles, which can be regarded as both electrical
loads and energy storage devices, with a strong potential for electric energy dispatch, smart
buildings containing electric vehicles can be considered; and the potential risks posed by
distributed photovoltaic power generation, uncertainties in energy demand, and electricity
prices to clusters of smart buildings can be further considered.
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