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Abstract: Inland bodies of water, such as lakes, play a crucial role in sustaining life and supporting
ecosystems. However, with the rapid development of socio-economics, water resources are facing
serious pollution problems, such as the eutrophication of water bodies and degradation of wetlands.
Therefore, the monitoring, management, and protection of inland water resources are particularly
important. In past research, empirical models and machine learning models have been widely used
for the water quality assessment of inland lakes. Due to the complexity of the optical properties of in-
land lake water bodies, the performance of these models is often limited. To overcome the limitations
of these models, this study uses in situ water quality data from 2017 to 2018 and multispectral (MS)
remote sensing data from Sentinel-2 to construct experimental samples of Poyang Lake. Based on
these experimental samples, we constructed a spatio-temporal ensemble model (STE) to evaluate
four common water quality parameters: chlorophyll-a (Chl-a), total phosphorus (TP), total nitro-
gen (TN), and chemical oxygen demand (COD). The model adopts an ensemble learning strategy,
improving the model’s performance by merging multiple advanced machine learning algorithms.
We introduced several indices related to water quality parameters as auxiliary variables, such as
NDCI and Enhanced Three, and used band data and these auxiliary variables as predictive variables,
thereby greatly enhancing the predictive potential of the model.The results show that the inversion
accuracy of these four inversion models is high (R2 of 0.94, 0.88, 0.92, and 0.93; RMSE of 1.15, 0.01,
0.02, and 0.02; MAE of 0.81, 0.01, 0.09, and 0.10), indicating that the STE model has good evaluation
accuracy. Meanwhile, we used the STE model to reveal the spatio-temporal distribution of Chl-a, TP,
TN, and COD from 2017 to 2018, and analyzed their seasonal and spatial variation rules. The results
of this study not only provide an effective and practical method for monitoring and managing water
quality parameters in inland lakes, but also provide water security for socio-economic and ecological
environmental safety.

Keywords: remote sensing inversion; water quality monitoring; inland water; machine learning;
ensemble learning; Poyang Lake

1. Introduction

Lakes, surrounded by land, are surface water bodies typically replenished by rivers,
glaciers, precipitation, or groundwater. Although lakes only account for 3.7% of the Earth’s
land, they are a crucial component of ecosystems, providing unique living conditions
and food chains for many flora and fauna. Simultaneously, lakes play a significant role
in hydrological cycles and regional climate regulation [1–4]. Furthermore, inland water
bodies are an essential part of the carbon cycle, contributing to global greenhouse gas
emissions [5]. Over the past few decades, due to global warming and human activities,
there have been significant changes in the quantity, storage, water surface, and area of
inland water resources. An increasing number of lakes are exhibiting environmental
problems such as deteriorating water quality and eutrophication [6]. Eutrophication is
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widely considered one of the most severe threats to the health of inland lake ecosystems.
Existing research indicates that nutrients such as phosphorus and nitrogen are the main
factors affecting algal growth, leading to eutrophication [7]. The deterioration of the aquatic
environment poses a threat to human safety and biodiversity. Therefore, it is urgent to
strengthen water quality monitoring, protect the aquatic environment, and enhance the
capability of the rapid dynamic monitoring of water quality.

Lakes, as an essential part of inland water resources, are one of the most important
sources of drinking water globally, and their water quality safety is closely related to public
health [8–11]. Water environment management relies on accurate and timely water quality
assessment, which is closely related to water quality indicator monitoring. At this time, wa-
ter quality monitoring means are particularly important in the evaluation and management
of water bodies. The investigation techniques for monitoring nutrients in water are usually
both time-consuming and expensive. Most traditional water quality monitoring methods
are based on manual on-site sampling, laboratory sample analysis, or portable instrument
measurements. These methods not only consume a large amount of manpower, material
resources, and time cost but also have data lag problems, making it difficult to achieve
dynamic water quality monitoring. In addition, traditional water quality sampling point
monitoring methods cannot effectively monitor the large-area distribution of water bodies,
long-term continuous changes, etc. [12]. There is an urgent need for a low-cost and effective
method for dynamically monitoring widely distributed nutrient costs. Remote sensing is an
effective technique for the continuous monitoring of surface water dynamics with greater
spatial coverage and higher temporal frequency. This effectively overcomes the limitations
of data collection in traditional water quality monitoring and helps to characterize lake
changes in different regions [13]. It has been applied to obtain continuously updated
aquatic environments and has successfully generated detailed and consistent datasets for
water quality analysis [14–16]. At present, multispectral and hyperspectral remote sensing
data serve as the primary data sources for monitoring water quality. Yet, multispectral data,
being more accessible, find broader applications. For example, Feng et al. [17] confirmed
that Landsat series data can be used to monitor water quality parameters in inland lakes
and achieve good inversion results.

Chl-a is a key indicator for measuring the biomass of algae in a body of water. Algae,
as the primary producers in aquatic ecosystems, have a direct impact on the ecological
balance and water quality conditions. TP and TN are two main indicators for assessing
the eutrophic status of a body of water. Nitrogen and phosphorus are key nutrients for the
growth of aquatic plants and algae. An increase in their concentrations is a major cause
of eutrophication and algal blooms. COD is an indicator used to measure the amount of
substance in a body of water that can be oxidized chemically, typically used to assess the
content of organic matter in the water. A high COD value indicates a high degree of organic
pollution in the water, which may affect the health of aquatic organisms [18,19].

Poyang Lake, the largest freshwater lake in China and the second-largest lake in the
country, is located in the Yangtze River basin and is an important seasonal lake in the
basin. Poyang Lake plays a significant role in regulating the water level of the Yangtze
River, nurturing water sources, improving the local climate, and maintaining the ecological
balance of the surrounding area. In recent years, inland waters have been severely affected
by flood disasters and intense human activities, making their optical properties very
complex. Therefore, sensors with a high signal-to-noise ratio and a high dynamic range
are needed to effectively measure water bodies with high reflectance [20]. Currently, the
Moderate Resolution Imaging Spectroradiometer (MODIS) collects images with a daily
time resolution and a spatial resolution of 250 m∼500 m, and has been widely used for
the rapid detection of surface water changes [21]. Landsat sensors collect images with
a 16-day time resolution and a high spatial resolution of 30 m, and have been widely
used for annual-scale surface water dynamics [22]. However, the low spatial resolution
of MODIS limits its application on smaller spatial scales, which may result in the loss
of many small water bodies in the results. Although the spatial resolution of Landsat
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sensors is relatively high, the 16-day revisit period makes it difficult to obtain cloud-free
images on a monthly scale, leading to missing composite images, making lake monitoring
a considerable challenge. Sentinel-2 is an Earth observation mission of the European
Union’s Copernicus program, which provides optical images with a high revisit frequency
(5 days) and a high spatial resolution (10 m∼60 m). Due to its full spectral and radiometric
characteristics, it provides great convenience for the water quality monitoring of inland
waters. Present studies indicate that the Sentinel-2 MS Instrument sensor enhances not
just the mapping of water quality parameters in global inland waters, but also bolsters
environmental policies through prediction of specific water quality indicators [23].

Remote sensing technology-based methods for inverting optically active parameters
primarily fall into three categories: empirical, semi-empirical, and model analysis methods.
The empirical approach centers on forming a connection between the reflectance of remote
sensing imagery and optically active parameters like Chl-a [24]. However, the relationship
thus established may not always align with the actual correlation. Semi-empirical methods
involve applying appropriate mathematical methods to remote sensing data to estimate
water quality parameters. Although empirical methods are not suitable for regional use,
due to their simplicity of operation, they remain one of the main methods for the remote
sensing monitoring of water quality [25]. The model analysis method emphasizes the
relationship between the actual absorption coefficient and the backscattering coefficient of
remote sensing reflectance, constructing an inversion model between the reflected spectrum
and water body parameters [26], making the model conform to physical interpretation.
However, the complexity of its formula requires a higher level of derivation and calcula-
tion. Among them, the study of non-optically active parameters is relatively less [27,28].
This is because the relationship between surface reflectance and non-optically active pa-
rameters (such as COD) is indirect and nonlinear, and it is difficult to simulate through
traditional empirical models [29,30]. Therefore, it is necessary to explore their relationship
by utilizing the high correlation between non-optically active parameters and optically
active parameters.

As artificial intelligence technology evolves, machine learning methods are increas-
ingly being utilized in the inversion of water quality using remote sensing. Due to the
adaptability, fault tolerance, and self-organization of machine learning [26], it can simulate
complex relationships, which fully meets the complex nonlinear relationship of remote sens-
ing water quality inversion [31]. The latest advancements in machine learning are expected
to improve the ability to analyze the complex nonlinear relationships between optically
active parameters, non-optically active parameters, and surface reflectance. Guo et al. [32]
compared the performance of multiple machine learning models in estimating TP and TN
and used the optimal model to draw a water quality distribution map of their research
area. Nguyen et al. [33] assessed the performance of three machine learning models, in-
cluding Random Forest (RF), in forecasting detrimental cyanobacterial blooms in the Tri An
Reservoir. In a separate study, Guo et al. [34] utilized a machine learning model (Support
Vector Machine (SVR)) to map the spatial distribution of dissolved oxygen in Lake Huron
and examined the influence of climatic factors on long-term trends of dissolved oxygen.
Kim et al. [35] conducted an evaluation of several machine learning algorithms, including
Light Gradient Boosting Machine (LightGBM, [36]), for their effectiveness in estimating
Chl-a in various water bodies using Sentinel-2 imagery. They found that LightGBM demon-
strated high precision and consistency across diverse aquatic environments. Shi et al. [37]
proposed a machine learning model that is more reliable and accurate than empirical
models, revealing the spatiotemporal distribution of Chl-a concentration. Yuan et al. [38]
proposed a spatiotemporal ecological integrated model based on machine learning for
marine ecological environment monitoring. The aforementioned study demonstrates that
integrating machine learning algorithms with remote sensing technology enables the accu-
rate estimation of both optically active and non-optically active parameters.

In most previous studies, the common practice was to calibrate and evaluate various
empirical models or machine learning models, then select a single model with the best



Sustainability 2024, 16, 3355 4 of 19

overall accuracy and apply it to the entire body of water being studied. The reality is that
the optical properties of inland lakes are very complex and become even more complex
with spatial and temporal changes. Although the selected model has the best overall
estimation accuracy, its performance may not be ideal in some parts of the water body.
To improve the prediction accuracy of optically complex inland lake water bodies, this
paper proposes an STE model based on multiple machine learning methods. In this model,
each machine learning method is trained in different branches at the same time, and the
final evaluation result is jointly determined by the output results of all branches and the
overfitting avoidance algorithm. At the same time, during the model training process,
we choose the band combination related to water quality parameters verified by previous
research and each band as predictive factors. Compared with the previous single model,
we have proven that the spatio-temporal integration model can substantially improve the
evaluation accuracy for inland lake water bodies. The main objectives of this study are
summarized as follows:

• We propose an STE model that combines advanced machine learning methods (Ex-
treme Gradient Boosting (XGBoost, [39]), LightGBM, and Categorical Boosting Ma-
chine (CatBoost, [40])) using an ensemble strategy to enhance the robustness of
the model.

• Utilizing high spatio-temporal resolution Sentinel-2 imagery, lake water quality pa-
rameters, and the STE model, we construct the spatio-temporal pattern of Chl-a,
TP, TN and COD in Poyang Lake from 2017 to 2018. We analyze the intra-annual
(monthly, seasonal) and spatial variation characteristics of Poyang Lake, aiming to
provide a scientific basis for the water quality monitoring of water sources through
the spatio-temporal distribution of different water quality parameters.

• Demonstrating the feasibility and advantages of the STE model based on Sentinel-2
images in water quality monitoring under multiple spatiotemporal scenarios.

It is hoped that this study can provide a reference for further research on the water
environment of Poyang Lake. The results of this study can provide a reference for the control
and improvement of the water quality conditions of Poyang Lake and the maintenance
of the aquatic ecology. The results of this study are expected to provide a basis for an
in-depth study of the water environment of Poyang Lake, and provide guidance for the
water quality management, improvement, and water ecology protection of Poyang Lake.
In this study, spring, autumn, and winter refer to March–May, September–November, and
December–February, respectively.

2. Materials and Methods

This study proposes a multi-model integrated learning method aimed at estimating
the content of four water quality parameters (Chl-a, TP, TN and COD) in Poyang Lake.
Specifically, the main steps are: (1) The preprocessing of Sentinel-2 product remote sensing
images. (2) The selection of related bands and related indices. (3) The matching of water
quality parameter data with the reflectance of Sentinel-2 products. (4) The application of
the evaluation model to estimate the water quality parameters from 2017 to 2018. The
workflow adopted is shown in Figure 1.
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Figure 1. Schematic flow of the methodological approach in this study.

2.1. Study Area

Poyang Lake (28◦22′–29◦45′ N,115◦47′–116◦45′ E) is located in the north of Jiangxi
Province, spanning three cities of Jiujiang, Nanchang and Shangrao. It is the largest
freshwater lake in China and the second largest lake in China, as shown in Figure 2. The
Poyang Lake basin is an important grain production area and fishery base in China [41].
Poyang Lake is 173 km long from north to south, 74 km wide at its widest point from east
to west, has a shoreline of 1200 km, and has a lake surface area of 3283 km2 when the lake
mouth water level is 21.71 km. The lake water is mainly supplied by rivers such as Ganjiang,
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Fuhe, Xinjiang, Raohe, Xiuhe and Boyang River, Xihe, etc., and after regulation and storage,
it flows northward into the Yangtze River from the lake mouth, with an annual average
inflow of 146 billion cubic meters into the Yangtze River. The Poyang Lake water system
basin covers an area of 162,200 km2, accounting for about 97% of the basin area of Jiangxi
Province and 9% of the Yangtze River basin area. Poyang Lake plays an important role in
regulating the water balance between the basin and the main stream of the Yangtze River,
and in various ecological functions such as flood storage and maintaining biodiversity.
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Figure 2. Location of the study area. The left-hand part shows the geographical location and the
right-hand part shows the composition of the lake.

2.2. Data Processing
2.2.1. Sentinel-2 Data

This study uses images obtained from the Sentinel-2A/B satellites launched by the
European Space Agency. The remote sensing images of Sentinel-2 can be downloaded
for free from the Copernicus Data Center (https://scihub.copernicus.eu, (accessed on
6 July 2023)), and the parameters of Sentinel-2 are shown in Table 1. The Sentinel-2 mission
includes two polar-orbiting satellites, Sentinel-2A and Sentinel-2B, launched on 23 July
2015 , and 2 May 2017, respectively, achieving a high repeat time resolution of 3 days at the
equator and 5 days at mid-latitudes [42,43]. Each satellite is equipped with a Multispectral
Instrument (MSI), covering multiple spectral bands from visible light to shortwave infrared
(SWIR). Sentinel-2 data provides 13 spectral bands with resolutions of 10 m, 20 m, and 60 m,
capable of monitoring high-yield water bodies and other extreme conditions. Due to the
cloud cover of Sentinel-2 products being greater than 10% at closely measured time points in
the summer in this region, greatly affecting the use of these products, we did not evaluate
the water quality parameters for the summer. This study selected Sentinel-2 Level-1C
products (Top of Atmosphere (TOA) reflectance) images obtained from January to May and
September to December each year from 2017 to 2018, with the cloud cover of each image
block being less than 10%. The selected images were all atmospherically corrected using the
default algorithm built into the ACOLITE software package (https://github.com/acolite,
(accessed on 15 July 2023)), and batch processing was performed using Python code.
Vanhellemont et al. [44] and Saberioon et al. [45] have verified the good performance of

https://scihub.copernicus.eu
https://github.com/acolite
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ACOLITE in inland waters. We used bilinear interpolation to upscale the low-resolution
bands (20 m and 60 m) to a 10 m resolution. Then, we selected bands B2, B3, B4, B5, B6, B7,
B8, B8A, B11, and B12, and used the GDAL library to complete the multi-band synthesis
and image mosaicking. Finally, we obtained a full high-resolution image of Sentinel-2.
Due to the high temporal and spatial resolution and rich spectral information of Sentinel-2
MS data, it is extremely beneficial for monitoring water quality changes in complex water
bodies such as Poyang Lake.

Table 1. The Sentinel-2 bands used in this study and its parameters.

Sentinel-2 Bands Central Wavelength (nm) Resolution (m)

Band 2 (Blue) 490 10

Band 3 (Green) 560 10

Band 4 (Red) 665 10

Band 5 (Red Edge) 705 20

Band 6 (Red Edge) 740 20

Band 7 (Red Edge) 783 20

Band 8 (NIR) 842 10

Band 8A (Narrow NIR) 865 20

Band 11 (SWIR) 1610 20

Band 12 (SWIR) 2190 20

2.2.2. In-Situ Data Collection

This study uses the Poyang Lake water environment monitoring dataset collected
by the Poyang Lake Wetland Comprehensive Research Station of the Chinese Academy
of Sciences from 2017 to 2018 [46]. This dataset includes water quality parameters (Chl-a,
TP, TN and COD) for the main lake area in January, April, July and October each year.
To ensure year-round water sampling, regular monitoring points are set up in the main
lake area that has water all year round. During the measurement process, we use YSI’s
EXO multi-parameter water quality meter to measure the concentration of Chl-a, a UV
spectrophotometer to determine the content of TP and TN, and a titration method to
determine COD. Table 2 shows the average values of these four parameters. Through
long-term observation of regular monitoring points, we reveal the seasonal and interannual
variation patterns of Poyang Lake’s water quality in recent years. These data provide an
important reference for us to monitor and protect the water quality of Poyang Lake.

Table 2. Sampling dates and mean values of sampling data for the study area.

Date (YY-MM) Chl-a (mg/m3) TP (mg/L) TN (mg/L) COD (mg/L)

2017-1 1.03 0.12 2.06 *

2017-4 3.98 0.14 1.91 *

2017-10 3.53 0.08 1.97 2.79

2018-1 3.95 0.13 2.98 3.47

2018-4 5.19 0.16 2.37 2.58

2018-10 6.27 0.12 1.89 2.30

* TIndicator not monitored at representative monitoring sites.
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2.2.3. Explanatory Variables

Considering that we have only spectral bands as input variables cannot fully mine
the potential relationships among the data, we adopt related indices used in previous
water body monitoring, such as NDCI [47]. These indices have been verified for their
feasibility, thus avoiding redundant work of band combinations. Therefore, in this study,
we selected 15 variables, including 10 spectral bands and 5 related indices, as shown in
Table 3. The spectral indices are composed of the surface reflectance values of bands B2,
B3, B4, B5, B6, B7, B8, B8A, B11, and B12, and we chose the band combinations used in
existing algorithms for the related indices. When evaluating the content of Chl-a, we use
10 bands and NDCI, Enhanced Three [48] as input variables, similarly, when evaluating
the content of other water quality parameters, we choose 10 bands and related indices as
input variables, including TPindex, TNindex and CODindex [31]. The spatial resolution of all
explanatory variables is uniformly 10 m to ensure the consistency and accuracy of the data.

Table 3. Explanatory variables considered in this experiment.

Variable Resolution (m) Description

B2 10 Visible blue

B3 10 Visible green

B4 10 Visible red

B5 10 Near-infrared

B6 10 Near-infrared

B7 10 Near-infrared

B8 10 Near-infrared

B8A 10 Near-infrared

B11 10 Shortwave infrared

B12 10 Shortwave infrared

Enhanced Three 10 B6−B5

NDCI 10 (B5 − B4)/(B5 + B4)

TPindex 10 B2/(B3 + B4 + B12)

TNindex 10 (B11 − B12)/(B5 + B8A)

CODindex 10 (B6 + B8A)/(B4 − B12)

2.3. Correlation Analysis

Correlation analysis is an analysis of the relationship between two or more variables,
often used to measure the degree of association between variables. To demonstrate the
independence of water quality concentration measurement data, this study uses the Pearson
correlation coefficient. The correlation coefficient, a normalized measure of the covariance
and standard deviation between two variables, quantifies their degree of correlation. This
is calculated as per Equation (1). Its value lies between −1 and +1, with a larger absolute
value indicating a stronger correlation.

r(x, y) = ∑n
i=1(xi − x)(yb − y)√

∑n
i−1(xi − x)2 ∑n

i−1(yi − y)2
(1)

r(x, y) represents the correlation coefficient between water quality parameters, xiand yi
represent the sample values of the water quality parameters, and x and y represent the
average values of the sample variables. The closer r(x, y) is to 1, the stronger the correlation
between the variables.
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2.4. Model Development

In this study, we developed a multi-model integrated learning method, named STE.
This method uses an integrated learning framework, first introducing the Gradient Boost-
ing Machine (GBM) to acquire input data and generate independent prediction results.
Different machine learning models have different perceptual abilities and can extract differ-
ent features from the data. Numerous studies have shown that averaging over ensemble
members using multiple models can yield more accurate and reliable predictions than a
single model [49]. Finally, the Lasso algorithm is introduced as a combination method to
form ensemble predictions, thereby maximizing robustness and minimizing the possibility
of overfitting. In this study, based on the characteristics of the data used, we chose three
Boosting algorithms as the basic regression models, taking the B2, B3, B4, B5, B6, B7, B8,
B8A, B11, and B12 bands of Sentinel-2 and five related indices as the input variables for
the regression model. The related indices as input variables can fully mine the potential
relationships among the data, further ensuring the accuracy of the model. The specifics are
as follows.

2.4.1. Ensemble Model

An ensemble model is a powerful machine learning method that can prevent overfit-
ting and improve generalization ability [50]. This model is essentially built from multiple
weakly supervised learning models, and then optimized the final prediction results through
methods such as averaging. This method can reduce the accuracy bias of individual models,
thereby improving the robustness and reliability of the overall model.

In ensemble learning, it is usually recommended to use heterogeneous base learners,
because this can increase the diversity between models and thus improve the generalization
effect [51]. In the field of machine learning, there are many different types of models, each
model has a unique data perception ability, and is committed to extracting different types
of features from the data. Therefore, by combining different machine learning models, we
can better understand and perceive data, thereby improving the performance of the overall
model [52].

2.4.2. Gradient Boosting Machine

GBM is a machine learning technique that consists of multiple weak prediction models
(usually decision trees). In each iteration, it trains a new weak prediction model to fit the
prediction error of all previous models (i.e., the difference between the true value and the
predicted value), and then adds the prediction result of this new model to the previous total
prediction result, thus obtaining a more accurate and stable prediction model. Currently,
there are three GBM algorithms that are widely praised in the machine learning field,
namely XGBoost, LightGBM, and CatBoost.

XGBoost is an efficient boosting algorithm that can be used to solve prediction and
classification problems based on the gradient boosting framework. The classification and
regression trees (CART) in XGBoost are sequentially constructed, and each new tree will
correct the prediction error of the previous trees, making the model able to handle highly
correlated features and reduce the problem of multicollinearity [53]. XGBoost also controls
the complexity of the tree and prevents overfitting by adding regularization terms to the
objective function. Therefore, XGBoost algorithm has the advantages of the fast execution
and integration of high-dimensional feature processing.

LightGBM, an advanced ensemble learning algorithm, is built upon the gradient
boosting decision tree (GBDT), a type of boosting algorithm. It primarily employs two
novel techniques, gradient-based one-side sampling (GOSS) and exclusive feature bundling
(EFB), to enhance both training efficiency and accuracy. GOSS, in particular, selects samples
with larger gradients from the dataset, thereby amplifying their contribution to information
gain. EFB combines some features with low correlation into a group to reduce data
dimensionality [36]. This makes LightGBM superior to other boosting algorithms in terms
of training speed and prediction performance [54–56].
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CatBoost is a GBDT based on machine learning algorithm. Its uniqueness lies in its
ability to handle heterogeneous features, noisy data, and complex dependencies. This
algorithm employs a method based on objective statistics aimed at reducing computational
complexity and uses Bayesian optimization to avoid the risk of overfitting. In the process of
model construction, CatBoost uses a greedy search strategy, progressively integrating weak
models to build a powerful predictive model [57]. Simultaneously, CatBoost introduces an
ordered boosting method to change the gradient estimation method in classical algorithms.
This method can effectively overcome the prediction offset caused by gradient bias, thereby
further enhancing the generalization ability of the model [40].

2.4.3. The Least Absolute Shrinkage and Selection Operator

The Lasso algorithm [58] is an optimized least squares estimation method. It introduces
a tuning parameter Lambda (λ) to penalize the regression coefficients, thereby achieving
the minimization of the sum of squared errors. Specifically, the LASSO algorithm adds a
regularization term to the loss function L of multiple linear regression. This regularization
term is the product of the L1 norm β of the weight vector and the regularization coefficient λ:

L = ∥y − Xβ∥2 + λ∥β∥1 (2)

Here, X = (x1, x2, . . . , xk) represents the independent predictions of K sub-models, and
y represents the true value. By introducing the L1 penalty term, we can bring sparsity
into the optimal coefficients. As the value of λ increases, the least squares estimate will be
compressed to 0, and large estimates will be compressed to a constant. In this study, we
use a grid search method to determine the optimal λ value between 0.001 and 1.

2.5. Regression Evaluation Metrics

To evaluate the performance of the model, we adopted the coefficient of determination
(R2), root mean squared error (RMSE) and mean absolute error (MAE) as the evaluation
indicators. RMSE is an indicator that reflects the average error size between the predicted
values and the actual values. RMSE is commonly used to evaluate the fitting effect of re-
gression or compare the advantages and disadvantages of different models. It is considered
as an excellent general error indicator for numerical prediction. MAE is an indicator that
measures the average deviation degree between the predicted values and the actual values.
The smaller the value, the smaller the deviation between the predicted values and the
actual values, and the better the model performance. These indicators can quantitatively
reflect the fitting degree and prediction accuracy of the model. Their calculation formulas
are as follows:

R2 = 1 − ∑N
i=1[pi − p̂i]

2

∑n
i=1[pi − p̄i]

2 (3)

RMSE =

[
1
N

N

∑
i=1

(pi − p̂i)
2

]1/2

(4)

MAE =
1
N

N

∑
i=1

|pi − p̂i| (5)

pi and p̂i represent the observed and model-estimated concentrations of water quality
parameters for sample i, N represents the total number of observations, and p̄i represents
the mean of the observed values.

3. Result and Analysis
3.1. Correlation Analysis

In order to study the correlation among the water quality parameters of Poyang Lake,
we calculated the correlation between each water quality parameter. As depicted in Table 4,
there is a positive correlation (r = 0.533) between TP and TN. A weak correlation (r = 0.294)
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exists between Chl-a and TN, while the correlations among other water quality parameters
are relatively weak. Based on the strength of the correlation, it can be inferred that the
water quality of Poyang Lake is influenced by various parameters to some extent, leading
to its spatiotemporal variation.

Table 4. Correlation coefficients between water quality parameters.

Chl-a TP TN COD

Chl-a 1 0.082 * 0.294 ** 0.01

TP 0.082 * 1 0.553 ** 0.123

TN 0.294 ** 0.533 ** 1 0.184

COD 0.01 0.123 0.184 1

**, * represent 5% and 10% significance levels, respectively.

3.2. Model Performances and Evaluation

This study uses on-site measurement data and the reflectance of Sentinel-2 to develop
a model for assessing the content of Chl-a, TP, TN and COD in Poyang Lake. We conducted
a spatial correlation analysis of the four water quality parameters under investigation using
ArcGIS software. The Moran’s I for Chl-a was 0.30, with a Z-score of 1.15. For TP, the
Moran’s I was 0.031, with a Z-score of 0.67. TN had a Moran’s I of 0.01 and a Z-score of
0.64. Lastly, the COD had a Moran’s I of 0.32 and a Z-score of 1.11. These results suggest
that all four water quality parameters are in a random state, indicating that they are not
influenced by spatial autocorrelation. We selected bands B2, B3, B4, B5, B6, B7, B8, B8A,
B11, and B12, as well as five related indices based on empirical algorithms already used
in inland lakes, as input variables, and the concentrations of Chl-a, TP, TN, and COD as
output variables. We matched the in-situ water quality data with the Sentinel-2 images
(two-day window). In order to obtain a stable and reliable inversion model, it is necessary
to establish a training set and a validation set before inverting the water quality parameter
model. In this experiment, 80% of the total sample size of each water quality parameter
(the total sample sizes of chl-a, TP, TN, and COD are 115, 210, 210, and 95, respectively) is
randomly selected as the training set, and 20% as the validation set. The training set data is
used to construct the inversion model, using relevant bands and indicators as input factors.
The validation set is used to verify the accuracy of the model. This is part of our research,
aiming to accurately assess the water quality of Poyang Lake through scientific methods.

3.2.1. The Performance of The STE Model

Figure 3 shows the performance of the STE model, and we find that the model performs
well on the test data. Overall, the estimation and field measurement of Chl-a concentration
have high consistency. The R2 for all water quality parameters are greater than 0.85,
indicating that this model has strong data mining capabilities, indicating that the model has
strong data mining ability. Among the three water quality parameters, Chl-a has the highest
prediction accuracy (R2 = 0.94, RMSE = 1.15 mg/m3, and MAE = 0.81 mg/m3), and TP has
the lowest prediction accuracy (R2 = 0.88, RMSE = 0.01 mg/L, and MAE = 0.01 mg/L). The
performance of the evaluation model is influenced by the concentration of water quality
parameters. In this dataset, the concentration of TP is relatively low, resulting in the lowest
prediction accuracy for TP. By comparison, we find that all the machine learning methods
used in this study have superior data mining ability, among which GBM has the most
significant data mining ability. Then, after further improving the prediction accuracy of the
model by Lasso algorithm, it proves the effectiveness of the multi-model ensemble strategy
proposed in this paper.
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( a )  C h l - a ( b )  T P

( c )  T N ( d )  C O D

Figure 3. Performances of models for water quality parameters (Chl-a, TP, TN, and COD).

3.2.2. Comparison with Other Models

We compared the performance of our proposed STE model with five commonly used
machine learning methods (XGBoost, CatBoost, LightGBM, RF, and SVR) in estimating
four water quality parameters. The evaluation indicators of each model are shown in
Table 5. However, these models rely on data from certain specific research areas and may
not perform well in other areas. In the evaluation model, the concentration of water quality
parameters has an impact, with the concentration of TP being relatively low. At the same
time, TP is a non-optically active parameter, and a single machine learning algorithm
cannot fully exploit its nonlinear relationship with surface reflectance. The STE model
studied in this paper performs better on the test set. Although the bands from different
satellites may have some impact, the input variables of this model include multiple water
body indices. These indices can reflect the optical properties and water quality conditions
of the water body, thereby enhancing the correlation between data and overall model
performance stability. In addition, we found that all models estimate Chl-a quite accurately,
while estimating TP is the most difficult. Except for the fitted STE model, R2 greater than
0.85, and R2 of other models are all less than 0.8. The STE model proposed in this paper
significantly outperforms other models in evaluation indicators such as R2, RMSE, and
MAE, indicating that it has strong potential and application value in estimating water
quality parameters.
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Table 5. Comparison of model performance metrics (R2, RMSE and MAE) between STE model and
other models.

Parameters Metrics
Model

STE XGBoost CatBoost LightGBM RF SVR

Chl-a

R2 0.94 0.92 0.92 0.91 0.78 0.61

RMSE 1.15 0.66 1.52 1.30 5.85 10.86

MAE 0.81 0.66 0.99 0.73 1.78 2.14

TP

R2 0.88 0.66 0.75 0.70 0.70 0.65

RMSE 0.01 0.02 0.02 0.02 0.03 0.05

MAE 0.01 0.03 0.02 0.02 0.10 0.12

TN

R2 0.92 0.88 0.87 0.85 0.80 0.63

RMSE 0.02 0.04 0.05 0.03 0.05 0.09

MAE 0.09 0.12 0.14 0.12 0.17 0.17

COD

R2 0.93 0.92 0.90 0.74 0.82 0.69

RMSE 0.02 0.04 0.04 0.03 0.07 0.11

MAE 0.10 0.13 0.14 0.12 0.21 0.15

For each water quality parameter, the evaluation metrics with higher performance are shown in bold.

3.3. Spatial and Temporal Distribution of Water Quality Parameters
3.3.1. Seasonal Variation of Four Water Quality Parameters

To observe the seasonal distribution of Chl-a, TP, TN, and COD in Poyang Lake, the
model proposed in this paper is used to retrieve the concentration of each parameter in
the water based on sampling points and Sentinel-2 images. The date of the Sentinel-2
images used is close to the date of in situ sampling point measurements. Figure 4 shows
the average concentrations of Chl-a, TP, TN, and COD corresponding to the inversion
results for each season from 2017 to 2018. As depicted in Figure 5, we have charted the
seasonal distribution of various water quality parameters. As can be seen from the figure,
the seasonal variation of Chl-a is the most significant, reaching its peak in spring, followed
by autumn, and lowest in winter. This may be related to the increase in water temperature
and light intensity in spring, which is conducive to the reproduction of algae such as
cyanobacteria. The massive growth of cyanobacteria in summer also results in a higher
concentration of Chl-a in autumn. Conversely, the TP concentration is at its maximum
in spring and minimum in autumn and winter. This could be due to local temperature
and precipitation changes, causing phosphorus elements from soil and vegetation to be
swept into the water body with the springtime increase in temperature and rainfall. The
TN concentration does not change significantly throughout the year, but it is slightly higher
than other seasons in winter. The main reason may be that there is less rainfall in winter,
while nitrogen elements from domestic pollutants around the watershed flow into the lake.
The COD does not change much in spring and winter, and the concentration is high, while
the concentration is low in autumn. The frequency and intensity of summer rainfall lead to
an influx of nutrients like nitrogen and phosphorus into the reservoir, thereby causing a
rise in the concentration of Chl-a.
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( a )  C h l - a ( b )  T P ( c )  T N ( d )  C O D

Figure 4. Average Chl-a, TP, TN, and COD concentrations retrieved by the STE model between 2017
and 2018.
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Figure 5. Mapping of the seasonal variation distributions of Chl-a, TP, TN and COD.

3.3.2. Spatial Variation of Four Water Quality Parameters

To further validate the model’s applicability from this study, we utilized it for the
remote sensing image analysis of Poyang Lake. As depicted in Figure 6, the spatial
distribution of Chl-a, TP, TN, and COD in Poyang Lake is shown. The figure reveals
that the majority of the water areas in the study region are in a healthy condition, aligning
with the findings from the 2018 Water Resources Bulletin of Jiangxi Province. The Chl-a and
TN contents in the lake tail are higher than those in the lake center and lake head, which
may be related to the influence of exogenous pollutant input and water retention from
upstream in the lake tail. The elevated concentrations of Chl-a and TN in the lake’s center
could be attributed to the lake’s predominantly sloping terrain. Frequent rainfall can lead
to soil erosion, introducing nitrogen and phosphorus elements into the lake’s center. The
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relatively high TP concentration at the lake’s head might be associated with the widespread
presence of industrial parks and heightened human activity in that area. A large amount of
nutrients from urbanization and industrialization flow into the lake head, resulting in high
TP concentration.
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Figure 6. Mapping of the spatial distributions of Chl-a, TP, TN and COD.

4. Discussion

In this study, we resampled Sentinel-2 images to enhance their spatial resolution to
10 m. This is because in the spectral indices and inversion models we constructed, the
initial resolution of most bands is either 10 m (e.g., bands 2, 3, 4, and 8) or 20 m (e.g., bands
5, 6, 7, 8A, 11, and 12). By resampling these coarse spatial resolution bands to a finer spatial
resolution, we can enrich the spatial information. Considering the complexity of the optical
environment of inland lakes and the spatial variability of water quality, in order to better
retain spatial details and display the spatial variation of water quality as much as possible,
we chose to resample the coarse spatial resolution bands to 10 m.

Cloud contamination is one of the main reasons limiting the application of remote
sensing images. Due to the obstruction of its cloud layer, it is impossible to observe surface
information. We performed cloud removal operations on Sentinel-2 remote sensing images.
Cloud removal can significantly reduce the situation where the cloud layer obscures the
surface, making the surface information more clearly displayed, which is particularly
important for the quantitative extraction of surface features, such as the extraction of
surface reflectance of water bodies in this study. At the same time, we shortened the time
window for selecting images, which helps to capture the remote sensing images closest to
the sampling time of water quality parameters, can reduce the variation error caused by
too long time intervals, and improve the accuracy and reliability of the results.

This paper aims to enhance the accuracy and efficiency of remote sensing inversion
of water quality parameters using machine learning ensemble models. The theoretical
basis for the remote sensing quantitative inversion of water quality parameters is the
significant difference in reflectance within a certain range due to the difference in water
component content. This paper explores the potential of using various machine learning
ensemble models to retrieve water quality indices (non-optical/optical active parameters).
The machine learning ensemble model reflects the complex nonlinear relationship between
water quality parameters and spectral reflectance. Therefore, the changes in reflectance in
the study area are consistent with the changes in water quality parameter values. Typically,
the process of inverting water quality parameters using satellite imagery involves analyzing
the correlation between these parameters and remote sensing reflectance to construct a
remote sensing inversion model. In practical research, it is common to form a robust link
between point data from field sampling and surface data from remote sensing pixels of
varying spatial resolutions. Both remote sensing observation values and sampling point
measurement values need to be corrected based on ground reference points. The conversion
of the two will inevitably produce some errors, which is a kind of uncertainty in quantitative
remote sensing inversion. Therefore, we choose to use high spatial resolution images to
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reduce the errors brought by scale effects in the inversion process, thereby improving the
accuracy and efficiency of water quality monitoring.

In addition, the proposed model still has potential room for improvement. First, the
accuracy of the model highly depends on the input data. The errors in in-situ measurement
data and Sentinel-2 satellite image processing may increase the uncertainty of the model,
especially considering that the data we use come from different laboratories and adopt
different processing methods and standards. In addition, although we have performed
cloud removal operations on Sentinel-2 data to reduce the pollution of clouds and cloud
shadows in the image and retain more valid information, this may introduce some errors.
Therefore, when studying lake water quality assessment in the future, we must take
into account this regional variability. Finally, our STE model did not incorporate spatial
information and timestamps into model construction, which may affect the generalization
ability of the model. Therefore, in future work, we plan to develop a reasonable spatio-
temporal coding method to further improve the generalization ability of the model. This
will be the focus of our attention and improvements in the next step.

5. Conclusions

In this study, we established a high-precision water quality parameter estimation
model based on ensemble learning and used the 10 m high-resolution imagery of Sentinel-2
to monitor the seasonal changes of Poyang Lake from 2017 to 2018, and conducted a
preliminary analysis of the spatio-temporal distribution of water quality in Poyang Lake.
The conclusions of this study can be summarized as follows:

• We included multiple related indices, such as NDCI, Enhanced Three, etc., as predic-
tors. These related indices have been used for the inversion of water quality in inland
lakes, verifying their high correlation with multiple water quality parameters. These
related indices can enhance the correlation between Sentinel-2 remote sensing data
and water quality parameters, thereby greatly enhancing the predictive potential of
the model.

• We proposed a new STE model, which combines advanced machine learning meth-
ods and uses an integrated strategy to enhance the robustness of the model. The
results show that the model has good performance in achieving accurate predictions
(R2 > 0.85). At the same time, the water quality parameters predicted by the model
are very close to the field measurement values, and can well realize the inversion of
water quality parameters of medium-sized water bodies.

• We used the STE model to draw a distribution map of the seasonal and spatial changes
in the study area from 2017 to 2018, and found that the water quality parameter
values of Poyang Lake generally showed an upward trend and had certain seasonal
changes. From the figure, it can be seen that the concentrations of Chl-a and TN at
the tail of Poyang Lake are higher than those in the lake, and the TP concentration at
the head of the lake is relatively high. Overall, the water quality of Poyang Lake is
good, and corresponding water quality management measures should continue to
be implemented.

This research offers a practical and effective approach for the surveillance and man-
agement of water quality parameters in inland water areas. Future endeavors will involve
exploring the alterations in water quality parameters of inland waters based on the STE
model, contributing to the safety and administration of inland water quality. Furthermore,
the accuracy of the method could be improved by utilizing multiple data sources.
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