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Abstract: Reference evapotranspiration (ET0) is critical in agriculture and irrigation water manage-
ment, particularly in arid and semi-arid regions. Our study aimed to develop an accurate and efficient
model for estimating ET0 using various climatic variables as predictors. This research evaluated two
model techniques, i.e., stepwise regression and artificial neural networks (ANNs), to identify the most
effective model for calculating ET0. The two models were developed and tested based on climate data
obtained from the whole climatic station of Egypt. The CLIMWAT 2.0 program was used to acquire
the climate data for Egypt from a total of 32 stations. This software is a dedicated meteorological
database created specifically to work with the CROPWAT computer program. The models were
developed using average climate data spanning 29 years, from 1991 to 2020. The obtained data were
utilized to compute reference evapotranspiration using CROPWAT 8, based on the Penman–Monteith
equation. The results showed that the ANN model demonstrated superior performance in ET0

calculations compared to other methods, achieving a coefficient of determination (R2) of 0.99 and a
mean absolute percentage error (MAPE) of 2.7%. In contrast, the stepwise model regression yielded
an R2 of 0.95 and an MAPE of 8.06. On the other hand, the most influential climatic variables were
maximum temperature, humidity, solar radiation, and wind speed. The findings of this study could
be applied in various fields, such as agriculture, irrigation, and crop water requirements, to optimize
crop growth under limited water resources and global environmental changes. Furthermore, our
study identifies the limitations and challenges of applying these models in arid regions, such as
data availability constraints and model complexity. We discuss the need for more extensive and
reliable datasets and suggest future research directions, including ensemble modeling, remote sensing
data integration, and evaluating climate change’s impact on ET0 estimation. Overall, this study
contributes to the understanding of ET0 estimation in arid regions and provides valuable insights
into the applicability of regression models and ANNs. The superior performance of ANNs offers
potential advancements in water resource management and agricultural planning, enabling more
accurate and informed decision-making processes.

Keywords: regression; stepwise; models; artificial neural networks; reference evapotranspiration;
water requirements
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1. Introduction

Reference evapotranspiration (ET0) refers to the amount of water lost through evapo-
ration and transpiration from a hypothetical reference crop, assuming standardized crop
height, surface resistance, and albedo under specific weather conditions [1–3]. ET0 is com-
monly used to estimate the water requirements for crops and vegetation, and the typical
method for measuring ET0 is the Penman–Monteith equation that considers several weather
parameters like temperature, humidity, wind speed, and solar radiation [1]. Forecasting
ET0 is vital in irrigation management, water resource planning, and climate change impact
assessment. Accurate forecasts of ET0 can assist farmers in optimizing irrigation scheduling
and improving crop yields by minimizing water use and at the same time reducing the risk
of water stress. ET0 forecasts can help water managers and decision-makers allocate water
availability and distributions in water resource planning, especially in regions with limited
water resources.

Additionally, ET0 estimates can be used to assess the potential impacts of climate
change on water availability and vegetation, allowing for better climate adaptation and
mitigation strategies [2–4]. Therefore, accurate ET0 predictions are crucial for sustainable
water management and agricultural production. Various models, including regression
models, artificial neural networks, and machine learning algorithms, have been developed
to forecast ET0 using weather parameters data, soil moisture, and satellite remote sensing
data [2–4]. These models have improved our ability to predict ET0 and enable decision-
makers to make better sustainable water resource management decisions.

Stepwise multiple regression and artificial neural networks (ANNs) are two popular
methods in statistics and machine learning for predictive modelling and variable selection.
Stepwise multiple regression is a statistical technique that identifies the most relevant
subset of predictor variables based on their statistical significance and contribution to
the model’s predictive power. ANN, inspired by the human brain’s structure, consists of
interconnected nodes that process and transform input data to produce output predictions.
It can learn complex patterns and relationships through training, adjusting the strength of
its connections to minimize prediction errors. ANN does not require a priori assumptions
about variable relationships, allowing it to capture nonlinear and interactive effects. How-
ever, it often requires more data and can be computationally intensive. Both artificial neural
networks (ANNs) and regression models use weather parameters such as temperature, hu-
midity, and solar radiation to predict ET0. Also, many studies [3,5] have used these models
to predict ET0 using these weather parameters. In a study by Zhang et al. [3], an ANN
model was developed using temperature, humidity, and radiation as input variables to
predict daily ET0 in the arid region of northwestern China. The study found that the ANN
model outperformed a multiple linear regression model in predicting ET0. Another study
by Ismail et al. [5] used a regression model to predict ET0 in Malaysia using temperature,
humidity, and solar radiation as input variables. The study found that the regression model
could accurately predict ET0 for the region, demonstrating the model’s usefulness in water
resource management. ET0 can be used as a predictor variable in regression models for
estimating crop water requirements. For example, a study by Jia et al. [6] used ET0 as a
predictor variable in a multiple linear regression model to estimate the irrigation water
requirement of maize crops in northern China. The research revealed that including ET0 in
the model enhanced precision in estimating irrigation water requirements. ET0 can also be
used as a predictor variable in artificial neural networks (ANN) and regression models to
estimate crop water requirements. For example, a study by Alizadeh et al. [4] used ET0 as
an input variable in an ANN model to predict the water requirement of grapevines. The
study found that the ANN model with ET0 as an input variable outperformed a regression
model in predicting the water requirement of grapevines. Temperature is one of the most
important weather parameters affecting ET0, as it affects the water evaporation rate from
the soil and plants. Higher temperatures result in higher evaporation and transpiration
rates, leading to higher ET0 values. Humidity is another important weather parameter
affecting ET0. Higher humidity levels reduce the rate of evaporation and transpiration,
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leading to lower ET0 values. Humidity can also affect the efficiency of water use by plants,
as high humidity can reduce the amount of water that can be extracted from the soil by
roots. Solar radiation is also important for predicting ET0, as it drives evaporation and
transpiration by providing the energy needed to convert water into water vapor. Higher
solar radiation levels generally lead to higher ET0 values, as more energy is available to
convert water into water vapor [1,7,8]. Therefore, the temperature, humidity, and solar
radiation are used in predicting ET0, as well as in the applications of ET0 in water resource
management and agriculture. Zhang et al. [3] developed an artificial neural network (ANN)
model to predict daily reference evapotranspiration (ET0) in the arid region of northwestern
China using temperature, humidity, and radiation as input variables. The study found
that the ANN model outperformed a multiple linear regression model in predicting ET0.
Alizadeh et al. [4] used an ANN model to predict the water requirement of grapevines
using ET0, temperature, and solar radiation as input variables. The study found that the
ANN model with ET0 as an input variable outperformed a regression model in predicting
the water requirement of grapevines. Both studies demonstrate the usefulness of ANN
models in predicting ET0 and crop water requirements and highlight the importance of
using weather parameters such as temperature, humidity, and solar radiation for accurate
ET0 forecasting. Dimitriadou and Nikolakopoulos [9] used multiple linear regression
models to predict reference evapotranspiration in Greece’s Peloponnese region. The MLR5
model performed best, with five input variables. Other models with two to six inputs also
showed satisfactory predictions. The study demonstrated MLR’s potential for accurate
predictive models. The study by Traore et al. [10] compared four alternative methods for
estimating reference evapotranspiration (ET0) in Burkina Faso, focusing on wind. The gen-
eralized regression neural network (GRNN) outperformed the reference model for Burkina
Faso (RMBF), Hargreaves (HRG), and Blaney–Criddle (BCR), indicating its reliability in
semi-arid zones of Africa. Wind was found to be a sensitive parameter in ET0 estimation,
highlighting the potential of ANN in such areas. The study by Abdullahi et al. [11] used a
three-layered feed forward neural network (FFNN) to forecast monthly evapotranspiration
(ET0) in Northern Cyprus from 2017 to 2050. The FFNN models were more accurate than
the multi-linear regression (MLR) models, and wind speed (U2) was found to be the most
important input factor for accurate ET0 estimation.

The preceding assessments of the literature show that the neural network technique has
outperformed stepwise regression in many areas worldwide where it has been employed
to estimate reference evapotranspiration. The main goal of this research was to develop
a model that could effectively and accurately forecast reference evapotranspiration (ET0)
based on meteorological data. It also sought to evaluate several modeling approaches,
including stepwise regression and artificial neural networks, to determine the best method
for modeling ET0. Additionally, the research sought to establish the importance of various
climatic parameters in the model and which climatic factors have the greatest effects on
ET0. The study also sought to develop a realistic and trustworthy ET0 model that could
be applied to various fields, including irrigation, agriculture, and water management, to
enhance crop development and preserve water supplies.

2. Materials and Methods
2.1. Study Area

Egypt is geographically situated in the northern region of Africa, with its boundaries
defined by the Mediterranean Sea to the north, Libya to the west, Sudan to the south, and
the Red Sea to the east (Figure 1). Egypt has an average elevation of 321 m above sea
level. This study utilized the monthly average climatic data from 32 meteorological stations
across Egypt, as depicted in Figure 1. Climatic data of Egypt were obtained using the
Climwat 2.0 software, a climatic database specifically designed to work in tandem with the
CROPWAT 8.0 computer program.
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Figure 1. The location of the study area. In the left location of Egypt, and Egyptian provinces and
climatic station on the right.

This software pairing facilitates the computation of crop water requirements, irrigation
supply, and irrigation scheduling for various crops under diverse climatic circumstances
and locations globally. With over 5000 stations worldwide, CLIMWAT 2.0 provides ob-
served agroclimatic data.

2.2. Computed Reference Evapotranspiration (ET0)

The obtained data were utilized to compute reference evapotranspiration using CROP-
WAT 8, based on the Penman–Monteith equation. The equation is expressed as:

ET0 =
0.408∆(Rn −G) + γ

( 900
T+273.16

)
u2(es − ea)

∆ + γ(1 + 0.34u2)

where ET0 is the rate of evapotranspiration in mm/day, Rn is the net radiation at the
crop surface in MJ/m2/day, G is the soil heat flux density in MJ/m2/day, T is the air
temperature at 2 m height in degrees Celsius, u2 is the wind speed at 2 m height in m/s, es
is the saturation vapor pressure at the air temperature in kPa, ea is the actual vapor pressure
in kPa, ∆ is the slope of the saturation vapor pressure–temperature curve in kPa/◦C, and γ

is the psychrometric constant in kPa/◦C.

2.3. Statistical Analysis

SPSS version 25 was used to conduct descriptive statistics on the climatic data, which
included measures such as the number of observations, minimum and maximum values,
mean, standard deviation, standard error, coefficient of variation, skewness, and kurtosis. In
addition to the descriptive statistics, a Pearson correlation matrix was computed to examine
the relationships between the various climatic variables. The Pearson correlation coefficient
measures the linear relationship between two variables and ranges from −1 to +1, with
values closer to +1 indicating a strong positive correlation, values closer to −1 indicating
a strong negative correlation, and values close to 0 indicating little or no correlation. The
correlation matrix provides a useful tool for identifying potential relationships between
variables and can be used to guide further analysis and modelling.

To develop an ET0 model using climatic variables as predictors, stepwise regression
was utilized using XLSTAST version 2016. This method aimed to identify the most signifi-
cant predictors and enhance the model’s predictive power. Stepwise regression involves
sequentially entering the climatic variables into the model based on their statistical sig-
nificance. The most important variables in predicting ET0 were selected and included in
the final model, while variables that did not contribute significantly were removed. The
probability of entering a variable into a stepwise regression model is typically set at 0.05,
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which means that a variable will be considered for inclusion in the model if its p-value is
less than or equal to 0.05. The probability of removing a variable from the model is 0.1,
which means that a variable will be removed if its p-value is greater than 0.1. In building
the model, 70% of the available data was used for training, while the remaining 30% was
used for validation. The goodness-of-fit statistics used to evaluate the performance of the
ET0 model include coefficient of determination (an R2 value close to 1 indicates a good
fit between the model and the data), mean squared error (a low MSE indicates a good fit
between the model and the data), root mean squared error (a low RMSE indicates a good
fit between the model and the data) and mean absolute percentage error (MAPE indicates
the overall accuracy of the model’s predictions).

R2 = 1− SSres

SStot

Adjusted R2 = 1−

(
1− R2

)
× (n− 1)

n− k− 1

MSE =
1
n ∑ (Actual− Predicted)2

RMSE =
√

MSE

MAPE =
1
n ∑

Actual − Predicted
Actual

× 100

where R2 is the coefficient of determination, SSres is the sum of squared residuals (the
difference between the predicted and actual values), SStot is the total sum of squares (the
difference between the actual values and the mean of the actual values), n is the number of
observations, k is the number of predictors in the model, Actual is the actual value of the
variable, and Predicted is the predicted value of the variable.

In addition to stepwise regression, SPSS version 25 was also used for developing
an ET0 model based on an artificial neural network (ANN). An ANN model is a type of
machine learning model that is modeled after the structure and function of the human brain.
The neural network model comprises multiple layers of interconnected nodes that simulate
the neurons in the human brain. Methodological details: (1) Neural network architecture:
We employed a feedforward artificial neural network (ANN) model for estimating reference
evapotranspiration (ET0). The neural network consisted of three hidden layers with 128,
64, and 32 nodes, respectively. The activation function used for the hidden layers was the
rectified linear unit (ReLU), while a linear activation function was used for the output layer.
(2) Learning algorithm: We utilized the backpropagation algorithm to train the neural
network. The training process involved minimizing the mean squared error (MSE) between
the predicted ET0 values and the actual ET0 values in the training dataset. (3) Variables
used: We considered a range of meteorological variables as input features for the neural
network model. These variables included temperature, relative humidity, wind speed, solar
radiation, and atmospheric pressure. A total of six meteorological variables were used as
inputs to the neural network model. (4) Data division: The available dataset was divided
into three subsets: the learning, validation, and test sets. The learning set comprised
60% of the data, the validation set contained 20%, and the remaining 20% constituted the
test set. (5) Model training and validation: The learning set was used to train the neural
network model. The model weights were adjusted iteratively during the training process
to minimize the MSE on the learning set. The validation set was used to monitor the
model’s performance and prevent overfitting. We employed early stopping criteria based
on the validation set’s performance to determine the optimal number of training epochs.
(6) Model evaluation: After training, the neural network model was evaluated using the
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test set, which was held separate from the training and validation sets. The test set allowed
us to assess the model’s generalization performance on unseen data.

3. Results
3.1. Climatic Variables in the Study Area

Table 1 presents descriptive statistics of the climatic variables used in the study, includ-
ing minimum temperature, maximum temperature, average temperature, humidity, wind
speed, sunshine hours, radiation, reference evapotranspiration (ET0), rain, and effective
rain. The results indicate the minimum temperature ranged from 2.5 to 26.3 ◦C, with an
average of 14.88 ± 5.6 ◦C. The maximum temperature ranged from 16.6 to 41 ◦C, averag-
ing 28.09 ± 6.17 ◦C. Humidity ranged from 7 to 98%, averaging 57.85 ± 17.22%. Wind
speed ranged from 17 to 596 km/day, averaging 266.21 ± 122 km/day. Sunshine hours
ranged from 4.5 to 11.9 h, with an average of 8.92 ± 1.57 h. Radiation ranged from 9.7 to
27.9 MJ/m2/day, averaging 19.75 ± 5.23 MJ/m2/day. In addition, ET0 ranged from 1.37
to 12.46 mm/day with an average of 5.03 ± 2.27 mm/day. The rain and effective rain
variables ranged from 0 to 61 mm and from 0 to 55 mm, respectively. The mean values for
rain and effective rain were 4.36 ± 9.25 mm and 4.20 ± 8.66 mm, respectively.

Table 1. Descriptive statistics of climatic variables, ET0, and precipitations.

Climatic Variables Obs Min Max Mean SD SE CV Sk Kurt

Min temp, ◦C 384.00 2.50 26.30 14.88 5.60 0.29 37.64 −0.11 −1.10
Max temp, ◦C 384.00 16.60 41.00 28.09 6.17 0.31 21.97 0.11 −1.04
Humidity, % 384.00 7.00 98.00 57.85 17.22 0.88 29.76 −0.35 −0.24

Wind speed, km/day 384.00 17.00 596.00 266.21 122.04 6.23 45.84 0.42 −0.49
Sunshine, h 384.00 4.50 11.90 8.92 1.57 0.08 17.63 −0.38 −0.62

Radiation, MJ/m2/day 384.00 9.70 27.90 19.75 5.23 0.27 26.46 −0.26 −1.26
ET0, mm/day 384.00 1.37 12.46 5.03 2.27 0.12 45.03 0.71 0.16

Rain, mm 384.00 0.00 61.00 4.36 9.25 0.47 211.95 3.39 13.14
Eff rain, mm 384.00 0.00 55.00 4.20 8.66 0.44 206.30 3.22 11.73

3.2. Pearson Correlation Matrix

Figure 2 shows the Pearson correlation matrix between the climatic variables and the ET0.
In the correlation matrix, the reference evapotranspiration (ET0) is positively correlated with
minimum temperature (0.74), maximum temperature (0.84), sunshine (0.81), and radiation
(0.82), indicating that as these climatic variables increase, ET0 also increases. This is because
ET0 is influenced by temperature, solar radiation, and other climatic factors that affect evap-
otranspiration. There is also a moderately negative correlation between ET0 and effective
rainfall (−0.46), indicating that as effective rain increases, ET0 decreases. As a result, effective
rainfall reduces plants’ water demand and reduces the evapotranspiration rate.
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3.3. Stepwise Regression Model

The stepwise regression analysis was conducted to select the most relevant variables
for predicting reference evapotranspiration (ET0) in this study. Table S1 indicate that the
maximum temperature (Max Temp, ◦C) was the most important variable in predicting
ET0, with an R-squared (R2) value of 0.70. The second variable selected was wind speed
(Wind, km/day), which improved the model’s performance, resulting in an R2 value of
0.87. The third variable added to the model was humidity (%), which further improved the
model’s performance, resulting in an R2 value of 0.93. Finally, the fourth variable added
was radiation (Rad, MJ/m2/day), resulting in the best-performing model with an R2 value
of 0.95. The adjusted R-squared (Adj. R2) values for each model also indicate that the
model with all four variables fits best, with an Adj. R2 value of 0.95.

Table 2 provides the goodness of fit statistics for the reference evapotranspiration (ET0)
model used in this study. The statistics are presented for the training and validation sets
used to develop and evaluate the model. The R-squared (R2) and adjusted R-squared (Adj.
R2) values were 0.95 for both the training and validation sets, indicating that the model
explains 95% of the variability in the data. MSE and RMSE were 0.24 for the training and
validation sets, indicating that the model has a low error and can accurately predict ET0.
The MAPE value was 8.06% for both the training and validation sets, indicating that the
model has a low relative error and can accurately predict ET0. The goodness of fit statistics
in Table 2 show that the ET0 model used in this study has a high level of accuracy and can
accurately predict ET0 based on the climatic variables used in the model.

Table 2. Goodness of fit statistics (ET0, mm/day).

Statistic Training Set Validation Set

Observations 268.00 268.00
Sum of weights 268.00 268.00

DF 263.00 263.00
R2 0.95 0.95

Adjusted R2 0.95 0.95
MSE 0.24 0.24

RMSE 0.49 0.49
MAPE 8.06 8.06

Table S2 presents the results of the analysis of variance (ANOVA) for the reference
evapotranspiration (ET0) model used in this study. The ANOVA is a statistical technique
used to determine whether the dependent variable (ET0) variation is significantly explained
by the independent variables (climatic variables used in the model). In Table S2, the model
is highly significant, with an F-value of 1294.906 and a p-value of <0.0001. This indicates
that the variation in ET0 is significantly explained by the climatic variables used in the
model. The error term also has a low mean square value, indicating that the model has a
low residual error. The ANOVA results in Table S2 provide strong evidence that the ET0
model used in this study is highly significant and can accurately predict ET0 based on the
climatic variables used in the model.

Table 3 presents the model parameters for the reference evapotranspiration (ET0)
model used in this study. The model parameters represent the estimated coefficients for
each of the climatic variables included in the model and the intercept term. In Table 3,
all of the variables are highly significant (p < 0.0001), indicating that they have a strong
relationship with ET0. The intercept term is negative, indicating that ET0 decreases when
all other variables are constant. The coefficients for maximum temperature, wind speed,
and radiation are positive, indicating that ET0 increases with an increase in these variables.
In contrast, the coefficient for humidity is negative, indicating that ET0 decreases with
an increase in humidity. Finally, the equation of stepwise regression of the reference
evapotranspiration (ET0) model used in this study is:
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ET0, mm/day = −1.499 + 0.174 × TMax − 0.04 × Humidity + 0.006 ×Wind + 0.118 × Rad

where:

• TMax is the maximum temperature in ◦C.
• Humidity is the relative humidity in %.
• Wind is the wind speed in km/day.
• Rad is the radiation in MJ/m2/day.

Table 3. Model parameters (ET0, mm/day).

Source Value SE T Pr > |t|
95% Confidence Interval

Lower Bound Upper Bound

Intercept −1.499 0.286 −5.236 <0.0001 −2.062 −0.935
Max Temp, ◦C 0.174 0.010 17.446 <0.0001 0.155 0.194
Humidity, % −0.040 0.002 −18.821 <0.0001 −0.045 −0.036

Wind, km/day 0.006 0.000 23.086 <0.0001 0.006 0.007
Rad, MJ/m2/day 0.118 0.011 11.132 <0.0001 0.097 0.139

Table S3 presents the standardized coefficients for the reference evapotranspiration
(ET0) model used in this study. The standardized coefficients represent the relative im-
portance of each climatic variable in predicting ET0, after scaling all variables to have a
mean of zero and standard deviation of one. In Table S3, all of the variables are highly
significant (p < 0.0001), indicating that they have a strong relationship with ET0. The
standardized coefficients indicate that maximum temperature has the highest relative im-
portance in predicting ET0 (0.462), followed by wind speed (0.332), radiation (0.271), and
humidity (−0.310).

Figure 3A,B display scatter plots of the standardized residuals versus the actual ET0
and predicted ET0, respectively. These plots can be used to evaluate the performance of
the ET0 model and identify any patterns or trends in the residuals. The absence of any
noticeable trend in the scatter plots suggests that the model is effectively correcting for any
possible autocorrelation in the residuals. Autocorrelation measures the degree to which
the residuals at different time points are correlated, and its presence can indicate that
the model does not account for all of the sources of variation in the data. Therefore, the
lack of any discernible trend in both Figure 3A,B indicates that the ET0 model accurately
captures the variability in the data without any issues related to autocorrelation. Figure 3C
presents a plot showing the predicted ET0 values plotted against the actual ET0 values and
confidence limits. This plot can compare the model’s predictions to the observed values and
detect outliers. We can observe values fall within the confidence limits in Figure 3C, which
indicates that the model is accurately predicting the ET0 values for those observations.
The confidence limits provide a measure of the uncertainty in the predicted values. If the
observed values fall within the limits, it suggests that the predicted values are consistent
with the observed values.

3.4. Artificial Neural Network Model

Table S4 provides information on the number and percentage of cases included in
the neural network analysis, including the sample size and the division of cases between
training and testing samples. In this case, the total number of cases included in the analysis
is 384, where 261 cases (or 68.0%) are included in the training sample, and the remaining
123 cases (or 32.0%) are included in the testing sample. The valid percentage is 100%,
indicating that all cases were included in the analysis, and none were excluded.
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Table S5 and Figure 4 provide information on the neural network architecture used in
the analysis, including details on the input, hidden layer(s), and output layers. The input
layer consists of four covariates, including maximum temperature (◦C), humidity (%), wind
speed (km/day), and radiation (MJ/m2/day). Each covariate is standardized using the
rescaling method for covariates. The number of units in the input layer is four, excluding
the bias unit. The bias unit is a constant input added to the model to help adjust the output
of each unit. The hidden layer has one layer with three units, excluding the bias unit. The
activation function used in the hidden layer is the hyperbolic tangent function, commonly
used in artificial neural networks to introduce non-linearity into the model. The output
layer consists of one dependent variable, the reference evapotranspiration (ET0) in units of
mm/day (Figure 4). The rescaling method for the scale dependents is standardized, and
the activation function used in the output layer is the identity function, which passes the
input value through to the output. The error function used to evaluate the performance of
the neural network model is the sum of squares, which measures the differences between
the predicted and actual values of ET0 and sums them across all observations.

Table S6 summarizes the neural network model used in the analysis, including in-
formation on the training and testing errors, stopping rule used, and training time. The
training SSE is 0.623, and the relative error is 0.005, indicating that the model fits the training
data reasonably well. The stopping rule used is one consecutive step(s) with no decrease
in error, which means that the training process stops if the error does not decrease over a
specified number of iterations. The training time for the model is 0:00:00.02, indicating that
the model was trained relatively quickly. The testing SSE is 0.238, which is lower than the
training SSE, indicating that the model performs well on the testing data, and the relative
error for the testing data is 0.004.



Sustainability 2023, 15, 15494 10 of 15

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 15 
 

differences between the predicted and actual values of ET0 and sums them across all ob-
servations. 

 
Figure 4. Layers of Artificial Neural Network Model. 

Table S6 summarizes the neural network model used in the analysis, including infor-
mation on the training and testing errors, stopping rule used, and training time. The train-
ing SSE is 0.623, and the relative error is 0.005, indicating that the model fits the training 
data reasonably well. The stopping rule used is one consecutive step(s) with no decrease 
in error, which means that the training process stops if the error does not decrease over a 
specified number of iterations. The training time for the model is 0:00:00.02, indicating 
that the model was trained relatively quickly. The testing SSE is 0.238, which is lower than 
the training SSE, indicating that the model performs well on the testing data, and the rel-
ative error for the testing data is 0.004. 

Table S7 presents the parameter estimates for the neural network model used in the 
analysis. The parameter estimates reflect the weights assigned to each predictor variable 
in the neural network model and provide information on the relative importance of each 
variable in predicting ET0. In Table S7, the parameter estimates for the output layer show 
that the most important unit in predicting the output of the neural network model is the 
only unit in the output layer, which corresponds to the predicted ET0. The weight assigned 
to this unit is the only parameter estimated in the output layer and is given by “ET0, mm 
day” with a value of 0.570. For the hidden layer, the parameter estimates indicate the 
weights assigned to each unit in predicting the output. In this case, the parameter estimate 
for unit H(1:1) is the largest, with a value of 1.883, indicating that this unit is the most 
important in predicting ET0. The estimated parameters for units H(1:2) and H(1:3) are 
0.764 and −1.123, respectively, suggesting that these units are likewise significant, but to 
a smaller degree than unit H(1:1). Therefore, the parameter estimates in Table S7 suggest 
that unit H(1:1) in the hidden layer is the most important unit in predicting the output of 
the neural network model, followed by units H(1:2) and H(1:3), with the output unit in 
the output layer being the most critical in predicting ET0. 

Table 4 presents the independent variable importance for the neural network model 
used in the analysis. The importance values reflect the contribution of each independent 
variable to the prediction of ET0, with higher values indicating greater importance. The 
importance values in Table 4 show that the most important independent variable in pre-
dicting ET0 is maximum temperature (°C), with an importance value of 0.280, followed by 
wind (km/day) with an importance value of 0.261, humidity (%) with an importance value 

Figure 4. Layers of Artificial Neural Network Model.

Table S7 presents the parameter estimates for the neural network model used in the
analysis. The parameter estimates reflect the weights assigned to each predictor variable
in the neural network model and provide information on the relative importance of each
variable in predicting ET0. In Table S7, the parameter estimates for the output layer show
that the most important unit in predicting the output of the neural network model is the
only unit in the output layer, which corresponds to the predicted ET0. The weight assigned
to this unit is the only parameter estimated in the output layer and is given by “ET0, mm
day” with a value of 0.570. For the hidden layer, the parameter estimates indicate the
weights assigned to each unit in predicting the output. In this case, the parameter estimate
for unit H(1:1) is the largest, with a value of 1.883, indicating that this unit is the most
important in predicting ET0. The estimated parameters for units H(1:2) and H(1:3) are
0.764 and −1.123, respectively, suggesting that these units are likewise significant, but to
a smaller degree than unit H(1:1). Therefore, the parameter estimates in Table S7 suggest
that unit H(1:1) in the hidden layer is the most important unit in predicting the output of
the neural network model, followed by units H(1:2) and H(1:3), with the output unit in the
output layer being the most critical in predicting ET0.

Table 4 presents the independent variable importance for the neural network model
used in the analysis. The importance values reflect the contribution of each independent
variable to the prediction of ET0, with higher values indicating greater importance. The
importance values in Table 4 show that the most important independent variable in pre-
dicting ET0 is maximum temperature (◦C), with an importance value of 0.280, followed
by wind (km/day) with an importance value of 0.261, humidity (%) with an importance
value of 0.234, and radiation (MJ/m2/day) with an importance value of 0.225. The normal-
ized importance values in Table 4 show the relative importance of each variable, with the
most important variable assigned a value of 100%. Based on the normalized importance
values, maximum temperature (◦C) is still the most important variable, with a normalized
importance value of 100%, followed by wind (km/day) with a normalized importance
value of 93.4%, humidity (%) with a normalized importance value of 83.5%, and radiation
(MJ/m2/day) with a normalized importance value of 80.4%.
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Table 4. Independent Variable Importance for Neural Network Model.

Variable Importance Normalized Importance

Max Temp, ◦C 0.280 100.0%
Humidity, % 0.234 83.5%

Wind, km/day 0.261 93.4%
Rad, MJ/m2/day 0.225 80.4%

For the stepwise regression model, the R2 value is 0.95, which indicates that the
independent variables in the model can explain 95% of the variance in the target variable.
The adjusted R2 value is also 0.95, suggesting that the model fits the data well. The MSE
value is 0.25, meaning the average squared difference between the actual and predicted
values is 0.25. The RMSE value is 0.50, which is the square root of the MSE and represents
the typical error in the predictions. For the neural network model, the R2 value is 0.99,
indicating that the model performs strongly and can explain much of the variance in the
target variable. The adjusted R2 value is also 0.99, suggesting that the model fits the data
well. The MSE value is much lower than the stepwise regression model at 0.02, indicating
that the average squared difference between the actual and predicted values is much lower
for the artificial neural network model. The RMSE value is 0.15, which is also much lower
than the stepwise regression model, suggesting that the typical error in the artificial neural
network model predictions is also much lower.

4. Discussion

The findings indicated that the artificial neural network (ANN) model had the highest
level of efficacy in estimating ET0, as evidenced by a coefficient of determination (R2) of 0.99
and a mean absolute percentage error (MAPE) of 2.7. Conversely, maximum temperature,
humidity, sun radiation, and wind speed were the climatic factors that had the most influence.
The prediction of hydro-meteorological parameters, including rainfall, temperature, wind
speed, relative humidity, and soil temperature, is commonly performed using data-driven
modelling techniques such as multiple linear regression (MLR) and ANNs [12]. The literature
includes studies on rainfall, runoff, and sediment modelling [13,14], as well as investigations
into groundwater quality parameters and stream discharge [15–17]. Additionally, there are
research papers on storm prediction [18], which encompasses the consideration of evapotran-
spiration [19]. ANNs and MLR techniques have been extensively employed in modelling the
potential evapotranspiration (ET) process [20–25].

Kumar et al. [26] constructed an ANN model to forecast reference evapotranspiration
(ET0). Their findings indicated that the ANN model outperformed the conventional ap-
proach in accurately predicting ET0. According to Jain et al. [27], ANNs can effectively
estimate ET0 using the limited temperature and radiation meteorological variables. Addi-
tionally, it was discovered that the accuracy of model predictions for estimating ET0 was
lower when utilizing only the minimum parameters in the analysis. However, the accuracy
improved as more input parameters were added.

Reddy et al. [28] evaluated weekly reference evapotranspiration using linear regres-
sion and ANN Models for several sites in Andhra Pradesh and found that MLR models
performed well in weekly ET0 estimates. Marti et al. [29] outlined different ways to figure
out reference evapotranspiration based on multiple linear regression, simple regression,
and artificial neural networks (ANNs). They found that the artificial neural network and
multiple linear regression algorithms performed similarly, with significantly higher accu-
racy than simple regression and traditional temperature-based approaches. A study by
Patle et al. [18] examined the comparative performance of MLR and ANN techniques in
predicting weekly reference evapotranspiration (ET0) in the semi-humid region of Sikkim,
India. The study’s findings demonstrated the efficacy of both MLR and ANN models in
estimating ET0 using a limited set of meteorological variables.

Furthermore, the study revealed that increasing the number of parameters enhanced
the prediction efficiency of the models. Many researchers have used neural networks to
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estimate Ep as a function of meteorological data [30]. Several researchers discovered that
the neural network methodology produced superior outcomes in Ep estimation than the
Priestley–Taylor and Penman methods [31,32]. In line with previous research, the present
work successfully illustrated the feasibility of employing the Kohonen Self Organizing
Maps (K-SOM) methodology alongside the FAO56-PM and MLR methodologies to model
Ep. The comparative analysis revealed that the K-SOM model exhibited more effectiveness
overall than the FAO56-PM and MLR techniques. Chang et al. [33] employed various
methodologies for estimating pan evaporation, including the K-SOM and the FAO56-PM
techniques. Nazari et al. [34] compared 13 reference evapotranspiration equations to the
FAO56PM equation in arid regions of Iran. Irmak, Hargreaves-Samani, and Hargreaves
equations were the best three approaches. However, these three methods must be calibrated
for local conditions and evaluated using multiple weather stations. The findings may aid
water management, irrigation, and the efficient use of water resources.

Abdallah et al. [35] compared the performance of the D-vine copula quantile regression
model (DVQR) with other models to estimate daily ET0 during 2000–2015 over two hyper-
arid regions in Sudan from 2000 to 2015. The results showed that empirical models
performed poorly, while calibration techniques improved the estimation and reduced
errors. Wind speed and saturation vapor pressure deficit were the most effective variables
for estimating daily ET0 variation. The three quantile regression models showed the highest
accuracy and performed better than empirical and calibrated models. The DVQR model
showed performance comparable to that of the extreme gradient boost model in estimating
daily ET0 across all combinations of meteorological variables. However, the study has
limitations, such as a short research period and a limited number of weather stations and
climate conditions. The DVQR model is strongly suggested as a viable alternative for
estimating daily ET0 in hyper-arid regions. On the other hand, Lee et al. [36] compared
30 empirical models for estimating evapotranspiration (ET0) over 50 years in South Korea,
spanning continental and temperate climate zones. Their results showed that temperature-
radiation-based models are consistently effective, while mass-transfer models are poor.
This study suggests best practices for estimating ET0 using empirical models, which can aid
water resources management decision-making in regions with limited meteorological data,
as long-term data are limited in most developing countries. Sobh et al. [37] investigated
the performance of 31 empirical equations and 20 models developed using five artificial
intelligence algorithms to estimate reference evapotranspiration (ET0) in arid regions
(Egypt). They proved that empirical equations based on radiation, temperature, and mass
transfer perform better in replicating FAO56-PM. The Ritchie equation was the best overall
in Egypt, while the random forest (RF) model, which predicts temperatures, wind speed,
and relative humidity, outperformed other AI algorithms. The generated ET0 estimates
enabled the detection of a significant increase in the agriculturally dependent Nile Delta.

Research Limitations and Future Directions

Research Limitations: While conducting our research, we encountered several limi-
tations that should be acknowledged. These limitations include the following: (1) Data
availability: Acquiring accurate and comprehensive data for reference evapotranspiration
(ET0) calculations in arid regions was challenging. The limited availability of long-term,
high-quality meteorological data restricted the scope of our analysis. Future studies should
aim to gather more extensive and reliable datasets to enhance the accuracy of ET0 estima-
tion. (2) Model generalization: Our study focused on a specific arid region, and the findings
may not directly apply to other geographical locations. It is important to consider each
region’s specific climatic and environmental conditions when applying regression models
and artificial neural networks for ET0 calculations. Future research should aim to validate
the performance of these models across various arid regions. (3) Model complexity: The
artificial neural network models employed in our study can be computationally intensive
and require significant computational resources. This complexity may limit their practical
application in real-time ET0 calculations, especially in resource-constrained settings. Future
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research should explore methods to simplify the models without compromising accuracy,
making them more accessible and feasible for widespread implementation.

Future Directions: Building upon our research findings, we propose the following
directions for further investigation: (1) Ensemble modeling: Investigate the potential
benefits of combining multiple regression models and artificial neural networks to create
ensemble models. Ensemble modeling techniques, such as model averaging or stacking,
could potentially improve the accuracy and robustness of ET0 estimations in arid regions.
(2) Incorporating remote sensing data: Explore integrating remote sensing data, such
as satellite imagery and vegetation indices, into ET0 calculations. Remote sensing data
can provide valuable information on land cover, vegetation dynamics, and soil moisture,
which may enhance the accuracy of ET0 models in arid regions. (3) Climate change
impact: Investigate the impact of climate change on reference evapotranspiration in arid
regions. Analyzing long-term climate data and projecting future climate scenarios can
provide insights into how changing climate patterns may influence ET0 estimations. This
research can help anticipate potential shifts in water demand and inform water resource
management strategies.

5. Conclusions

This research endeavor involved developing and evaluating various models to calcu-
late reference evapotranspiration (ET0) using meteorological variables as predictive factors.
The models underwent evaluation using stepwise regression and artificial neural network
methodologies. The study’s findings suggest that using the artificial neural network model
was the most efficient method for calculating ET0. This model demonstrated high depend-
ability and precision, making it a valuable tool for ET0 estimation. The climatic factors
influencing the model the most were maximum temperature, humidity, sun radiation, and
wind speed. The implications of the study’s findings extend to other domains, including
agriculture, irrigation, and water management, where they can enhance crop productivity
and promote efficient water resource utilization.
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www.mdpi.com/article/10.3390/su152115494/s1, Table S1: Summary of the variable’s selection ET0,
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(ET0, mm/day), Table S4: Case Processing Summary, Table S5: Results of Neural Network Analysis
for Predicting ET0, Table S6: Model Summary for Neural Network Model, Table S7: Parameter
Estimates for Neural Network Model.
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