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Abstract: Predicting the variability of wind energy resources at different time scales is extremely
important for effective energy management. The need to obtain the most accurate forecast of wind
speed due to its high degree of volatility is particularly acute since this can significantly improve the
planning of wind energy production, reduce costs and improve the use of resources. In this study, a
method for predicting the speed of wind flow in an isolated power system of the Gorno-Badakhshan
Autonomous Oblast (GBAO), based on the use of a neural network with a learning process control
algorithm, is proposed. Predicting is performed for four seasons of the year, based on hourly
retrospective meteorological data of wind speed observations. The obtained wind speed average
error forecasting ranged from 20–28% for a day ahead. The prediction results serve as a basis for
optimizing the energy consumption of individual generating consumers to minimize their financial
and technical costs. In addition, this study takes into account the possibility of exporting electricity
to a neighboring country as an additional income line for the isolated GBAO power system during
periods of excess energy from hydropower plants (March–September), which is a systematic vision of
solving the problem of improving energy efficiency in the conditions of autonomous power supply.

Keywords: isolated power system; neural networks; prediction; wind speed

1. Introduction

Currently, the modern power system infrastructure is undergoing major challenges
caused by the requirements of its operation to pursue green, sustainable, safe, secure,
and resilient considerations. In this regard, one of the driving designs considered to be
potentially optimal is the development and implementation of hybrid power systems at
both global and local levels. To cover the energy needs of regions geographically remote
from large cities, a large-scale introduction of affordable alternative energy sources into this
sector is required, and renewable energy sources are the optimal type to ensure their energy
supply. As a result, the scenario of the functioning of the power system in an isolated mode,
which was considered the most unfavourable a few decades ago, today has great potential
for implementation for local distributed generation based on a variety of renewable energy
sources. However, the utilization of renewable energy such as solar and wind is exposed to
the variability issue due to weather and climate conditions causing the output to fluctuate.
As result, it leads to restricting the stability of renewable energy systems. For example, wind
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speed is highly variable depending on climatic region, physical geography (the proportion
of land and sea, the size of land mass, etc.), topography (obstacles, mountains, valleys), and
time (the amount of wind continuously and annually varies, seasons).

Even though long-term wind fluctuations are difficult to understand, which creates
obstacles to accurately predicting the feasibility of a wind farm project, in a shorter time
these fluctuations are quite predictable, despite the still existing differences depending
on location, time of day, etc.) [1], and as the system operators are interested of the wind
predictions in the short-term horizons (usually, from seconds to an hour), it is a possibility
to manage deviations from the planned wind energy and foresee the action plan in case
of unexpected fluctuations in wind power. As result, the provision of power reserves,
as well as monitoring functions, will be ensured for balancing purposes and guarantee
network security [2]. Therefore, predictability is very important for the implementation
of wind farms in terms of their design optimization, reliable operation, and effective
management/control to provide a possibility for power supply from other generating units
in an organized way targeting cost minimization.

The relevance of predicting and its methods appeared in the last century in the 10 s
and 20 s. It can be assumed that for such a long time this problem if it not been solved
fully but at least reached its minimal error. However, the requirements for the quality of
forecasts and their results’ expectations have increased over time. The key indicators of the
accuracy of the prediction are the following: its reliability, and the speed of the prediction.
Plenty of work is dedicated to predicting issues to seeking the best solutions based on the
targeted application area that is growing annually. Currently, many innovative methods
and models have been developed and designed to predict a variety of tasks.

Examples of the use of combined solar, hydro, and wind energy technologies and
others, depending on their feasibility, include the importance of taking into account the
criteria and requirements for their optimal design, which are widely presented in the scien-
tific works of many authors. Developments are focused on accelerated cost reduction and
improvements in the efficiency of these systems, paying special attention to the description
of the proposed optimization model, for example [3–8]. Therefore, the literature review
in [9] is of great interest, the authors of which consider the results of the study obtained
by comparing a variety of optimization methods to represent the sizes of hybrid systems
necessary for the efficient and economical use of RES.

There are several main groups of methods that are used to predict wind speed such
as [10]:

• Construction of physical meteorological,
• Statistical methods;
• Methods based on machine learning.

The first group of models uses a large amount of meteorological data and complex
models of atmospheric motion [11]. For instance, a model based on the Kalman filter is
presented in [12], in which the change in meteorological parameters is described using
a Gaussian process. Such an approach can provide the required forecast accuracy but
imposes high requirements on the accuracy of input meteorological data, requires an
archive of observations over a long period, and is characterized by high computational
complexity [13]. On the other hand, the statistical approach is much simpler and, in general,
can be applied if only retrospective data on wind speeds are available. As in other areas
where time series forecasting is needed, various autoregressive methods are widely used,
most often these are modifications of ARIMA (Autoregressive Integrated Moving Average)
and methods using exponential smoothing. One of the main advantages of such methods
is low computational work (resulting in ease of customization, low risk of error in the
application, and low computational resource requirements) relative to physical models and
machine learning-based methods. However, their accuracy not always is satisfactory. To
improve accuracy, authors often use hybrid models that combine the principles of autore-
gression in combination with some filtering method. This method has found its application
in works [14–19]. The last group of methods—intellectual models—is very diverse. It
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can be argued that all sections of artificial intelligence were applied to the problem of
predicting wind speed, most often artificial neural networks (ANN) are used [9,20–26];
fuzzy logic [22,26,27], and support vector machine (SVM) [22,28]. Thus, in [9] a detailed
analysis of a hybrid renewable energy system optimum sizing approaches based on genetic
algorithms, particle swarm optimization, and simulated annealing was provided.

For the efficient use of wind energy, wind speed is considered one of the most im-
portant parameters to predict wind turbine power including a selection of a site and the
optimal wind turbine size for a particular site. Wind speed can be predicted using tra-
ditional predicting methods [29], and more recently it has been increasingly observed
using artificial intelligence methods [30]. Hybrid models become more deployed due to
their design advancements and operating benefits leading to improve performance of
stand-alone models. For instance, the authors in [31] proposed the hybrid neural network
(NN) model for short-term wind speed forecasting based on a time-series algorithm with
the consideration of the multi-learner ensemble and adaptive error correction. The hy-
brid model that includes three types of linear time series models such as autoregressive,
moving average, and autoregressive moving average has been used for both short and
long-timescale prediction of wind speeds [32]. Authors in [33] proposed an adaptive neural
fuzzy inference system algorithm for a wind speed prediction at 30 s and 60 s based on its
historical data of wind speed and direction. Another study developed a hybrid prediction
method integrating multiple-layer perception regressor, random forest regressor, K-nearest
neighbours regressor, and decision tree regressor algorithms in the five-minute timescale
targeting the low-cost solution [34]. Many other research works propose and investigate
the feasibility of the robust techniques in terms of their prediction stability and accuracy
considering the input features such as wind speed, wind direction, temperature, air pres-
sure, relative humidity, local time, etc., and defining forecasting of the wind speed, wind
power, turbine power as an output [35–43].

This paper proposes a method for predicting wind speed based on a recurrent neural
network (NN) with feedback in the form of a backpropagation coefficient. At the same
time, forecasting is carried out for four seasons of the year based on hourly retrospective
wind speed data. Two mathematical predicting models are considered for a long-term
continuous sample and individual sample hours in a daily interval. The predicted values
of renewable and alternative energy sources serve as the basis for optimizing the electricity
consumption of individual generating consumers to minimize their financial and technical
costs. Along with this, the possibility of exporting electricity to a neighboring country has
been considered to obtain additional income, in particular, for the GBAO isolated power
system during periods of excess. Such a problem statement is a systematic vision of energy
efficiency in the conditions of autonomous power supply.

The organization of the paper is as follows: Section 2 provides information about the
object of the study and presents an algorithm for managing the learning process. Section 3
contains the results of the review and discussion. Finally, the conclusions are given in
Section 4.

2. Materials and Methods
2.1. The Study Object—Gorno-Badakhshan Autonomous Oblast

The Gorno-Badakhshan Autonomous Oblast (GBAO) is a region of the Republic of
Tajikistan that is located in the eastern part of the country. The isolated power system of
the GBAO has been considered for the validation of the proposed concept. This hybrid
energy system includes generating units based on renewable energy sources. For instance,
hydropower resources are utilized in the hydropower plants (HPP) on small mountain
rivers (in total 11 units) and alternative sources which include one solar power plant (SPP) in
conjunction with an energy storage device. The key feature of the electrical energy balance
under these conditions is the unpredictability of energy generation by the above-indicated
generation sources [44–47].
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The minimum tariffs for wind energy are at least 4 cents/kWh in the world. In the
GBAO, electricity tariffs are 0.24 somoni which is equal to 2.5 cents/kWh. Therefore, wind
energy at the moment in the region cannot compete with existing hydropower and solar
generation from an economic point of view. However, during certain periods there is a
shortage of provided electricity leading to the search for alternative energy sources, where
one of the suitable is wind energy. For instance, from mid-autumn to mid-spring the water
level in the rivers drops that creating a possibility to use wind energy, and in summer
it would be advisable to accumulate excess energy further to export in case of a need or
storage [47–49].

In the GBAO, the network of meteorological observations is considered undeveloped
and insufficiently dense. Therefore, the real potential of wind energy in this region re-
mains practically unexplored until now. Based on the available data, the potential for the
development of wind generation for different regions of GBAO is uneven. For example,
the average annual wind speed on the Fedchenko glacier is 6.0 m/s, and in typical places
such as Lake Karakul—3.0–3.7 m/s. In rural areas such as Rushan, Khorog, Murghab,
and Ishkashim—2.0–2.7 m/s. In general, in most other regions of the country, the average
wind speed is insignificant and varies from 0.9–4.8 m/s [50–52]. The indicators of the wind
energy potential of the GBAO are presented in Figure 1.
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2.2. The Forecasting Model and Learning Process Control Algorithm

As known the dispatching control in the power system is conducted separately for
every hour leading to the requirement of the monitoring of electricity balance for every
hour of the day. Therefore, the predicting block is an important component of safe and
reliable operating services of the modern power system.

In this study, a NN is used to perform such a prediction having a perceptron with one
hidden layer (a multilayer perceptron). In this paper, the simplest model of neural network
architecture is specially selected to show that even for very compact neural networks, the
choice of training method and activation function is very important. In addition, as will be
seen from the results of experimental studies, such a choice is a non-trivial task, since it
depends on the source data and the architecture of the neural network. For comparison,
some of the most frequently used and at the same time significantly different training
methods and activation functions are selected. Sigmoidal activation functions are selected
as a classical function, which together with a hyperbolic tangent has dominated among all
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activation functions for a long time, and ReLU is an example of a newer and at the same
time already very frequently used function. A similar logic is used when choosing a pair of
training methods. The classic Stochastic Gradient Descent underlies many other methods
and the newer Adam.

At the input, the model receives retrospective data on wind speeds, at the output it
gives a forecast—one wind speed value for one hour or 24 h ahead depending on the model
building option such as follows:

(1) Inputs are the previous hours that coincide with the forecast hour during the month
(30 values);

(2) Inputs are all previous hours considered during the week (168 values).

The first option could be explained in such a way: for the forecast of wind speed at
10:00 a.m. on 10 June, wind speeds at 10:00 a.m. on 1 May to 9 June will be used as input
data. As a result, the model can be applied for forecasting one hour ahead and 24 h ahead.

The used NN model can be described as follows:

• Min-max normalizer layer (it scales wind speeds to values from 0 to 1).
• Input layer: 30 or 168 wind speed values.
• Hidden layer with an adjustable number of neurons:

• weighted summators;
• activation function: sigmoid or ReLU.

• Output neuron.
• Inverse min-max normalizer (it scales the last neuron output to wind speed).

A NN is used to perform such a prediction having a perceptron with one hidden layer.
When the NN is training based on the training dataset, it is important that training does not
turn into overfitting, otherwise, the model starts to fit the data instead of revealing the true
dependencies between the input and output variables. The proposed learning algorithm
applies the analysis of the graphs to predict error reduction during training based on the
training and validation parts of the dataset. This allows for stopping the learning process
when it stagnates or when there is a noticeable discrepancy between the error reduction on
the training and validation samples. In turn, to avoid the contribution of the algorithm to
overfitting due to stopping a training at the optimal moment according to the validation
dataset, the decision to end training is made once every 200 training epochs.

Considering both options, the following hyperparameters of the model were deter-
mined experimentally:

(1) The number of hidden layer neurons that varies from 3 to 21 with a step of 3;
(2) The activation functions of the hidden layer such as ReLU and sigmoidal;
(3) The learning method such as SGD and Adam:
(4) The learning rate such as 10−4, 10−3, and 10−2.

2.3. Neural Network Learning Algorithms

In this work, we used common learning algorithms based on stochastic gradient de-
scent: classical stochastic gradient descent (stochastic gradient descent) and adapted (Adam).

If classical gradient descent can be described by the expression [53]:

W = W − αdW, (1)

then the Adam method will be represented as follows [53]:

VdW = β1VdW + (1 − β1)dW (2)

SdW = β2SdW + (1 − β2)dW2 (3)

Vcorr
dW = VdW(1 − βt

1) (4)

Scorr
dW = SdW(1 − βt

2) (5)
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W = W − αVcorr
dW

(√
Scorr

dW + ε
)−1

(6)

where W—weight matrix; dW—a matrix of gradients specifying the direction of error
increase, @E/@W; Vdw—a matrix characterizing the inertial properties of the parameters of
the ANN, in fact, the matrix of the rate of change of parameters; β1—parameter that sets
the balance between considering the previous direction of the gradient and the direction
of the gradient obtained on the next training epoch and the next packet, usually the value
of this parameter is close to 1 (~0.9); Sdw—a matrix characterizing the degree (“energy”,
since the gradient is squared) of the change in the ANN parameters, without taking into
account the direction of change; β2—a parameter that sets the balance between taking into
account the previous energy of changing the direction of the gradient and the direction of
the gradient obtained at the next training epoch and the next packet, usually the value of
this parameter is close to 1 (~0.999); ε—a positive number close to zero to prevent division
by zero; α—the size of the learning step; t—package number during training.

As result, the issue of predicting values based on hourly wind speed samples has been
solved by using the proposed learning process control algorithm in the above-described
solution. Considering both options (activation function and learning algorithm), the
following hyperparameters of the model were determined experimentally:

(1) The number of hidden layer neurons that varies from 3 to 21 with a step of 3;
(2) The activation functions of the hidden layer such as ReLU and sigmoidal;
(3) The learning method such as SGD and Adam:
(4) The learning rate such as 10−4, 10−3, and 10−2.

3. Obtained Validation Results and Discussion

The study was conducted based on wind speed data including an analysis of indicators
of the wind potential of the GBAO for one full year (wind speed values for each hour). At
the same time, a separate construction of models and analysis of the obtained results for
each of the four seasons of the year were carried out. This allows you to develop several
simpler and more concentrated models, instead of creating a single complicated model that
operates in all climate conditions.

The best results for the first option in terms of every combination of the activation
function and the training method for the different seasons are given in Tables 1–4. Data
is transmitted to the input of the model only for the previous hours that coincide with
the forecast hour during the month. Tables 1–4 show that for each of the seasons of the
year, an acceptable result was achieved only when using ReLU and Adam. The optimal
number of neurons is stable and equals 12–15 which indicates the stability of this regularity.
The training step is also the same for the combination of ReLU and Adam and is 10−3,
while when using SGD the optimal step value varies from 10−2 (Tables 2 and 4) to 10−4

(Table 3) depending on the season and the number of neurons. It was found that the best
combination of ReLU +Adam requires from 600 to 800 epochs. Changing the activation
function to Sigmoid or the learning method to SGD slows down the learning process and
does not improve its quality. Therefore, the obtained results of simulations have shown
the advantage of the Adam learning method and the ReLU activation function for all
seasons. Moreover, the sharp changes in wind speed characterize the autumn period in the
examined area (Table 4) which increases the difficulties of the forecasting process.

Table 1. Comparison of the results of different methods of the day ahead wind speed in winter.

Hyperparameters Neurons Learning Rate Epochs MAPE, Train Set MAPE, val. Set

ReLU, Adam 15 10−3 800 15.34 19.57
ReLU, SGD 9 10−3 1200 31.6 31.08

Sigm., Adam 12 10−3 1800 30.73 30.21
Sigm., SGD 15 10−2 600 34.09 32.75
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Table 2. Comparison of the results of different methods of the day ahead predicting wind speed
in spring.

Hyperparameters Neurons Learning Rate Epochs MAPE, Train Set MAPE, val. Set

ReLU, Adam 15 10−3 600 24.58 22.11
ReLU, SGD 6 10−3 1200 34.97 33.19

Sigm., Adam 6 10−3 1200 36.05 33.65
Sigm., SGD 15 10−2 600 36.48 33.78

Table 3. Comparison of the results of different methods of the day ahead predicting wind speed
in summer.

Hyperparameters Neurons Learning Rate Epochs MAPE, Train Set MAPE, val. Set

ReLU, Adam 12 10−3 600 21.58 22.58
ReLU, SGD 12 10−4 1000 26.49 25.20

Sigm., Adam 12 10−3 1200 27.06 25.24
Sigm., SGD 3 10−4 1000 27.01 25.20

Table 4. Comparison of the results of different methods of the day ahead predicting wind speed
in autumn.

Hyperparameters Neurons Learning Rate Epochs MAPE, Train Set MAPE, val. Set

ReLU, Adam 15 10−3 600 19.44 27.78
ReLU, SGD 18 10−3 400 36.31 36.71

Sigm., Adam 12 10−3 600 38.84 38.92
Sigm., SGD 18 10−2 600 38.90 38.98

Simulation results with the detailed experimental procedure and obtained results are
provided in Tables 5 and 6. Similar experiments were executed for all activation functions,
training methods, and the number of neurons and seasons. Table 5 shows that if the
learning rate is too high (10−2), the process does not converge. The error does not decrease
in the learning process. With a correctly selected rate (10−3), the accuracy quickly increases
both on the training and validation sets. If the learning rate is too low (10−4), then the
learning process is very slow, so the time to achieve acceptable accuracy is an order of
magnitude longer than with a correctly chosen step. Table 6 demonstrates the effect of the
number of neurons on the results of model learning. It can be seen that 15 is the optimal
neuron number for the ReLU+Adam option. Since the data set is quite small, an increase
in the number of neurons can lead to the identification of false dependencies. Figure 2
provides examples of the model learning process. For instance, it can be seen that when
using ReLU+Adam, the number of neurons has a much stronger influence on the learning
process than when using ReLU+SGD.

Table 5. Simulation results based on the selection of a learning step for the ReLU and Adam,
15 neurons.

Learning Rate Epochs MAPE, Train Set MAPE, val. Set

10−2 200 31.98 31.07
10−2 400 32.08 31.53
10−3 200 27.10 27.32
10−3 400 20.09 22.49
10−3 800 15.38 19.57
10−4 200 34.42 35.38
10−4 400 33.47 32.40
10−4 800 32.37 31.54
10−4 3000 23.11 24.55
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Table 6. The results of experiments on the selection of a learning rate for the ReLU activation function,
the Adam training method, learning rate 10−3, 800 epochs.

Neurons MAPE, Train Set MAPE, val. Set

9 26.53 26.64
12 20.39 24.44
15 15.38 19.57
18 17.07 20.93
21 18.02 21.72
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when the number of neurons changes, the training set (a) and the validation set (b); the learning
process for the winter period, (ReLU, SGD) with a learning step of 10−3 when the number of neurons
changes, the training set (c) and the validation set (d).

For considering the second option, when the model accepts data for all previous hours
during the week, the best ReLU+Adam configuration was taken with a learning rate of
10−3, and the number of neurons was selected separately (Table 7). The obtained results
show that this option is significantly inferior to the option when only the corresponding
hours of the previous day are used for the forecast (the first option). It also indicates a very
high variability of wind speed in the GBAO of the Republic of Tajikistan. The obtained
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results of the day ahead wind speed predictions are presented in Figure 3. It presents the
variability of wind speed and shows that the forecast repeats the daily profile in general
but in some hours the deviations can be very large.

Table 7. The results of an hour ahead predicting (ReLU+Adam, 10−3 learning rate).

Season Neurons MAPE, Train Set MAPE, val. Set MAPE, val. Set,
24 h ahead

Winter 18 29.40 35.39 19.57
Spring 15 28.26 39.50 22.11

Summer 18 25.43 31.91 22.58
Autumn 18 25.24 36.52 27.78
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4. Conclusions

Nowadays to achieve carbon neutrality all over the world, there is a need for a rapid
increase in the capacity of installations for generating electricity from RES, among which
wind energy remains the undisputed leader. However, further expansion of wind energy
production will require better climate forecasts that will be able to more accurately assess
changes in wind speed in the coming seasons, years, and decades. This is extremely
important for the planning of wind energy resources, which in turn is necessary to facilitate
the large-scale integration of wind energy into the broader energy system. Wind energy,
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being at the same time a clean, easily accessible, and sustainable source of energy, is
becoming increasingly important in the modern energy system. However, the chaotic,
random, irregular, and unstable nature of its changes remains a big problem for the active
introduction of wind farms into the energy sector, which, in turn, has a significant negative
impact both on the planning and management of energy systems in general and on the
dynamic management of wind turbines in particular. In this regard, the need to obtain
the most accurate forecast of wind speed, which can improve the planning of wind energy
production, reduce costs and improve the use of resources, is particularly acute.

This work determines the optimal hyperparameters of a multilayer perceptron such as
the number of neurons in the hidden layer, the learning algorithm, the learning step, and
the activation functions of neurons in the hidden layer in terms of prediction accuracy. The
algorithm allows finding the moment when the process of model training traps stagnation
or the search for false dependencies. Therefore, the training time is reduced and the
retraining of the model is prevented. The average error in predicting wind speed on the
validation dataset ranged from 20–28%. To improve the prediction accuracy, it is required
to use additional meteorological data or Earth remote sensing data, which is beyond the
scope of this work. However, such a level of prediction provides some degree of probability
for the issuance of guaranteed power from the wind farm. Moreover, the smaller the
guaranteed delivered capacity of an individual WPP, the higher its probability because at
any speed over 12 m/s the WPP can develop full power, and in the period from 3–12 m/s,
the power output will be guaranteed by 5–8%.

The limitations of the study include:

• Non-use of additional meteorological features such as humidity, pressure, and temperature;
• Absence of wind direction in the forecasting model;
• Manual determination of the point in time when the neural network training process

should be completed.

At the same time, the model architecture and the proposed approach make it possible
to consider these limitations and improve forecasting accuracy. To achieve this, it is enough
to add meteorological features, including wind direction, to the model input and retrain
the model. The direction of the wind should be also used as the model output so that the
model will be able to predict it. The learning process control automation is a direction for
further research.
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