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Abstract: The control of the boiler-turbine unit is important for its sustainable and robust operation in
power plants, which faces great challenges due to the control unit’s serious nonlinearity, unmeasurable
states, variable constraints, and unknown time-varying lumped disturbances. To address the above
issues, this paper proposes a receding Galerkin optimal controller with a high-order sliding mode
disturbance observer in a composite scheme, in which a high-order sliding mode disturbance observer
is first employed to estimate the lumped disturbances based on a deviation form of the mathematical
model of the boiler-turbine unit. Subsequently, under the hypothesis of state constraint, a receding
Galerkin optimal controller is designed to compensate the lumped disturbances by embedding their
estimates into the mathematically based predictive model at each sampling time instant. With the
help of an interpolation polynomial, Gauss integration, and nonlinear solvers, an optimal control law
is then obtained based on a Galerkin optimization algorithm. Consequently, disturbance rejection,
target tracking, and constraint handling performance of a controlled closed-loop system are improved.
Some simulation cases are conducted on a mathematical boiler-turbine unit model to demonstrate the
effectiveness of the proposed method, which is supported by the quantitative result analysis, such as
tracking and disturbance rejection performance indexes.

Keywords: Galerkin optimal control; boiler-turbine unit; high-order sliding mode disturbance
observer

1. Introduction

The boiler-turbine unit is the core of a thermal power plant as it produces the motive
power to drive the generator. Thus, it is imperative to maintain safe and stable operation of
the boiler-turbine unit. The research on boiler-turbine control methods is directly relevant
to sustainability as it enables the optimization of power plant energy systems, leading
to improved energy efficiency, sustainable operation, and reduced environmental impact.
The control goal of the boiler-turbine unit is to meet the load demand of the electric
power grid while also maintaining stable operation parameters [1]. Thereafter, control
methods usually contribute to a more sustainable approach to power generation and
daily automation operations. However, in practice, the boiler-turbine units are multi-
input, multi-output (MIMO) nonlinear systems with multiple physical constraints and
unmeasurable disturbances simultaneously. Moreover, the boiler-turbine units are now
required to run over large-scale loads to adapt renewable energy power generation [2].
These all bring great challenges to the design of controllers for the boiler-turbine units with
proper control performance.

Among the existing advanced controller methods applied for boiler-turbine units, the
proportional-integral-differential (PID) [3] is extensively applied because of its robustness
and ease of tuning. However, the control performance of PID is not satisfactory under
a large-scale tracking scenario. To deal with the problem, some other advanced control
approaches have been investigated in tracking conditions in recent years, including nonlinear
control [4,5], gain scheduling control [6], adaptive control [7], robust control [8], and so on.
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The emphasis on robust control shifts to enhancing the robustness index of the control system
with plant uncertainties and external disturbances. In [9–11], fault-tolerant control methods
can enhance the control system’s tolerance by adaptively adjusting the control parameters
through the information of fault diagnosis systems. Nevertheless, these control methods
can’t deal with the variable constraints directly. This obstacle leads to the investigation
of several optimal controllers by minimizing a pre-defined performance index [12–17], in
which model predictive control (MPC) is the prevailing one owing to its powerful abilities
in addressing multiple variables, physical constraints, and tracking conditions.

Most of the aforementioned optimal controllers were designed based on either the
black-box nonlinear model identified from the running data of the unit or linear models
obtained by linearizing the unit’s mathematical model. Thus, the nonlinearity contained in
the information is discarded and not fully explored. Recently, more attention has been paid
to designing optimal controllers based on the unit’s mathematical model directly, and the
pseudospectral (PS) method is an efficient one to solve the state- and control-constrained
nonlinear optimal control problem (OCP) [18,19]. The main idea of the PS method is to
transform the optimal control problem (OCP) into a nonlinear programming problem
(NLP) [20], then use the NLP solver to solve out the optimal control sequence. In order to
reduce the discretization error and obtain more accurate solutions, the Galerkin optimal
control method [21,22] was proposed, in which the weak integral formulation is introduced
to discretize the differential equations.

Considering the given merits, an adaptively receding Galerkin optimal controller (AR-
GOC) was proposed for a boiler-turbine unit with some unmeasured states and variable
constraints in our previous work [23]. In the ARGOC, a state observer is first designed to
estimate the key unmeasured state. Then, a receding Galerkin optimal controller is con-
structed by sufficiently taking information estimated and measured at each sampling time
into account and borrowing the basic idea of receding optimization and feedback correction
strategies from MPC. Thereafter, an independent model is embedded into the receding
Galerkin controller structure to estimate and thus eliminate the constant disturbances in
the output channels.

Nevertheless, the ARGOC fails when confronted with time-varying and state channel
disturbances (i.e., lumped disturbances), which are more common in the boiler-turbine
units than constant disturbances at the output channel. Under these circumstances, it
is imperative to design a receding Galerkin optimal-based controller to deal with time-
varying lumped disturbances. There are some difficulties in designing such a controller.
The first is how to estimate the lumped disturbances in the presence of the unmeasurable
state variable, fluid density, in the drum of the unit. In recent years, the disturbance
observer (DO) [24–26] and the extended state observer (ESO) [27–29] have been proven to
be efficient in estimating lumped disturbances in control systems. The main advantage
of DO and ESO is that the disturbance observer can estimate the lumped disturbances
without distinguishing whether they are external or internal. The time-varying disturbance
reduction in the state channel is more focused on in this paper. Further, the disturbance
observer convergence rate and accuracy, as well as the observer structure described above,
still have improvement space.

The second difficulty lies in how to compensate the disturbance estimation into the
receding Gakerkin optimal-based controller in an active manner. There are several dis-
turbance compensation mechanisms in the optimal control field. In [30,31], a real-time
updated equilibrium according to the disturbances and set-points is calculated first to
transfer the aim of disturbance rejection and set-point tracking to the updated equilibrium.
In [32], a disturbance model is added to the predictive model to compress the adverse effect
of lumped disturbances. These disturbance rejection methods are not compensated by the
disturbance observer in the manner of a model-predictive-based optimization process.

Motivated by the above statements, we aim to propose a receding Galerkin optimal
control with a high-order sliding mode disturbance observer for a nonlinear boiler-turbine
unit in a composite manner. The composite controller comprises a Galerkin optimal
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control-based feedback control part and a DO-based feedforward control part. The main
contributions of the composite controller are summarized as follows:

(1) A high-order sliding mode disturbance observer is designed to estimate the lumped
disturbances based on the derived deviation form of the mathematical model of the
boiler-turbine unit, which aims at the MIMO system and additionally addresses the
observer gain tuning of the unit.

(2) The estimates of the lumped disturbances are integrated into the predictive model
and then feedforward compensated in the Galerkin optimal control-based feedback
channel. As will be anticipated, the proposed composite controller exhibits superior
time-varying lumped disturbance rejection and target tracking performance for a
boiler-turbine unit.

The rest of the paper is organized as follows: The mathematical model of a disturbed
boiler-turbine unit and problem statement are given in Section 2. Section 3 presents the
methodology of the proposed composite controller. Simulation studies are carried out
in Section 4 to verify the superiority of our proposed controller in time-varying lumped
disturbance rejection and set-point tracking. The last section concludes this paper.

2. Disturbed Boiler-Turbine Unit and Problem Statement

In this paper, a 160 MW oil-fired drum-type boiler-turbine unit is considered 1, whose
flow diagram is summarized in Figure 1. The mathematical model of this unit has been
established in the form of

.
x1 = f1(x, u) := −a1u2x1.125

1 + a2u1 − a3u3 + d1(t),.
x2 = f2(x, u) := (b1u2 − b2)x1.125

1 − x2 + d2(t),.
x3 = f3(x, u) := (c1u3 − (c2u2 − c3)x1)/c4 + d3(t),
y1 = x1,
y2 = x2,
y3 = h(x, u) := 0.05(0.13073x3 + 100αcs + (qe/9− 67.975)),

(1)

where the state variables x1, x2 and x3 signify drum pressure (kg/cm2), electrical output
(MW), and fluid density in the drum (kg/cm3), respectively. The outputs are the drum
steam pressure (y1), electrical output (y2), and drum water level (y3). The controllable
inputs u1, u2, and u3 are the valve positions for fuel, steam, and feedwater flow, respectively.
All the valve positions are normalized into [0, 1]. The coefficient αcs and evaporation rate
of steam qe (kg/s) are defined as

αcs =
(1− 0.001538x3)(0.8x1 − 25.6)

x3(1.0394− 0.0012304x1)
(2)

qe = (0.854u2 − 0.147)x1 + 45.59u1 − 2.514u3 − 2.096 (3)

di(t), i = 1, 2, 3 are unknown uncertainties or disturbances; referring to 33, parame-
ters ai, bi, ci do not have the physical meaning as the previous parameter, which is to be
identified by the operating data, as shown in Table 1.

Table 1. Model Parameters of Boiler–Turbine Unit.

a1 = 0.0018 b1 = 0.073 c1 = 141
a2 = 0.9 b2 = 0.016 c2 = 1.1

a3 = 0.15 b3 = 0.1 c3 = 0.19
c4 = 85
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Figure 1. Structure of a 160 MW boiler-turbine unit in a thermal power plant. 

  

Figure 1. Structure of a 160 MW boiler-turbine unit in a thermal power plant.

Table 2 gives some typical operating points of the boiler-turbine unit in the absence of
disturbances. The main control task is to regulate the outputs of the unit to track large-scale
setpoints or references.

Table 2. Typical Operating Points of Boiler–Turbine Unit.

#1 #2 #3 #4 #5 #6 #7

x1d 75.6 86.4 97.2 108 118.8 129.6 135.4
x2d 15.27 36.65 50.52 66.65 85.06 105.8 127
x3d 299.6 324.4 385.2 428 470.8 513.6 556.4
u1d 0.156 0.209 0.271 0.34 0.418 0.505 0.600
u2d 0.483 0.552 0.621 0.69 0.759 0.828 0.897
u3d 0.183 0.256 0.34 0.433 0.543 0.663 0.793
y3d −0.97 −0.65 −0.32 0 0.32 0.64 0.98

In order to implement the receding Galerkin optimal controller, all the states should
be known in advance. However, the state variable x3, that is the fluid density in the drum,
cannot be measured directly. In this case, we adopt the available y3 to design the controller
instead. To simplify the controller design, the last three terms in y3 can be viewed as a
disturbance term, w(t), that is

w(t) := 0.05(100αcs + qe/9− 67.975). (4)

Therefore, the first derivative of y3 is

.
y3 = c0

.
x3 +

.
w(t) = c0[c1u3 − (c2u2 − c3)x1]/c4 + c0d3(t) +

.
w(t), (5)

where constant c0 = 0.00654.
It is observable from (1) that there is a rate of change constraint on the control inputs,

which is expected to be introduced into the system dynamics for improving control per-
formance. Define v1 =

.
u1/c1, v2 =

.
u2/c2, v3 =

.
u3/c3 with expansion coefficients c1, c2,
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c3. Then, by given the setpoints/references yid and their first derivatives
.
yid and defining

outputs errors zi = yi − yid, i = 1, 2, 3, dynamics are retrofitted as

.
z1 = −a1u2(z1 + y1d)

1.125 + a2u1 − a3u3 −
.
y1d + d1,

.
z2 = (b1u2 − b2)(z1 + y1d)

1.125 − b3(z2 + y2d)−
.
y2d + d2,

.
z3 = c0[c1u3 − (c2u2 − c3)(z1 + y1d)]/c4 −

.
y3d + d3,

.
u1 = c1v1,
.
u2 = c2v2,
.
u3 = c3v3.

(6)

where the lumped disturbances are

di(t) :=

{
di(t) i = 1, 2,
c0d3(t) +

.
w(t) i = 3,

(7)

which satisfies the following assumption.

Assumption 1. The lumped disturbances di satisfy
∣∣∣d(j)

i

∣∣∣ ≤ ςi, where j = 1, 2, . . . , L with a
positive integer L ≤ 3 and positive constants ςi, i = 1, 2, 3.

Correspondingly, for safety consideration, model (1) should satisfy the following
constraints [1, 5], which are restated as

70 ≤ x1 ≤ 150, 10 ≤ x2 ≤ 190, 0 ≤ u1, u2, u3 ≤ 1,
|v1| ≤ 0.007/c1, |v2| ≤ 0.02/c2, |v3| ≤ 0.05/c3,
h(x, u)− 1 ≤ 0, h(x, u) + 1 ≥ 0.

(8)

Dynamics (6)–(8) are utilized to design the composite controller, to which we turn next.

3. Main Results: Method

This section includes a concise and precise description of the proposed method design,
their interpretation, as well as results that can be drawn.

3.1. High-Order Sliding Mode Disturbance Observer Design

A high-order sliding mode disturbance observer developed in [33–36] is normally
used for the single-input-single-output (SISO) n-th order differential dynamics, while in
this research it has tentatively been employed for the MIMO system (6) to estimate the
unknown lumped disturbances as

.
ξ

i
0 = vi

0 + fi
(
z, u, yid,

.
yid
)

,

vi
0 = −λi

0L
1

L+1
i

∣∣ξ i
0 − zi

∣∣ 1
L+1 sign

(
ξ i

0 − zi
)
+ ξ i

1,
.
ξ

i
1 = vi

1,

vi
1 = −λi

1L
1
L
i

∣∣ξ i
1 − vi

0

∣∣ L−1
L sign

(
ξ i

1 − vi
0
)
+ ξ i

2,
...
.
ξ

i
l = vi

l ,

vi
l = −λi

l L
1

L+1−l
i

∣∣∣ξ i
l − vi

l−1

∣∣∣ L−l
L+1−l sign

(
ξ i

l − vi
l−1

)
+ ξ i

l ,
...
.
ξ

i
L = vi

L,
vi

L = −λi
LLisign

(
ξ i

L − vi
L−1
)
,

(9)
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where Li, λi
l , i = 1, 2, 3, l = 0, 1, . . . , L are observer coefficients and sign (·) is a sign

function. Accordingly, ξ i
0, ξ i

1, ξ i
2, . . . , ξ i

L are, respectively, the estimates ẑi, d̂i,
.̂
di, . . . d̂(L−1)

i .

Define observer errors as ei
0 = ξ i

0 − zi, ei
l = ξ i

l − d(l−1)
i , l = 1, 2, 3, with d0

i = di and

d(l−1)
i the (l-1)th derivative of di. The observer error dynamics can be derived from (6) and

(9) as
.
ei

0 = −λi
0L1/4

i

∣∣ei
0

∣∣3/4sign
(
ei

0
)
+ ei

1,
.
ei

1 = −λi
1L1/3

i

∣∣∣ei
1 −

.
ei

0

∣∣∣2/3
sign

(
ei

1 −
.
ei

0

)
+ ei

2,
.
ei

2 = −λi
2L1/2

i

∣∣∣ei
2 −

.
ei

1

∣∣∣1/2
sign

(
ei

2 −
.
ei

1

)
+ ei

3,
.
ei

3 ∈ −λi
3Lisign

(
ei

3 −
.
ei

2

)
+ [−ςi, ςi].

(10)

It can be concluded from 34–36 that the observer error is finite-time stable. That is,
there exists a finite time t∗, such that ei

0 ≡ 0, ei
1 ≡ 0, ei

2 ≡ 0, ei
3 ≡ 0 when t > t∗.

Remark: The nature of HOSM is a differentiator that uses known information from
system (6) to mathematically reconstruct an unknown disturbance. HOSM is the pre-
liminary part for the whole composite controller design, which has significance for the
reduction of disturbances caused by model uncertainties and coupling terms in (6). With
this foreshadowing, the estimate information of all disturbances is embedded into the
model (9) and restored as the nominal one for the rolling optimization process to calculate
the control law.

3.2. Galerkin Optimal Control Design

The optimal control problem based on mathematical model (6) can be described as
follows: determine the state-control function pair, t→ (z, u) ∈ RNz × RNu to minimize the
following cost function

min
z,u,v

JBT =
∫ t f

t0

[
zTPz + vTQv

]
dt

s.t. (9), (10),
(11)

where z = [z1, z2, z3]
T, v = [v1, v2, v3]

T, P = diag{p1, p2, p3}, Q = diag{q1, q2, q3}.
To solve the optimal control problem (11), a Galerkin optimal method is first de-

signed to transform (11) into a nonlinear programming problem (NLP), which can then
be computed by several sequential quadratic programming (SQP) software packages such
as SNOPT [37] with high computational efficiency. To be specific, the Galerkin optimal
method is performed in the following four steps: approximating state and control vari-
ables, discretizing the system dynamics and variable constraints, and integrating the cost
function via interpolation polynomial [38,39] and Gauss integration [23] on a series of
Legendre-Gauss-Lobatto (LGL) nodes. The LGL nodes are calculated as the roots of

ξ(τ) =
(

1− τ2
) .

LN(τ), (12)

where LN(τ) is the Nth order Legendre polynomial defined by

LN(τ) :=
(−1)N

2N N!
dN

dτN

(
1− τ2

)N
. (13)

Totally, thereare(N +1)LGLnodesin τ-spaceas{τi}N
i=0 (τ0 = −1 < τ1 < τ2 < · · · < τN = 1).

By converting the real-time domain t∈[ t0, tf ] into a closed interval τ∈[−1,1] according to

τ =
2t− (t f + t0)

t f − t0
, (14)
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one can get corresponding point {ti}N
i=0,

(
t0 = tN0 < tN1 < tN2 < · · · < tNN = t f

)
in

the real-time domain.
With the help of LGL nodes, the Galerkin method approximates the state and control

variables by the Nth-order Lagrange interpolation polynomial defined on LGL nodes
as follows:

z(τ) ≈
N

∑
j=0

φN
j (τ) · zNj , (15)

u(τ) ≈
N

∑
j=0

φN
j (τ) · uNj , (16)

where zNj and uNj are the state and control variables at the LGL nodes τj. φN
j (τ) is the N-th

order Lagrange interpolation basis function defined by φN
j (τ) = ∏N

i=0.i 6=j
τ−τi
τj−τi

.
Using (15) and (16), the differential equation can be approximated using the following

integral formulation ∫ 1

−1
ψi(τ)

(
.
z(τ)−

t f − t0

2
f (z(τ), u(τ))

)
dτ = 0 (17)

with test functions ψi(τ). Equation (17) can be further rewritten as (18) when ψi(τ) is
denoted as the basis function φN

j (τ),

N

∑
j=0

∫ 1

−1
φN

i (τ)
.
φ

N
j (τ)dτ︸ ︷︷ ︸

Dij

· zNj −
t f − t0

2

∫ 1

−1
φN

i (τ) f (z(τ), u(τ))dτ︸ ︷︷ ︸
∆i

= 0. (18)

For simplicity, the Dij and ∆i can be approximated as

Dij ≈
N

∑
k=0

φN
i (τk)

.
φ

N
j (τk)ωk ≈

.
φ

N
j (τi)ωi = Aijωi (19)

∆i ≈
t f − t0

2
f (z(τi), u(τi))ωi (20)

where Aij is the Legendre differentiation matrix calculated by

Aij =


LN(τi)

LN(τj)
1

τi−τj
, i 6= j,

−N(N+1)
4 , i = j = 0,

N(N+1)
4 , i = j = N,

0, i = j ∈ [1, · · · , N − 1].

(21)

ωi, i = 0, 1, . . . , N, are the quadrature weights, and the LGL version of quadrature
weights is utilized in the present paper, which is calculated as

ωi =
2

N(N + 1)[LN(τi)]
, i = 0, 1, . . . , N. (22)

With the Dij in (19) and ∆i in (20), the dynamics (18) can thus be finally simplified as

N
∑

j=0
Dij · z

j
k − ∆ki = 0, i = 0, 1, · · · , N, k = 1, 2, 3,

N
∑

j=0
Dij · u

j
k − ∆(k+3)i = 0, i = 0, 1, · · · , N, k = 1, 2, 3,

(23)
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where

∆1i =
t f−t0

2

(
−a1ui

2(z
i
1 + y1d)

1.125
+ a2ui

1 − a3ui
3 −

.
y1d + ξ1

0

)
wi,

∆2i =
t f−t0

2

((
b1ui

2 − b2
)
(zi

1 + y1d)
1.125 − b3

(
zi

2 + y2d
)
− .

y2d + ξ2
0

)
wi,

∆3i =
t f−t0

2
(
c0
[
c1ui

3 −
(
c2ui

2 − c3
)
(zi

1 + y1d)
]
/c4 −

.
y3d + ξ3

0
)
wi,

∆4i =
t f−t0

2
(
c1vi

1
)
wi,

∆5i =
t f−t0

2
(
c2vi

2
)
wi,

∆6i =
t f−t0

2
(
c3vi

3
)
wi.

The variable constraints (10) can be discretized as

−10 ≤ zi
1 ≤ 10, −10 ≤ zi

2 ≤ 10, −1 ≤ zi
3 ≤ 1, i = 0, 1, · · · , N

0 ≤
∣∣ui

1

∣∣ ≤ 1, 0 ≤
∣∣ui

2

∣∣ ≤ 1, 0 ≤
∣∣ui

3

∣∣ ≤ 1, i = 0, 1, · · · , N∣∣vi
1

∣∣ ≤ 0.007/c1,
∣∣vi

2

∣∣ ≤ 0.02/c2,
∣∣vi

3

∣∣ ≤ 0.05/c3, i = 0, 1, · · · , N
(24)

In a relatively easy way, the cost function (11) is approximated according to the
Gauss–Lobatto integration rule as follows:

J =
∫ t f

t0

[
zTPz + vTQv

]
dt

≈ t f−t0
2

N
∑

j=0

[
p1

(
z

Nj
1

)2
+ p2

(
z

Nj
2

)2
+ p3

(
z

Nj
3

)2
+ q1

(
v

Nj
1

)2
+ q2

(
v

Nj
2

)2
+ q3

(
v

Nj
3

)2
]

wj.
(25)

Therefore, the continuous optimal control problem (13) can be constructed as

J =
t f−t0

2

N
∑

j=0

[
p1

(
zj

1

)2
+ p2

(
zj

2

)2
+ p3

(
zj

3

)2
+ q1

(
vj

1

)2
+ q2

(
vj

2

)2
+ q3

(
vj

3

)2
]

wj,

s.t.

∥∥∥∥∥ N
∑

j=0
Dij · z

j
k − ∆ki

∥∥∥∥∥
∞

≤ δN , i = 0, 1, · · · , N, k = 1, 2, 3,∥∥∥∥∥ N
∑

j=0
Dij · u

j
k − ∆(k+3)i

∥∥∥∥∥
∞

≤ δN , i = 0, 1, · · · , N, k = 1, 2, 3.

−10 ≤ zi
1 ≤ 10, −10 ≤ zi

2 ≤ 10, −1 ≤ zi
3 ≤ 1, i = 0, 1, · · · , N

0 ≤
∣∣ui

1

∣∣ ≤ 1, 0 ≤
∣∣ui

2

∣∣ ≤ 1, 0 ≤
∣∣ui

3

∣∣ ≤ 1, i = 0, 1, · · · , N∣∣vi
1

∣∣ ≤ 0.007/c1,
∣∣vi

2

∣∣ ≤ 0.02/c2,
∣∣vi

3

∣∣ ≤ 0.05/c3, i = 0, 1, · · · , N,

(26)

where δN is a constant tolerance used to guarantee the feasibility of the NLP (26).

3.3. Receding Galerkin Optimal Control Design with High-Order Sliding Mode Disturbance
Observer

It is evident that the Galerkin method interpreted in Section 3.2 is only feasible for the
stabilization problem rather than the tracking problem. To deal with the tracking problem,
the useful information at each sampling instant should be taken into account, including the
information of states, outputs, and references. To address this problem, a receding version
of Galerkin’s optimal control strategy with a high-order sliding mode disturbance observer
in a composite way is proposed by borrowing the basic idea from model predictive control
(MPC) and is explained as follows:

(i). At current time instant tk, the lumped disturbances of system (9) are estimated by the
high-order sliding mode disturbance observer (11) as ξ1

0, ξ2
0, ξ3

0.
(ii). Let the current state z(tk) and control u(tk) be the initial conditions, that is,

z0,k = z(tk), u0,k = u(tk). Then embed the obtained ξ1
0, ξ2

0, ξ3
0 into the nonlinear

mathematical model based-predictive model, the optimal discrete state and control

sequences
{

zj,k
}N

j=0
and

{
uj,k
}N

j=0
can be acquired by minimizing JBT in (29) through
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the Galerkin optimal control method over the prediction horizon [t0, tf]: = [tk, tk + ∆T],

min
{xj,k ,uj,k ,vj,k }

JBT = ∆T
2

N
∑

j=0

[
(zj,k )TP(zj,k ) + (vj,k )TQvj,k

]
wj,

s.t.

∥∥∥∥∥ N
∑

j=0
Di,jzj,k − ∆i

∥∥∥∥∥
∞

≤ δN ,

‖z0,k − z(tk)‖∞ ≤ δN ,
‖u0,k − u(tk)‖∞ ≤ δN ,

(27)

−10 ≤ zi
1 ≤ 10, −10 ≤ zi

2 ≤ 10, −1 ≤ zi
3 ≤ 1, i = 0, 1, · · · , N

0 ≤
∣∣ui

1

∣∣ ≤ 1, 0 ≤
∣∣ui

2

∣∣ ≤ 1, 0 ≤
∣∣ui

3

∣∣ ≤ 1, i = 0, 1, · · · , N∣∣vi
1

∣∣ ≤ 0.007/c1,
∣∣vi

2

∣∣ ≤ 0.02/c2,
∣∣vi

3

∣∣ ≤ 0.05/c3, i = 0, 1, · · · , N,

where ∆T is the length of horizon. Dij and ∆i are shown in (19) and in (20). To solve
the discrete nonlinear programming problem (29), a nonlinear programming solver
such as SNOPT is usually used 39.

(iii). Apply the optimal control law u1,k on the unit and repeat the above operations in
steps (i) and (ii) at the coming time instant tk+1. It is worth mentioning that the u1,k is a
composite control law which contains the compensation of the lumped disturbances.

To sum up, the scheme of the proposed composite control method can be illustrated
in Figure 2.
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Figure 2. Block diagram of the receding Galerkin optimal controller with high-order sliding mode
disturbance observer.

4. Simulations

In this section, some simulation cases are conducted to validate the performance of
the proposed composite controller for the oil-fired drum-type boiler-turbine unit (1). For
implementation purposes, a nonlinear programming solver SNOPT is adopted. Addition-
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ally, some controller parameters should be preset such as disturbance observer parameters
(λi

l , Li) and controller parameters (N, c, P, Q).

4.1. Parameters Assignment

As remarked in 1 and 35, the faster the convergence of disturbance observer should be,
the larger λi

l and Li are usually required. In fact, if the disturbance observer converges too
fast, it will lead to the violation of the constraints imposed on control inputs. With these
in mind, we select λi

0 = 1.5, λi
1 = 0.1, λi

2 = λi
3 = 0.01, Li = 2, i = 1, 2, 3. Moreover, we

choose N = 20, P = diag{1, 1, 2000}, Q = diag{2, 1, 2}, c = [0.001, 0.001, 0.001] according to 23.

4.2. Case 1: Wide-Range Load Tracking without Lumped Disturbances

In this case, we intend to validate the tracking performance of the proposed composite
controller without lumped disturbances. The change process of the working condition
point is as in Table 3:

Table 3. The change process of the working condition point.

Time Period (s) 0–400 400–1000 1000–1400 1400–2400 2400–2700 2700–3200 3200–3500

Working condition #2 #2 to #6 #6 #6 to #1 #1 #1 to #3 #3

From Table 3, the whole simulation time period is 3500 s, and the lumped disturbances
are set to zero. With the initial conditions z1(0) = 5, z2(0) = 10, z3(0) = 0.1, and the parameters
assignment as Section 4.1. Implementing the composite controller on the unit (1) resulted
in simulation results Figures 3 and 4, respectively.
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Figure 4. Control inputs of the unit in the case of tracking large-scale load references.

Figure 3 shows the output responses under control inputs in Figure 4. The x-axis is
the time with its unit in seconds. It can be observed that the outputs yi can track large-scale
references yid rapidly without deviation. Meanwhile, Figure 4 illustrates that all the control
inputs ui strictly meet the constraints.

4.3. Case 2: Wide-Range Load Tracking with Lumped Disturbances

In Case 1, the boiler-turbine unit is just regulated to track large-scale references without
lumped disturbances. In this case, we aim to run the unit to track large-scale references in
the presence of lumped disturbances di(t) defined by

d1 := −0.0002(z1 + y1d)
9/8u2 − 0.1u1 + 0.02u3,

d2 := (0.01u2 + 0.004)(z1 + y1d)
9/8 − 0.01(z2 + y2d) + 0.2 sin(0.01πt),

d3 := 0.001u3 −
(
2× 10−5u2 + 5× 10−6)(z1 + y1d).

(28)

The whole simulation time period is 3500 s, and the lumped disturbances (28) occur at
the 400th second and vanish at the 3200th second. The initial conditions and parameter
assignments are the same as those in Case 1. Figures 5–7 illustrate the estimates of lumped
disturbances defined in (28), the response curves of the outputs yi, and the control inputs ui.

It can be seen in Figure 5 that the lumped disturbances can be estimated by the high-
order sliding mode disturbance observer (11) with high accuracy. Based on this, Figure 6
exhibits that the outputs yi can track large-scale references yid rapidly in most cases, except
for the period when drastic disturbances begin to happen or vanish. Meanwhile, it can be
seen that the nominal performance can be reserved when the lumped disturbances vanish at
the 2300th second. Furthermore, Figure 7 shows that the control inputs ui change drastically
due to the large-scale changes of references and the drastic lumped disturbances during
time period (400, 3200), but the control inputs can be guaranteed inside the boundary [0, 1].
These all illustrate the excellent disturbance rejection and set-point tracking performance
of the proposed composite control method.
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4.4. Case 3: Control Performance Comparison under Wide-Range Load Tracking Conditions

To further verify the control performance of our proposed composite controller, a state
feedback controller developed in 1 is carried out as the comparative method by considering
its anti-disturbance ability.

The whole simulation time period is 3500 s. The lumped disturbances, initial con-
ditions, and parameters assignment are set the same as those of Case 2. Corresponding
simulation results are drawn in Figures 8 and 9.
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Figure 9. Control inputs in presence of lumped disturbances.

Figure 8 shows the output responses and Figure 9 gives the corresponding control in-
puts. Among them, yid, yig(uig) and yiz(uiz) are setpoints, the outputs (inputs) produced by
the proposed composite controller, and the outputs (inputs) produced by the comparative
controller.

It can be noted from Figures 8 and 9 that the outputs of the two controllers can
track the setpoints well with similar control inputs curves when the load changes over
a wide range, indicating that the two control methods have similar disturbance rejection
capability and can be adapted to large range load tracking scenarios. Moreover, for more
clear comparisons, the following four-time frame are selected: (1) 1~100 s: the tracking
process is of the set value under the initial deviation condition. (2) 390 s-480 s: the lumped
disturbances occur and load starts to rise. (3) 990~1080 s: the lumped disturbances and
the load begins to decline. (4) 3190~3280 s: the lumped disturbances disappear and the
load begins to stabilize. The corresponding outputs and control inputs are illustrated in
Figures 10–15.
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It can be concluded from Table 4 and Figures 10–15 that (i) the tracking rate of the
comparative controller (yiz) is faster than that of the proposed composite controller (yig),
which means the rate of change of uiz is higher than that of uig; (ii) When the deviation
of initial condition setting is large, the initial stage of u3z will be less than zero, which
does not meet the constraint. However, the situation will not occur on the u3g produced
by the proposed composite controller due to the consideration of constraint during op-
timization; and (iii) the rate of change of the control input obtained by the comparative
method is significantly higher than that of the proposed composite controller when the
lumped disturbances occur, and the load starts to rise. This is due to the fact that the
constraints of the input and output rates are taken into account in the controller design of
the proposed control method while the constraints on control inputs are guaranteed by
selecting reasonable state feedback controller’s parameters of the comparative method. As
a result, it is difficult to meet all constraints under the condition of severe disturbances
of the comparative method. The IAE value of y3go at all time frames are larger than the
proposed method, because the disturbance rejection ability is weaker than the proposed
one. Overall, the proposed method has a lower IAE index in each time frame compared
with the other two methods.
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Table 4. Quantitative integral absolute error (IAE) indexes of the simulation outputs.

(IAEy1
,IAEy2

,IAEy3
) Time Frame (1) Time Frame (2) Time Frame (3) Time Frame (4)

Proposed method (61.098, 63.04, 8.73) (0.376, 26.6, 0.00105) (0.0346,0.0472,0.000258) (0.466, 29.64, 0.0027)
Galerkin control (171.77, 72.39, 0.472) (181.15, 219.023, 5.38) (138.84, 165.61, 6.97) (97.867, 39.399, 4.63)

State feedback control (90.676, 60.343, 8.053) (22.1, 25.217, 0.866) (21.73, 6.45, 0.689) (19.738, 25.095, 0.631)

According to the above comparison results, both controllers can fast-track the large-
scale load. But the method proposed in [1] will result in control inputs that do not meet
the constraints if the parameters are not selected properly or the disturbances are too
severe. On the contrary, the presented receding Galerkin optimal controller with high-order
sliding mode disturbance observer integrates the advantages of the high-order sliding
mode disturbance observer and the receding Galerkin optimal control method, making it
superior in constraint satisfaction, disturbance rejection, and large-scale load tracking.

5. Conclusions

In this paper, a receding Galerkin optimal controller with a high-order sliding mode
disturbance observer is proposed to improve the control performance of a boiler-turbine
unit. The presented controller can be directly designed based on the nonlinear mathe-
matical unit model. More precisely, a high-order sliding mode disturbance observer is
first employed to estimate the lumped disturbances and unmeasurable deviation states.
Next, the estimate of the lumped disturbances is feedforward compensated in the receding
optimization process. Then, based on the traditional Galerkin optimal control method,
the idea of receding optimization is proposed to deal with lumped disturbances, variable
constraints, and large-scale load tracking at the same time. Simulation results have shown
that the proposed controller can regulate the boiler-turbine unit to track large-scale load
set-points and meet the variable constraints in the presence of various types of unknown
disturbances.

6. Annexe

All the necessary variables of controlled boiler–turbine unit by proposed method are
listed in Table 5 for the easy of query.

Table 5. Variable of Controlled Boiler–Turbine Unit.

Variable a1~a3 b1~b3 c1~c4 αcs

Name identified parameter identified parameter identified parameter coefficient
x1 x2 x3 y1

drum pressure electrical output fluid density in the drum drum steam pressure
y2 y3 u1 u2

electrical output drum water level valve positions for fuel valve positions for steam
u3 qe di(t), i = 1, 2, 3 x1d ∼ x3d

valve positions for
feedwater flow evaporation rate of steam unknown disturbances setpoint signal for state

u1d ∼ u3d y3d w(t) d1(t) ∼ d3(t)
setpoint signal for input setpoint signal for output disturbance term lumped disturbance

v1 ∼ v3 z1 ∼ z3 ξ i
0 ∼ ξ i

L JBT
virtual control law states/outputs error HOSMO estimate cost function

LN(τ) zNj uNj

Nth order Legendre
polynomial

state variables at the LGL
nodes

control variables at the
LGL nodes
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