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Abstract: There usually exist a few big customers at ports of near-sea container shipping routes who
have preferences on the weekly ship arrival times due to their own production and sale schedules.
Therefore, in practice, when designing ship schedules, carriers must consider such customers’ time
preferences, regarded as weekly soft-time windows, to improve customer retention, thereby achieving
sustainable development during a depression in the shipping industry. In this regard, this study
explores how to balance the tradeoff between the ship total operating costs and penalty costs from the
violation of the weekly soft-time windows. A mixed-integer nonlinear nonconvex model is proposed
and is further transformed into a mixed-integer linear optimization model that can be efficiently
solved by extant solvers to provide a global optimal solution. The proposed model is applied to a
near-sea service route from China to Southeast Asia. The results demonstrate that the time preferences
of big customers affect the total cost, optimal sailing speeds, and optimal ship arrival times. Moreover,
the voyage along a near-sea route is generally short, leaving carriers little room for adjusting the
fleet size.
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1. Introduction

The global maritime trade has lost momentum in recent years owing to a series of downside
risks such as Sino-US trade friction. The trade volume expanded by 2.7% in 2018, which was not
only lower than the 4.1% growth rate in 2017, but also lower than the historical average of 3.0%.
The growth rate in containerized global ports throughput decreased from 6.7% in 2017 to 4.7% in
2018 [1]. The implementation of the global sulfur cap in January 2020 increased operating costs and may
also lead to the loss of some market share to land-based modes [2,3]. Facing this situation, container
lines have adopted strategies such as slow steaming and route layout optimization to reduce operating
costs and enhance profitability as well as to realize transportation sustainability. In addition to the
above measures, designing schedules that comply with the requirements of big customers, such as
freight forwarders and large factories, to alleviate customer loss and enhance customer satisfaction is
also important for container lines.

In the near-sea routes in the Asian region, a considerable number of ports can be identified with
large freight forwarders or factories with a single type of good and large shipments. According to
our survey, the shipments from a big customer may account for 50%, or even more than 80%, of the
shipments at the local port on the route. Both fruits and waste plastics shipped to China from some

Sustainability 2020, 12, 7828; doi:10.3390/su12187828 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-0012-8624
http://dx.doi.org/10.3390/su12187828
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/18/7828?type=check_update&version=2


Sustainability 2020, 12, 7828 2 of 20

ports in Southeast Asia and secondhand cars transferred from Nagoya in Japan to Central Asia via
Lianyungang illustrate the findings of our survey. Sometimes, shipping lines may even add a call
for some big customers. For example, SITC container lines (SITC) added a call to Hitachinaka on
Mondays on its CJV6 service in 2015 to accommodate Toyota’s shipment demand. Considering their
own production and/or sale schedules as well as the pressure of product inventory, these big customers
generally have a preference for the weekly day on which the ship arrives at the loading ports. During a
depression in the shipping industry, the sustainability of long-term partnerships with big customers
cannot be neglected. Therefore, a few adjustments should be made in the shipping schedules to address
the time preferences of the shipping demands. The preferences of the big customers for the ship arrival
time at these ports can be regarded as weekly soft-time windows. The service can also start outside
this time window if an appropriate penalty is paid. The penalty involves the lost cost of goodwill,
sales, and service satisfaction owing to customer inconvenience [4]. We use the term “port soft-time
windows” to indicate the ship arrival time at the loading ports expected by the big customers.

Different shipping schedules mean different sailing times on shipping legs, and thus, different
sailing speeds. Despite their relatively small number in the world fleet, containerships are the largest
maritime CO2 emitters [5]. Because emissions are directly proportional to bunker consumption, sailing
speed is closely related to the environmental dimension of shipping [6]. Lowering speed can reduce
ship emissions, thereby reducing environmental impact [7]. Therefore, the schedule design affects the
bunker consumption and air pollutant emissions.

In addition, providing a shorter shipping time for containers from origin to destination can
improve the market competitiveness of container lines [8]; however, it also leads to a higher bunker
consumption as well as higher air pollutant emissions. Meanwhile, a longer shipping time leads to less
bunker consumption and air pollutant emissions, which are conducive to the sustainable development
of the environment. In summary, when designing the shipping schedule, container lines must balance
the tradeoff between the vessel’s operating cost, fuel cost, and penalty costs associated with the port
soft-time windows and shipping time. This study provides decision support to help container lines
cope with smaller profit margins as a result of a slacking shipping market demand.

2. Literature Review

Ship scheduling problems are the focus of this study; this research topic has been covered in a
few survey papers, for example, Christiansen et al. [9], Meng et al. [10], Psaraftis and Kontovas [6],
Tran and Haasis [11], Wang and Meng [12], and Lee and Song [13]. In container liner shipping,
the ship scheduling problem is a tactical-level decision problem made every three to six months [9].
Ship scheduling generally involves speed optimization and/or designs of arrival and departure times
for given shipping routes. The schedules and speeds are highly correlated because once the schedules
are determined, the speeds are roughly determined.

Ship speed optimization is incorporated into the network design in some studies, in which the
average ship sailing speed is simply used when calculating the voyage time. Agarwal and Ergun [14]
were the first to consider the weekly frequency constraint for ship scheduling and cargo routing
problems in the liner shipping network design. Shintani et al. [15] designed a single shipping route
considering empty container repositioning using a genetic algorithm-based heuristic. Wang and
Meng [16] examined the liner shipping network design problem considering the delivery deadline in
which the actual transit time from an origin port to a destination port could not exceed its corresponding
deadline. In contrast to most studies on network design, Wang et al. [17] directly optimized the
ship sailing speed by treating it as a decision variable during model formulation. Kim et al. [18]
designed a simple single route by considering the variable sailing speed for each leg and the fleet
size with the objective of maximizing the carrier’s profit. Koza et al. [19] proposed a mixed-integer
programming model for the integrated liner shipping network design and scheduling problem
incorporating transshipment times, along with a solution method based on column generation.
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With regard to the ship scheduling problem for given service routes, speed optimization is either
explicit or implicit in the proposed models and is sometimes incorporated into the fleet deployment
problem. A few studies have also examined the container ship scheduling problem considering the
uncertainty at ports, for example, Qi and Song [20] and Song et al. [21]. Notteboom and Vernimmen [22]
proposed a cost model for simulating the impact of high fuel costs and described how shipping lines
change sailing speed and fleet size with high fuel costs. Ronen [23] provided an analysis of the
relationship between bunker price, service frequency, sailing speed, and fleet size and developed a
cost model to minimize the annual operating cost for a given ship route. Cheaitou and Cariou [24]
optimized the sailing speed under a semi-elastic demand. Meng and Wang [25] optimized the operating
strategy to simultaneously determine the sailing speed, service frequency, and fleet deployment plan
for a single Asia–Europe route. Wang and Meng [26] developed a mixed-integer linear programming
model for the fleet deployment problem in which container transshipment operations were allowed at
any port. Wang and Meng [27] calibrated the relationship between bunker consumption and sailing
speed for container ships using the historical operating data of a global container line. They then
formulated a mixed-integer programming model by optimizing the sailing speed of each leg and the
number of ships deployed in a liner shipping network while considering container transshipment and
routing. Kontovas and Psaraftis [28] examined the operational scenario of speed reduction to reduce
bunker consumption and curb emissions, and they discussed two possible ways to decrease time in
port: Reducing the port service time and enabling the prompt berthing once containerships arrive.
Xia et al. [29] jointly optimized fleet deployment, cargo allocation, and sailing speed for each leg for a
network design in which the range of possible speeds is discretized. Du et al. [30] presented a liner
ship fleet deployment problem considering collaborative transportation. The problem is formulated as
a mixed-integer linear programming model that is solved using CPLEX. Zhen et al. [31] presented
an integrated planning model to jointly determine the fleet size, ship schedule, sailing speed per leg,
and cargo allocation for a given shipping network with multiple routes. Sheng et al. [32] addressed
the joint optimization of ship sailing speed and fleet size for an industrial shipping service operating
through the emission control areas. Fan et al. [33] proposed a genetic simulated annealing algorithm
for the problem of multi-type tramp ship scheduling and speed optimization by considering carbon
emissions. Yang et al. [34] proposed a speed optimization model for a fixed ship route incorporating
the influence of ocean currents with the target of minimizing the total fuel consumption. Psaraftis [35]
examined reduced speed options, such as imposing a speed limit and imposing a bunker levy, and
concluded that market-based measures, such as the bunker levy option, are more beneficial than the
speed-limit option for reducing greenhouse gas emissions. Giovannini and Psaraftis [36] developed a
profit maximization model for a fixed liner shipping route. Rather than the standard assumption of
weekly service frequency, they considered flexible service frequencies that can be selected among a
broad set, which is different from most studies on liner shipping. They also examined the impact of the
carrier’s decisions on CO2 emissions.

There are also some studies on ship scheduling associated with fleet deployment in Roll-on Roll-off

(Ro-Ro) shipping, for example, Fagerholt et al. [37] and Andersson et al. [38]. Patricksson et al. [39]
presented a two-stage stochastic model for the maritime fleet renewal problem and explored various
alternatives to cope with the stricter emission regulations. Fischer et al. [40] proposed a mixed-integer
linear programming for the fleet deployment problem, together with a set of robust planning strategies
for handling disruptions.

Because the daily service capacity of a port is limited, there is no guarantee that a ship can be
serviced as soon as it arrives at the port. As a result, the availability of ports, that is, a port-time window,
is considered in a few studies. Christiansen and Fagerholt [41] treated the time windows as multiple
time windows because they assumed that ports were closed for service at night and during weekends.
To avoid idle times in the ports during weekends, a penalty cost was imposed for arrivals at risky times.
De et al. [42] studied the ship routing and scheduling problem with multiple time windows for tramp
ships, in which a penalty cost was imposed due to delays. Their model incorporated carbon emissions
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and slow steaming. Kim et al. [43] dealt with the sailing speed optimization problem of tramp shipping
with multiple hard-time windows for each port call via an exact algorithm. Aydin et al. [44] considered
the waiting costs of early arrivals in the sailing speed optimization problem with time windows on a
single voyage. Hvattum et al. [45] developed an exact algorithm to optimize the sailing speed for a
fixed sequence of port calls with hard-time windows. They proved that optimal speeds can be obtained
in quadratic time. Wang et al. [46] discussed a liner shipping route schedule design problem while
considering the availability of ports. They viewed the availability of each port as a hard-time window.
Wang et al. [47] examined the same problem by incorporating the availability of each berth at each port,
and a mixed-integer nonlinear nonconvex optimization model was formulated to minimize the vessel
operating, bunker, and inventory costs. Both Wang et al. [46] and Wang et al. [47] focused on a single
shipping route. Alharbi et al. [48] further extended the two previous studies [46,47] to a liner shipping
network. In this model, a premium berth with a high penalty could be used when violating the berth
time window. However, their model did not consider inventory costs. Dulebenets [49] studied the
vessel scheduling problem with a heterogeneous fleet and considered late arrival penalties outside the
time windows.

The time windows mentioned in the above ship scheduling articles refer to the reserved time
period that a port allocates to serve the ship. Very few studies have addressed the ship scheduling
problem by considering the time windows for servicing customers. Fagerholt [4] was the first to raise
the issue of soft-time windows in tramp shipping scheduling in which a penalty cost for servicing
customers outside the time window was imposed. Yu et al. [50] studied the sailing speed optimization
problem with a fuzzy-time window for tramp ships. They used the fuzzy-time window to describe the
shipper’s satisfaction. A bi-objective model was formulated to minimize the carrier’s operating cost
and the shipper’s satisfaction simultaneously. Both studies are in the field of tramp shipping.

To summarize, existing studies seldom incorporated the big customers’ preferences on ship
arrival time when designing liner shipping schedules. This is reflected in the fact that penalties on
early arrivals are often neglected. In addition, the port soft-time windows are periodic in this study,
which is different from those in tramp shipping. Moreover, rather than considering the market-level
shipping times as a benchmark to measure the impact of the designed shipping times, most studies
only incorporate inventory costs. In practice, a shorter shipping time can improve customer satisfaction
and consequently reduce the total operating cost.

This study aims to design the optimal schedule at each port of call on a shipping route. This design
is realized while minimizing the total cost, which is sum of the vessel operating cost, fuel cost, penalty
cost associated with the port soft-time windows, and penalty cost for the longer shipping time, minus
the bonus for the shorter shipping time. This problem is of practical significance to container lines
operating near-sea routes or some feeder routes; the problem can help container lines improve service
levels for big customers, thereby enhancing the sustainability in liner shipping networks, environments,
and society.

The contribution of this study is threefold. First, the factor of weekly soft-time windows based on
the preference of big customers is considered in the liner shipping schedule design problem. Second,
a tailored mixed-integer programming model is developed to obtain the optimal shipping schedule.
Finally, from the case studies, we can obtain useful management insights that can provide support for
container lines.

3. Problem Description

This study considers a typical near-sea shipping route, such as the China-Vietnam-Indonesia
(CVI) service operated by SITC container lines in Figure 1, which includes I = : {1, 2, . . . , N} ports
of call. The port rotation of the CVI service can be expressed as follows: 1(Ningbo)-2(Shanghai)-
3(Xiamen)-4(Shekou)-5(Hochiminh)-6(Jakarta)-7(Semarang)-8(Surabaya)- 9(Makassar)-1(Ningbo). The voyage
from the ith to the (i+ 1)th port of call is called leg i. We define leg N as the voyage from the Nth port of call
back to the first one.
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In practice, liner shipping companies generally maintain a weekly service frequency for ports in
the service. Therefore, this study considers the total cost of the route in one week.

3.1. Vessel Operating Cost and Shipping Schedule

Let Li be the distance from the ith port of call to the (i + 1)th port of call, and let vi be the sailing
speed on Li. We define the time 00:00 on Sunday as 00:00. Let ta

i be the ship arrival time at the ith port
of call, and let tw

i be the fixed dwelling time at the ith port of call. We assume that berths are available
at the actual time of arrival. Then, we can obtain the relation

ta
i+1 = ta

i + tw
i +

Li
vi

, i ∈ I (1)

We assume that the vessel fleet is homogeneous, and m is the number of ships deployed on
the shipping route. To maintain a weekly service frequency, the container lines need to satisfy the
following requirements:

ta
N+1 = ta

1 + 168m, (2)

where 168 is the number of hours in a week, and ta
N+1 is the time when the ship returns to the first port

of call. Let Cop represent the fixed weekly operating cost in US dollars per week per ship, including the
maintenance cost of ships, the crew’s wages, and port charges. Therefore, the fixed weekly operating
cost of the route is Copm.

3.2. Port Soft-Time Windows

A big customer has preferences for the weekly ship arrival time at the loading port; therefore,
when the ship fails to arrive at the port within the time window expected by that customer, a certain
penalty must be imposed according to the length of the violation time. Here, we assume that each
big customer’s preference for the arrival time is only one day a week. When the customer selects
time preferences on two consecutive days or more, the proposed model can be applied after minor
modifications. We also define the slope of the penalty function to be the same on both sides. The reason
is that this function describes the shipper’s preference on the arrival date, and the less the actual
arrival time deviates from this preference, the better. Owing to the characteristics of a weekly service
frequency of liner shipping, the soft-time windows are multiply periodic. For example, as shown
in Figure 2a, we assume that the time window expected by the customer is Wednesday, that is, the
periods between the 72nd and 96th hours, the 240th and 264th hours, and the 408th and 432nd hours,
etc. There is no penalty when the ship arrives at the port within these periods. The penalties incurred



Sustainability 2020, 12, 7828 6 of 20

at the same time in different weeks are the same. For example, the penalty for the ship arriving at the
port at ta

i = 228 is the same as that for ta
i = 60 (228mod168 = 60). A big customer at each port has a

different requirement for the weekly time window; and, the penalty function for each day of the week
is different. For example, Figure 2b is the penalty function image for Friday, which can be obtained by
shifting the time window image for Wednesday on the time axis.
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Let t̂a
i denote the arrival time of the ship at port of call i in the first week, namely t̂a

i = ta
i mod168,

and let p3
(
t̂a
i

)
denote the penalty function for Wednesday as the preferred day at port of call i. Then,

we have

p3
(
t̂a
i

)
=


αi

(
72− t̂a

i

)
, 0 ≤ t̂a

i < 72

0, 72 ≤ t̂a
i ≤ 96

αi
(
t̂a
i − 96

)
, 96 < t̂a

i ≤ 168

, (3)

where αi (USD/h) is the unit penalty cost for arriving at the port of call i earlier or later than the expected
time of the customer. Since the penalty function for each day of the week is different, the soft-time
windows for each day in the first week are shown in Figure 3.Sustainability 2020, 12, x FOR PEER REVIEW 7 of 19 
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We assume that p0
(
t̂a
i

)
, . . . , p6

(
t̂a
i

)
represent the penalty functions of the soft-time windows from

Sunday to Saturday at port of call i. Then, we have

p0
(
t̂a
i

)
=


0, 0 ≤ t̂a

i ≤ 24

αi
(
t̂a
i − 24

)
, 72 < t̂a

i ≤ 96

αi
(
168− t̂a

i

)
, 96 < t̂a

i ≤ 168

p1
(
t̂a
i

)
=


αi

(
24− t̂a

i

)
, 0 ≤ t̂a

i ≤ 24

0, 24 < t̂a
i ≤ 48

αi
(
t̂a
i − 48

)
, 48 < t̂a

i ≤ 120

αi
(
192− t̂a

i

)
, 120 < t̂a

i ≤ 168

p2
(
t̂a
i

)
=


αi

(
48− t̂a

i

)
, 0 ≤ t̂a

i ≤ 48

0, 48 < t̂a
i ≤ 72

αi
(
t̂a
i − 72

)
, 72 < t̂a

i ≤ 144

αi
(
216− t̂a

i

)
, 144 < t̂a

i ≤ 168

p4
(
t̂a
i

)
=


αi

(
t̂a
i + 48

)
, 0 ≤ t̂a

i ≤ 24

αi
(
96− t̂a

i

)
, 24 < t̂a

i ≤ 96

0, 96 < t̂a
i ≤ 120

αi
(
t̂a
i − 120

)
, 120 < t̂a

i ≤ 168

p5
(
t̂a
i

)
=


αi

(
t̂a
i + 24

)
, 0 ≤ t̂a

i ≤ 48

αi
(
120− t̂a

i

)
, 48 < t̂a

i ≤ 120

0, 120 < t̂a
i ≤ 144

αi
(
t̂a
i − 144

)
, 144 < t̂a

i ≤ 168

p6
(
t̂a
i

)
=


αi t̂a

i , 0 ≤ t̂a
i ≤ 72

αi
(
144− t̂a

i

)
, 72 < t̂a

i ≤ 144

0, 144 < t̂a
i ≤ 168

(4)

We define S : = {0, 1, 2, 3, 4, 5, 6} to be a set of all days in a week. Let xis be a binary coefficient that
takes a value of 1 if the soft-time window at port of call i is day s or 0 otherwise. Thus, the penalty
cost of soft-time windows at the port of call i is

∑
s∈S

xisps
(
t̂a
i

)
. For example, if the time preference of a

big customer at port 1 is Tuesday, we have x12= 1 and x10 = x11 = x13 = x14 = x15 = x16= 0.
This means that the penalty function for port 1 should use the third function in Equation (4), which
corresponds to the third image in Figure 3.

The total penalty costs of soft-time windows at all ports of call on the route are as follows:∑
i∈N

∑
s∈S

xisps
(
t̂a
i

)
(5)

3.3. Shipping Time

We define h to be the weekly container shipping demand corresponding to one O-D port pair and
H to be the set of all shipping demands. Let t f low

h represent the total shipping time of container shipping
demand h from the loading port to the discharging port, including the sailing time for shipping legs
and the fixed dwelling time at ports. Then, we have

t f low
h =

∑
i∈I

µhi

(
Li
vi

+ tw
i

)
, (6)

where µhi is a binary coefficient that takes a value of 1 if container shipping demand h is transported
on leg i and visits the ith port of call or 0 otherwise, and tw

i is the fixed dwelling time at port of call
i. Let γ̃h represent the unit penalty cost of a shipping time longer than the market-level shipping
time corresponding to container shipping demand h (in US dollars per TEU per hour), and let γh
represent the unit bonus of a shipping time shorter than the market-level shipping time corresponding
to container shipping demand h (in US dollars per TEU per hour). Let Th be the market-level shipping
time of the O-D port pair corresponding to container shipping demand h, and let qh be the volume of
container shipping demand h (in TEUs). Thus, the bonus or penalty cost of the shipping time with
regard to container shipping demand h is as follows:

ch
(
t f low
h

)
= qh

(
γ̃hmax

{
0, t f low

h − Th
}
− γhmax

{
0, Th − t f low

h

})
(7)



Sustainability 2020, 12, 7828 8 of 20

3.4. Fuel Cost

Let fi(vi) be the bunker consumption in tons per nautical mile at sailing speed vi on leg i. In this
study, we assume that fi(vi) is a convex function of vi [6,27,51]. Then, we have

fi(vi) = δi(vi)
bi , δi > 0, bi ≥ 2, (8)

where δi and bi are two coefficients estimated from practical data. Let β be the bunker price in US
dollars per ton; thus, the weekly fuel cost on the shipping route is

β
∑
i∈I

Liδi(vi)
bi (9)

3.5. Mathematical Model

The optimal arrival time of each port of call on the route and the optimal number of ships deployed
on the route is determined to minimize the total cost. These values are determined using the liner
shipping schedule design problem considering the big customers’ preferences for ship arrival time.
First, we list the variables and parameters of the model.

Variables:

vi Sailing speed of container ship on leg i
m Integer variable representing the number of ships deployed on the shipping route
ta
i Ship arrival time at the ith port of call.

ta
N+1 The time the ship returns to the first port of call after visiting all ports of call for a round-trip journey

t̂a
i Arrival time of ship at port of call i in the first week

t f low
h Total shipping time of container shipping demand h from the loading port to the discharging port

Parameters:

I Set of ports of call
N Number of call ports on the shipping route
H Set of all container shipping demands on the shipping route
Li Distance from the ith to the (i + 1)th port of call
Vmin

i Minimum sailing speed of container ship on leg i
Vmax

i Maximum sailing speed of container ship on leg i
tw
i Dwelling time a ship spends at the ith port of call.

Cop Weekly operating cost of the container ship
S Set of all days in a week.
αi Unit penalty cost for arriving at port of call i earlier or later than the expected time of the customer
xis Binary coefficient, which equals 1 if and only if the soft-time window at port of call i is day s
µhi Binary coefficient, which equals 1 if and only if container shipping demand h is transported on

leg i and visits the ith port of call
qh Volume of container shipping demand h
Th Market-level shipping time of the O-D port pair corresponding to container shipping demand h
γ̃h Unit penalty cost of shipping time longer than the market-level shipping time corresponding to

container shipping demand h
γh Unit bonus of shipping time shorter than the market-level shipping time corresponding to

container shipping demand h
β Unit bunker price
δi Constants estimated from practical data
bi Constants estimated from practical data
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Z+ Set of non-negative integers

The problem of the liner shipping schedule design considering big customers’ preferences for
ship arrival time can be formulated as a mixed-integer nonlinear programming model [M1]:

[M1]minCopm + β
∑
i∈I

Liδi(vi)
bi +

∑
i∈N

∑
s∈S

xisps
(
t̂a
i

)
+

∑
h∈H

ch
(
t f low
h

)
(10)

ta
i+1 = ta

i + tw
i +

Li
vi

, i ∈ I (11)

ta
N+1 = ta

1 + 168m (12)

0 ≤ ta
1 < 168 (13)

t̂a
i = ta

i mod168 (14)

ch
(
t f low
h

)
= qh

(
γ̃hmax

{
0, t f low

h − Th
}
− γhmax

{
0, Th − t f low

h

})
,∀h ∈ H (15)

t f low
h =

∑
i∈I

µhi

(
Li
vi

+ tw
i

)
,∀h ∈ H (16)

Vmin
i ≤ vi ≤ Vmax

i , i ∈ I (17)

m ∈ Z+ (18)

The objective function (10) minimizes the total cost, which amounts to the sum of the vessel
operating cost, fuel cost, penalty cost associated with the port soft-time windows, and penalty cost
for the longer shipping time, minus the bonus for the shorter shipping time. Constraint (11) defines
the ship arrival time at each port of call. Constraint (12) ensures a weekly service frequency on the
shipping route. Constraint (13) defines the ship arrival time at the first port of call and eliminates
symmetric solutions. Constraint (14) defines the ship arrival time at each port of call in the first week.
Constraint (15) defines the bonus or penalty cost of shipping time with regard to container shipping
demand h. Constraint (16) defines the total shipping time of container shipping demand h from the
loading port to the discharging port. Constraint (17) defines the lower and upper bounds of the sailing
speed on each leg. Constraint (18) indicates that the number of ships deployed on the shipping route is
a non-negative integer.

4. Solution Method

In model [M1], the objective function (10) contains power functions and penalty functions;
constraints (11) and (16) contain the reciprocal of the sailing speed; constraint (15) is also a piecewise
linear function; and constraint (14) contains the “mod” operation. Hence, model [M1] is a mixed-integer
nonconvex nonlinear optimization problem that is difficult to solve. Next, we attempt to transform
model [M1] into a mixed-integer linear programming model, which can be directly solved by
state-of-the-art MILP solvers such as CPLEX.

4.1. Mixed Integer Nonlinear Programming Model

Constraint (15) can be linearized in the following manners. First, we rewrite constraint (15) in the
form of a piecewise function:

ch
(
t f low
h

)
=

 qhγ̃h
(
t f low
h − Th

)
, Tmin

h ≤ t f low
h ≤ Th

qhγh

(
t f low
h − Th

)
, Th < t f low

h ≤ Tmax
h

, ∀h ∈ H, (19)

where Tmin
h and Tmax

h represent the shortest and longest shipping times of container shipping demand,
h, respectively, which can be obtained from constraint (16) at Vmax

i and Vmin
i . Continuous auxiliary
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variables wc
hj are introduced to linearize the function. Binary auxiliary variables zc

hj are introduced to

limit the value range of wc
hj to limit the interval of t f low

h . Thus, constraint (15) is transformed into linear
constraints associated with the variables wc

hj. We have

Ch

(
wc

hj

)
= wc

h1ch
(
Tmin

h

)
+ wc

h2ch(Th) + wc
h3ch

(
Tmax

h

)
,∀h ∈ H (20)

t f low
h

(
wc

hj

)
= wc

h1Tmin
h + wc

h2Th + wc
h3Tmax

h ,∀h ∈ H, (21)

where wc
hj is limited by the following constraints:

wc
h1 ≤ zc

h1,∀h ∈ H (22)

wc
h2 ≤ zc

h1 + zc
h2,∀h ∈ H (23)

wc
h3 ≤ zc

h2,∀h ∈ H (24)

wc
h1 + wc

h2 + wc
h3 = 1,∀h ∈ H (25)

zc
h1 + zc

h2 = 1,∀h ∈ H (26)

wc
h1, wc

h2, wc
h3 ≥ 0,∀h ∈ H (27)

zc
h1, zc

h2 ∈ {0, 1},∀h ∈ H (28)

It is easy to verify that the above constraints (20)–(28) are equivalent to constraints (15) and (16).
Hence, the total bonus and penalty cost of the shipping time with regard to all container shipping
demands is as follows:∑

h∈H

Ch =
∑
h∈H

(
wc

h1ch
(
Tmin

h

)
+ wc

h2ch(Th) + wc
h3ch

(
Tmax

h

))
,∀h ∈ H (29)

The penalty functions of port soft-time windows can be linearized in the same manner. Let bi j be
the turning points of the penalty functions (4); further, Ji : = {1, 2, . . . , ni} is defined as the set of all
turning points. By introducing continuous auxiliary variables wp

ij and binary auxiliary variables zp
ij, the

penalty functions (4) can be transformed into the following linear constraints:

Pi =
∑
j∈Ji

wp
ijpi

(
bp

ij

)
,∀i ∈ I (30)

t̂a
i =

∑
j∈Ji

wp
ijb

p
ij,∀i ∈ I (31)

wp
i1 ≤ zp

i1,∀i ∈ I (32)

wp
ij ≤ zp

i, j−1 + zp
ij, j = 2, . . . , ni − 1,∀i ∈ I (33)

wp
i,ni
≤ zp

i,ni−1,∀i ∈ I (34)∑
j∈Ji

wp
ij = 1,∀i ∈ I (35)

ni−1∑
j = 1

zp
ij = 1,∀i ∈ I (36)

wp
ij ≥ 0, j = 1, . . . , ni,∀i ∈ I (37)
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zp
ij ∈ {0, 1}, j = 1, . . . , ni − 1,∀i ∈ I (38)

Thus, the total penalty costs of the soft-time windows at all ports of call on the route are∑
i∈I

Pi =
∑
i∈I

∑
j∈Ji

wp
ijpi

(
bp

ij

)
By introducing auxiliary variables ki ∈ Z+, we have

t̂a
i = ta

i − 168k,∀i ∈ I (39)

0 ≤ t̂a
i < 168,∀i ∈ I (40)

ki ∈ Z+,∀i ∈ I (41)

The above constraints (39)–(41) are equivalent to constraints (14). Hence, we obtain model [M2]:

[M2]min


Copm + β

∑
i∈I

Liδi(vi)
bi +

∑
i∈I

∑
j∈Ji

wp
ijpi

(
bp

ij

)
+

∑
h∈H

(
wc

h1ch
(
Tmin

h

)
+ wc

h2ch(Th) + wc
h3ch

(
Tmax

h

)) (42)

subject to constraints (11)–(13), (16)–(18), (21)–(28), and (31)–(41). [M2] is equivalent to [M1].

4.2. Mixed Integer Linear Programming Approximate Model

In model [M2], the objective function (42) contains power functions, and constraints (11) and
(16) contain the reciprocal of the sailing speed. Hence, model [M2] is still a mixed-integer nonlinear
optimization model. We define a new variable ui as the reciprocal of the sailing speed vi:

ui =
1
vi

, i ∈ I (43)

Then, constraints (11), (16), and (17) are transformed into linear constraints associated with the
variable ui:

ta
i+1 = ta

i + tw
i + Liui, i ∈ I (44)

t f low
h =

∑
i∈I

µhi
(
Liui + tw

i

)
, ∀h ∈ H (45)

umin
i =

1
Vmax

i
≤ ui ≤

1
Vmin

i

= umax
i , i ∈ I (46)

A new function Fi(ui) of bunker consumption can be obtained as follows:

Fi(ui) = fi

(
1
ui

)
= δi

(
1
ui

)bi

= δi(ui)
−bi (47)

Because −bi ≤ −2 < 0 and δi > 0, Fi(ui) is convex in ui ∈
[
umin

i , umax
i

]
.

Constraint (46) shows that the variable ui is evaluated within a certain range. We divide the
interval

[
umin

i , umax
i

]
into M equal segments, that is, umin

i = ui1 < ui2 < · · · < uiM = umax
i . We use

um
i to represent any value of M equal segments. From the property of the first-order condition of the

convex function, we can obtain

Fi(ui) ≥ Fi
(
um

i

)
+ Fi′

(
um

i

)(
ui − um

i

)
, m = 1, 2, . . . , M
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where Fi′
(
um

i

)
represents the tangent line of the function Fi(ui) at point um

i . Thus, the function Fi(ui)

can be converted as follows:

Fi(ui) = max
m = 1,...,M

(
Fi

(
um

i

)
+ Fi′

(
um

i

)(
ui − um

i

))
Evidently, the function Fi(ui) is a piecewise linear function that is also convex. Then, objective

function (42) is transformed into a piecewise linear convex function:

min


Copm + β

∑
i∈I

Li

(
max

m = 1,...,M

(
Fi

(
um

i

)
+ Fi′

(
um

i

)(
ui − um

i

)))
+

∑
i∈I

∑
j∈Ji

wp
ijpi

(
bp

ij

)
+

∑
h∈H

(
wc

h1ch
(
Tmin

h

)
+ wc

h2ch(Th) + wc
h3ch

(
Tmax

h

)) (48)

Objective function (48) can be equivalently linearized by constructing its epigraph form. Then,
we have:

min


Copm + β

∑
i∈I

LiF +
∑
i∈I

∑
j∈Ji

wp
ijpi

(
bp

ij

)
+

∑
h∈H

(
wc

h1ch
(
Tmin

h

)
+ wc

h2ch(Th) + wc
h3ch

(
Tmax

h

)) (49)

F ≥ max
m = 1,...,M

(
Fi

(
um

i

)
+ Fi′

(
um

i

)(
ui − um

i

))
(50)

Inequality (50) can be expressed as M separate inequalities:

F ≥ Fi
(
um

i

)
+ Fi′

(
um

i

)(
ui − um

i

)
, m = 1, . . . , M (51)

Finally, model [M2] is approximated by the mixed-integer linear optimization model [M3], which
can be solved efficiently by state-of-the-art solvers.

[M3]min


Copm + β

∑
i∈I

LiF +
∑
i∈I

∑
j∈Ji

wp
ijpi

(
bp

ij

)
+

∑
h∈H

(
wc

h1ch
(
Tmin

h

)
+ wc

h2ch(Th) + wc
h3ch

(
Tmax

h

)) (52)

subject to constraints (12), (13), (18), (21)–(28), (31)–(41), (44)–(46), and (51).
Let Obj∗ and Obj∗ be the optimal objective function values of the mixed-integer linear programming

model [M3] and the original mixed-integer nonlinear programming model [M1], respectively, and
let

(
m∗, v∗i , ta

i
∗
)

be an optimal solution to the mixed-integer linear programming model [M3]. Then,
we have

Obj∗
(
m∗, v∗i , ta

i
∗
)
≤ Obj∗ ≤ Obj∗

(
m∗, v∗i , ta

i
∗
)

Thus, the relative error between model [M3] and model [M1] is

RE =
Obj∗

(
m∗, v∗i , ta

i
∗
)
−Obj∗

(
m∗, v∗i , ta

i
∗
)

Obj∗
(
m∗, v∗i , ta

i
∗

)
Since the relative error depends on the number of segments M, an iterative optimization approach

is presented below to control the relative error within a given tolerance ε.
Step 0. Give a proper start of the number of segments M = y.
Step 1. Solve model [M3] and obtain the objective value Obj∗ as well as the optimal solution(

m∗, v∗i , ta
i
∗
)
.

Step 2. Calculate the objective function value of model [M1] with the solution
(
m∗, v∗i , ta

i
∗
)
. Obtain

the function value Obj∗
(
m∗, v∗i , ta

i
∗
)

and the relative error RE.
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Step 3. If RE < ε, stop and output
(
m∗, v∗i , ta

i
∗
)

and Obj∗. Otherwise, set M = y + 1 and go to
Step 1.

5. Case Study

5.1. Parameter Setting

To evaluate the applicability of the proposed models and algorithms, we conduct case studies
based on the service CVI operated by the SITC container lines in Figure 1. We assume that 1800 TEU
ships are deployed on the route. The operating cost is Cop = US$200, 000/week, maximum speed
Vmax

i = 25knots, minimum speed Vmin
i = 10knots, bunker price β = US$300/t, unit penalty cost is

αi = US$10/h, unit penalty cost is γh = US$0.3/h, and unit bonus is γ̃h = US$0.2/h. We assume
that the market-level shipping time is calculated when the sailing speed is set as vi= 12knots. We set
the tolerance ε = 10−5 and the start of the number of segments M = 1000. The dwelling time,
distance, bunker consumption function of each leg, and port soft-time windows are listed in Table 1.
CPLEX 12.8.0, programmed by the MATLAB toolbox YALMIP, is called to solve the mixed-integer
linear programming model. The test can be completed within 15 s.

Table 1. Parameters in the case study.

Port ID Port Port Waiting Time (h) Length (nm) Bunker Function PSTW

1 Ningbo 7 168.1 0.001(v1)
2 Wednesday

2 Shanghai 10 589.4 0.001(v2)
2 -

3 Xiamen 5 336.3 0.001(v3)
2 Saturday

4 Shekou 8 933.3 0.001(v4)
2 -

5 Hochiminh 28 1094.3 0.001(v5)
2 Wednesday

6 Jakarta 24 269 0.001(v6)
2 -

7 Semarang 14 239.9 0.001(v7)
2 Monday

8 Surabaya 15 473 0.001(v8)
2 Tuesday

9 Makassar 19 2274.1 0.001(v9)
2 Thursday

5.2. Effects of Vessel Operating Costs

First, we examine the impact of the vessel operating cost on the total cost and the number of
ships deployed on the route. We increase the vessel operating cost from US$100,000, US$150,000,
US$200,000, US$250,000, and US$300,000 to US$350,000, and the other parameters are the same as
those mentioned in Section 4.1. The results are shown in Figure 4 and Table 2. We determine that
the number of deployed ships decreases when the vessel operating cost rises to a certain degree, and
once the number of deployed ships changes, the optimal arrival time changes; a higher operating
cost generally leads to an increase in the total cost of container lines. This indicates that when the
vessel operating cost is high, container lines can reduce operating costs by deploying fewer vessels.
In general, the total cost increases linearly with the operation cost.

Table 2. Optimal arrival time with different operating costs.

Operating Cost
(×105 US$)

Arrival Time ta
i

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port 1

1.0 16.06 37.38 97.6 131.03 217.3 337.08 384 418.6 474.22 688.06
1.5 16.06 37.38 97.6 131.03 217.3 337.08 384 418.6 474.22 688.06
2.0 16.06 37.38 97.6 131.03 217.3 337.08 384 418.6 474.22 688.06
2.5 91.05 107.98 152.82 177.47 240 331.94 371.84 400.02 442.97 595.05
3.0 91.05 107.98 152.82 177.47 240 331.94 371.84 400.02 442.97 595.05
3.5 91.05 107.98 152.82 177.47 240 331.94 371.84 400.02 442.97 595.05
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5.3. Effects of Bunker Prices

As the bunker consumption cost is the largest part of the total operating cost, the rise in the bunker
price will considerably affect the profit. To study the impact of volatility on bunker price, we set the
bunker price from US$200 to US$700, and the other parameters are the same as those mentioned in
Section 5.1. Figure 5 shows that a higher bunker price leads to a higher total cost. In terms of the
number of ships to be allocated, three ships are deployed only when the bunker cost is as low as
US$200, and in the other cases, four ships are deployed. Table 3 summarizes that the optimal arrival
time varies evidently when the number of vessels varies. These results indicate that the volatility in the
bunker price has little impact on the number of ships deployed on the near-sea routes. This is mainly
because the length of a round-trip of a near-sea route is always short, and the dwelling time at ports of
call takes up a considerable proportion of the total round-trip time. Therefore, there is little room for
container lines to adjust the number of ships deployed on the near-sea routes facing fluctuations in
bunker prices. Overall, owing to the stability of the number of ships deployed on the near-sea route,
the total cost increases linearly with the bunker price.
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Table 3. Optimal arrival time with different bunker prices.

Bunker Price
(US$/t)

Arrival Time ta
i

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port 1

200 91.05 107.98 152.82 177.47 240 331.94 371.84 400.02 442.97 595.05
300 16.06 37.38 97.6 131.03 217.3 337.08 384 418.6 474.22 688.06
400 15.43 36.76 96.98 130.41 217.3 337.08 384 418.6 474.22 687.43
500 14.7 36.02 96.24 129.67 216.57 337.08 384 418.44 473.93 686.7
600 14.7 36.02 96.24 129.67 216.57 337.08 384 418.44 473.93 686.7
700 14.51 35.83 96.05 129.67 216.57 337.08 384 418.44 473.74 686.51

5.4. Comparisons of Port Soft-Time Windows

In this section, we study the impact of the port soft-time windows on the total cost and optimal
arrival time. Considering Semarang, Surabaya, and Makassar ports as examples to study the influence
of the soft-time window, we set three time-window scenarios, as summarized in Table 4. Scenario 1
is the default setting. From scenarios 1 to 3, the time windows of the three ports are getting closer.
In each scenario, we set the unit penalty cost of the three ports from US$10/h, US$100/h, US$500/h,
and US$1000/h to US$2000/h, which indicates that the importance of the big customers is increasing.
The results are shown in Figure 6 and Table 5. In scenario 1, with the increase in the penalty cost,
the total cost does not substantially increase. The total cost and optimal arrival time remain the
same as the unit penalty cost increases from US$100/h to US$2000/h, which means that when the unit
penalty cost is US$100/h, the ship can arrive at the ports within the time windows preferred by the
big customers. In scenario 3, the total cost increases with the unit penalty cost. The reason is that the
soft-time windows of all three ports are set on the same day, and it is impossible for a container ship to
arrive at the three ports on the same day. Therefore, with the increasing unit penalty cost, container
lines can only continuously increase the sailing speed on the legs between the three ports to minimize
the penalty cost of soft-time windows.

Table 4. Scenarios of soft port times at Semarang, Surabaya, and Makassar.

Port
Scenario of Soft-Time Windows

1 2 3

Semarang Monday Monday Tuesday
Surabaya Tuesday Tuesday Tuesday
Makassar Thursday Wednesday Tuesday
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Table 5. Optimal arrival time with different time windows and unit penalty costs.

Scenario α (US$/h)
Arrival Time ta

i

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port 1

1

10 16.06 37.38 97.6 131.03 217.3 337.08 384 418.6 474.22 688.06
100 164.77 186.2 246.82 280.25 366.9 486.68 533.78 568.38 624 836.77
500 164.77 186.2 246.82 280.25 366.9 486.68 533.78 568.38 624 836.77

1000 164.77 186.2 246.82 280.25 366.9 486.68 533.78 568.38 624 836.77
2000 164.77 186.2 246.82 280.25 366.9 486.68 533.78 568.38 624 836.77

2

10 62.75 84.08 144.3 177.73 264 383.78 430.88 465.64 521.57 734.75
100 147.12 168.55 229.17 262.82 350.09 470.6 517.88 552 606.35 819.12
500 146.36 168.01 229.01 263.12 351.27 472.51 519.97 552 602.55 818.36

1000 145.7 167.47 228.88 263.21 351.98 474.37 522.19 552.61 600 817.7
2000 148.38 170.38 232.43 266.98 356.38 479.82 528 556.5 600 820.38

3

10 62.46 83.78 144 177.43 263.7 383.48 430.58 465.34 521.28 734.46
100 4.96 26.39 87.01 120.44 207.16 326.94 374.04 408 462.67 676.96
500 3.89 25.55 86.56 120.44 207.96 328.69 375.97 408 458.55 675.89

1000 2.24 24.02 85.71 119.81 207.96 329.93 377.57 408 455.39 674.24
2000 1.66 23.66 85.85 120.18 208.95 331.66 379.66 408 451.27 673.66

5.5. Effects of Shipping Time Sensitivity

Finally, the sensitivity of the shipping time also affects the total operating cost. We scale up γh
and γ̃h from US$0.1/h and US$0.15/h to US$1.0/h and US$1.5/h, respectively. The results are shown in
Figure 7 and Table 6; the results demonstrate that when a high proportion of cargoes are time sensitive,
that is, when the ship needs to run at a high speed, container lines could reduce the total cost by
reducing the number of ships deployed. However, owing to the short voyages of near-sea service
routes, container lines have little room to adjust the fleet size.

Table 6. Optimal arrival times with different penalty costs and bonuses.

¯
γh

(US$/h)

~
γh

(US$/h)
Fleet
Size

Arrival Time ta
i

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9 Port 1

0.1 0.15 4 15.43 36.76 96.98 130.41 217.3 337.08 384 418.44 473.74 687.43
0.2 0.3 4 16.06 37.38 97.6 131.03 217.3 337.08 384 418.6 474.22 688.06
0.4 0.6 3 91.05 107.98 152.82 177.47 240 331.94 371.84 400.02 442.97 595.05
0.6 0.9 3 96 112.93 157.77 182.42 244.95 336.89 376.79 404.97 447.92 600
0.8 1.2 3 91.67 108.61 153.44 178.09 240 331.94 371.84 400.02 442.97 595.67
1.0 1.5 3 91.67 108.61 153.44 178.09 240 331.21 371.14 399.32 442.27 595.67
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6. Conclusions and Future Work

This study examines the liner shipping schedule design problem considering the big customers’
preferences for ship arrival time. To this end, we consider the big customers’ preferences for ship arrival
times at loading ports, which is of practical significance for maintaining the sustainable development
of the liner shipping network, environment, and society. The problem is expressed as a mixed-integer
nonconvex nonlinear programming model. The model is then transformed into a mixed-integer
linear programming model by reformulating the piecewise functions and approximating the convex
nonlinear function through an outer linear approximation technique. The proposed model is solved
efficiently by the current mainstream optimization solver to obtain the optimal solution, which proves
the applicability of the model to the problem. We conduct a series of numerical experiments by
considering CVI, a near-sea route operated by SITC Container Lines, as an example.

The results demonstrate that the big customers’ time preferences affect the total cost, sailing speed
on each leg, and ship arrival time. Therefore, considering the big customers’ time preferences is crucial
for container lines when designing a ship schedule in practice. In addition, we conducted a sensitivity
analysis on the vessel operating cost, bunker price, and shipping time. First, the total cost increases
linearly with the operation cost. Second, owing to the short length of a round-trip in near-sea routes,
when the bunker price changes, there is little room for container lines to adjust the number of ships
deployed on the designed service route. Finally, when the shipping time is urgent, carriers can reduce
the total cost by reducing the number of ships deployed, with little room for adjustment.

In future studies, we will extend the problem to a liner shipping network. In addition, it is of
great practical significance to study the joint optimization of port call adjustment and ship schedule
design with time windows for the adjacent port groups of a certain country on the near-sea routes
such as the Kansai port group, the Kanto port group, the Manila north and south ports, and the Laem
Chabang and Bangkok ports.
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