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Abstract: In light of the widespread use of electric vehicles for urban distribution, this paper delves
into the electric vehicle routing problem (EVRP): specifically addressing multiple trips per vehicle,
diverse vehicle types, and simultaneous pickup and delivery. The primary objective is to minimize the
overall cost, which encompasses travel expenses, waiting times, recharging costs, and fixed vehicle
costs. The focal problem is formulated as a heterogeneous and multi-trip electric vehicle routing
problem with pickup and delivery (H-MT-EVRP-PD). Additionally, we introduce two heuristic
algorithms to efficiently approximate solutions within a reasonable computational time. The variable
neighborhood search (VNS) algorithm and the adaptive large neighborhood search (ALNS) algorithm
are presented and compared based on our computational experiences with both. Through solving
a series of large-scale real-world instances for the H-MT-EVRP-PD and smaller instances using an
exact method, we demonstrate the efficacy of the proposed approaches.

Keywords: electric vehicle routing; heterogeneous fleet; multi-trip; pickup and delivery; heuristics

1. Introduction
1.1. Motivation

The vehicle routing problem (VRP) stands as a pivotal research focus within the logis-
tics domain. Given the rapid expansion of logistics and express enterprises in recent years,
addressing the challenge of optimizing routing amidst multiple constraints and a sub-
stantial task volume has emerged as a prominent research area. Concurrently, heightened
societal emphasis on environmental preservation has led logistics and express enterprises to
adopt electric vehicles for distribution, particularly in urban settings due to the operational
constraints associated with limited range.

This paper is motivated by the context of express package distribution in urban areas,
where external packages continually arrive at a city distribution center (depot) serving
as the launchpad for last-mile delivery operations. Consequently, daily optimization of
distribution from the depot to customers becomes imperative and necessitates consideration
of various attributes in the optimization process. Key considerations include: (1) The
delivery window spans from 6:00 to 24:00, prompting the need for multiple trips per
vehicle per day to accommodate limited capacity and to minimize the fleet size, thereby
reducing fixed vehicle costs. (2) Logistics distribution, such as express packages, involves
both pickup and delivery requirements, introducing the crucial aspect of the pickup and
delivery problem (PDP). (3) Enterprises often deploy a variety of electric vehicle types.
While larger vehicles may fulfill transportation demands without recharging operations,
the cost-effectiveness of incorporating smaller vehicles in the fleet mix can reduce overall
costs. Consequently, fleet managers must consider heterogeneous vehicle types.

Addressing these concerns, this paper introduces a novel multi-attribute vehicle
routing problem: the heterogeneous and multi-trip electric vehicle routing problem with
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pickup and delivery (H-MT-EVRP-PD). It amalgamates well-established problems, in-
cluding the heterogeneous vehicle routing problem (HVRP), multi-trip vehicle routing
problem (MTVRP), pickup and delivery problem (PDP) for goods transportation, and the re-
cently defined electric vehicle routing problem with time windows and recharging stations
(E-VRPTW).

1.2. Contributions of This Paper

This paper makes significant contributions to the field, encompassing a formal problem
description, a mixed-integer programming model, and two heuristic frameworks. Compre-
hensive computational experiments are conducted for the heterogeneous and multi-trip
electric vehicle routing problem with pickup and delivery (H-MT-EVRP-PD). The main
contributions are summarized as follows:

(1) Problem Formulation: This paper unifies research on the heterogeneous vehicle
routing problem (HVRP), multi-trip vehicle routing problem (MTVRP), pickup and
delivery problem (PDP), and electric vehicle routing problem with time windows
and recharging stations (E-VRPTW). It introduces a novel problem: the heteroge-
neous and multi-trip electric vehicle routing problem with pickup and delivery
(H-MT-EVRP-PD).

(2) Mixed-Integer Programming Model: To precisely describe the problem, we formulate
the H-MT-EVRP-PD as a mixed-integer programming model. This model is directly
applicable to small instances and can be solved efficiently by commercial solvers.

(3) Heuristic Approaches: Recognizing the challenge of larger real-world instances,
we introduce two heuristic frameworks: the variable neighborhood search (VNS)
algorithm and the adaptive large neighborhood search (ALNS) algorithm.

(4) Computational Experiments: Our approach demonstrates its effectiveness by yielding
optimal solutions for small instances and providing high-quality feasible solutions
for larger instances. A sensitivity analysis that examines the impact of service time,
vehicle volume, and driving range is conducted through additional experiments.

The structure of the paper is organized as follows:
Section 2 presents a concise review of related works in the field. Section 3 provides a

mixed-integer programming formulation with detailed formal notations. Section 4 outlines
the solution procedures for the proposed VNS and ALNS approaches. Section 5 presents
comprehensive computational results from experiments. Section 6 concludes the paper and
discusses potential future directions.

2. Literature Review

Some scholars recently studied the routing problems related to this paper, such as
multi-trip time-dependent vehicle routing problem with time windows [1], the pickup and
delivery problem with time windows [2], the electric fleet size and mix vehicle routing prob-
lem with time windows [3], and the electric vehicle routing problem with time windows
and recharging stations [4]. In practice, for the distribution of electric vehicles in an urban
area, logistics and express enterprises need to consider not only the limited driving range
and long recharging time of electric vehicles but also multiple trips, heterogeneous vehicles,
and pickup and delivery to reduce costs and improve distribution efficiency. To the best
of our knowledge, there is no scholarly integration of the attributes of electric, multi-trip,
heterogeneous, and pickup and delivery to conduct the vehicle routing problem so far.
This paper tries to combine the problems of HVRP, MTVRP, PDP, and EVRPTW, and the
subsequent review will focus on these four problems.

2.1. Related Works on the Electric Vehicle Routing Problem with Time Windows

The electric vehicle routing problem with time windows (EVRPTW) is a variant of the
classical vehicle routing problem with time windows (VRPTW) for which the load tools
are electric vehicles (EVs); it was first introduced by [4]. Moreover, Schneider (2014) [4]
designed a heuristic algorithm based on the variable neighborhood search (VNS) and
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tabu search (TS) to address the proposed variant. On this basis, Ref. [3] proposed vehicle
routing problems with various types of electric vehicles by considering service time window
and recharging station selection. Ref. [5] put forward the problem of location selection
and route selection of electric vehicle power stations by considering the limitation of
battery driving range and designed a four-stage heuristic algorithm. According to [6], a
corresponding integer programming model was established to optimize the location and
distribution routing of electric vehicle logistics distribution systems. Ref. [7] constructed
an optimization model for electric vehicle distribution routing with time windows with
the goal of minimizing the total cost. Ref. [8] constructed an urban distribution routing
optimization model based on pure electric vehicles in a social charging network with
vehicle capacity constraints, single charge driving mileage constraints, and so on.

The use of different recharging technologies has been considered in the literature.
For instance, to reduce recharging duration, Ref. [9] allowed partial recharging instead of
full recharging to make the distribution route more flexible and developed an adaptive large
neighborhood search algorithm to solve the proposed model effectively. Ref. [10] proposed
a non-deterministic simulated annealing framework to solve the electric vehicle routing
problem in which multiple technologies used for recharging are considered. Ref. [11]
argued that the recharging level of the battery was a non-linear function of the recharging
time and then raised a hybrid metaheuristic for the problem. Ref. [12] introduces the electric
vehicle routing problem with shared charging stations, which is solved by a multistart
heuristic that performs an adaptive large neighborhood search.

2.2. Related Works on the Vehicle Routing Problem with a Heterogeneous Fleet

This section considers the variant of the VRP in which a heterogeneous fleet of vehicles,
each possibly having a different capacity and cost, is available for the distribution activities.
Several specific variants have been developed over time to consider the two main features
of this problem. On the one hand, there is the strategic issue of finding the best combination
of vehicles to be used for the long-term sizing of a fleet. This results in fleet size and mix
(FSM) problems, in which the vehicle fleet is assumed to be unlimited. On the other hand,
one can consider the tactical issue of using the most appropriate vehicles from a limited fleet,
which results in the heterogeneous VRP (HVRP). This paper focuses on the latter. In the
literature, the terms heterogeneous or mixed fleet VRP (HFVRP) are also used to identify the
whole problem family [13]. Ref. [14] discussed the heterogeneous vehicle routing problem
and proposed several effective heuristic solutions and techniques to generate the lower
bound of the optimal solution to solve the problem. Ref. [15] provided an overview of an
approach to solve the heterogeneous vehicle routing problem and classified the variants of
the problem described in the literature.

Time windows are also considered in the problem. Ref. [16] proposed a new three-
phase heuristic method to solve the heterogeneous and multi-depot vehicle routing problem
with time windows. Ref. [17] proposed a new two-phase solution framework based on a
mixed tabu search to solve the heterogeneous fleet routing problem with time windows.
Ref. [18] considered a real-life heterogeneous fleet vehicle routing problem with time win-
dows and split deliveries that occurred for a major Brazilian retail group and significantly
reduced distribution costs by using a scatter search approach. Ref. [19] investigated the
heterogeneous vehicle routing problem with limited number of vehicles and time windows
and proposed a method based on a tabu search algorithm. Recently, Ref. [3] introduced an
electric fleet size and mixed vehicle routing problem with time windows and recharging
stations in which the number of vehicles of each type was unlimited.

2.3. Related Works on the Multi-Trip Vehicle Routing Problem

Vehicle routing problems with multiple trips feature more than one trip per vehicle
during operation. Many studies have investigated MTVRP variants with different heuristic
algorithms, such as a multi-phase constructive heuristic enhanced by a suitable data
structure [20], adaptive memory algorithm [21], hybrid genetic algorithm [22], adaptive
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large neighborhood search [23], and combination of vehicle routing heuristics with bin
packing routing [24]. In addition, the time window has also been considered. Ref. [25]
described an exact algorithm for a single-vehicle routing problem with time windows
and multiple routes. Ref. [26] addressed the multi-trip vehicle routing problem with time
windows and released dates through a population-based algorithm with a giant tour
representation for individuals. Ref. [27] found a new exact algorithm to solve the multi-trip
vehicle routing problem with time windows and limited duration.

2.4. Related Works on the Vehicle Routing Problem with Pickup and Delivery

In this new problem, backhauls are not restricted to be visited once all linehaul customers
have been served; neither are backhaul customers fully mixed with linehaul customers.

Another variant of the VRP is the pickup and delivery problem [28], in which vehicles
transport goods from a pickup location to a corresponding delivery location. In the vehicle
routing problem with pickup and delivery, a set of vehicles must be optimally routed to
service a set of transportation demands subject to constraints on capacities, time windows,
precedence, and so on. Ref. [29] developed a multi-objective vehicle routing and scheduling
heuristic for a pickup and delivery problem that assigned customers to more than one
vehicle and allocated more than one customer to a vehicle at a time. Ref. [30] proposed
a reactive tabu search approach to work out the pickup and delivery problem with time
windows. Ref. [31] applied column generation to figure out the linear relaxation of a
set-partitioning type formulation from the pickup and delivery vehicle routing problem.
Ref. [32] proposed a heuristic based on an extension of the large neighborhood search
heuristic mentioned earlier that consisted of numerous competing subheuristics for the
problem. Ref. [33] presented a new exact algorithm for solving the pickup and delivery
problem with time windows based on a set-partitioning integer formulation. Sartori and
Buriol (2020) [2] proposed a metaheuristic for the pickup and delivery problem with
time windows that presents the use of well-known heuristic components embedded in an
iterated local search framework.

3. Problem Description and Formulation

The heterogeneous and multi-trip electric vehicle routing problem with pickup and
delivery (H-MT-EVRP-PD) can be formulated as follows. Let N be a set of customers, F be
a set of recharging stations, and N′ be a set of nodes, with N′ = N ∪ F′, where F′ denotes
a set of dummy nodes generated to permit multiple visits to each node in the set F of
recharging stations. Nodes 0 and n + 1 denote the same depot, and each route starts at
0 and ends at n + 1. To indicate that a set contains the respective instance of the depot,
the set is subscripted with 0 and n + 1; i.e., F

′
0 = F′ ∪ {0} denotes the set of recharging

visits and depot 0, N
′
0 = N′ ∪ {0} is the set of customers and recharging visits and depot

0, N
′
n+1 = N′ ∪ {n + 1} is the set of customers and recharging visits and depot n + 1, and

N
′
0,n+1 = N′ ∪ {0} ∪ {n + 1} is the set of customers and recharging visits including depot

nodes 0 and n + 1. Therefore, the problem of interest H-MT-EVRP-PD can be defined on a
weighted directed graph G = (N

′
0,n+1, A) with the set of arcs A = {(i, j)|i, j ∈ N

′
0,n+1, i ̸= j}.

Each arc is associated with a distance Dij and a travel time Tk
ij of type k. Parameters MCk

and MVk represent the maximum load and maximum volume, respectively, of vehicle
type k. Each node i ∈ N0 is associated with a demand capacity Qi, a demand volume Vi,
and a service time window [Ei, Li]. The time interval [E0, L0] represents a workday. Let
Hkg be the set of possible trips for the vehicle g of type k during the workday, and then the
combination (kg, u) represents the u-th trip performed by the vehicle g of type k.

3.1. Parameter Settings

This paper uses driving range to measure the battery capacity. Decision variables,
subscripts, and parameters used in the mathematical formulation are listed as follows.
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Decision Variables

• xkg
iju: binary decision variable indicating whether vehicle g of type k travels arc (i, j) in

trip u;
• tkg

iu : decision variable of arrival time of vehicle g of type k at node i in trip u;

• mkg
iu : decision variable of current load of vehicle g of type k at node i in trip u;

• ckg
iu : decision variable of current volume of vehicle g of type k at node i in trip u;

• ykg
iu : decision variable of remaining range of vehicle g of type k at node i in trip u.

Subscripts and Parameters

• N: set of customers N = 1, 2, · · · , n;
• F: set of recharging stations;
• 0, n + 1: index of start and end depot nodes;
• N̄: set of customers without waiting times;
• N0: set of customers and start depot 0;
• F′: set of dummy nodes, i.e., multiple visits for recharging stations F;
• N′: set of customers and recharging visits, N′ = N ∪ F′;
• F′0: set of recharging visits and depot 0, F′0 = F′ ∪ 0;
• N′0: set of customers and recharging visits and depot 0, N′0 = N′ ∪ 0;
• N′n+1: set of customers and recharging visits and depot n + 1, N′n+1 = N′ ∪ n + 1;
• N′0,n+1: set of customers and recharging visits and depot nodes 0 and n + 1, N′0,n+1 =

N′ ∪ 0∪ n + 1;
• K: set of vehicle types;
• Ik: set of vehicles of type k, k ∈ K;
• Ck: unit transportation cost of type k;
• Pk: unit waiting cost of type k;
• RCk: unit recharging cost of type k;
• Fk: fixed cost of type k;
• RTk: recharging time of type k;
• Sk

i : service time of type k at node i;

• Wkg
iu : waiting time of vehicle g of type k at node i in the trip u;

• Qi: demand load at node i;
• Vi: demand volume at node i;
• Φi: index of pick up or delivery, = 1 means pick up, = −1 means delivery;
• Dij: distance between nodes i and j, i ∈ N′0, j ∈ N′n+1;
• Tk

ij: travel time between nodes i and j of type k;

• [Ei, Li]:service time window at node i;
• Yk: driving range of a vehicle of type k;
• MLk: maximum load of vehicle type k;
• MVk: maximum volume of vehicle type k;

• Bkg
u : start time of trip u of vehicle g of type k;

• Hkg: trip sets of vehicle g of type k;
• Mij: large constant that can be set to max{Li + Sk

i + Tk
ij − Ei},i ∈ N′0, j ∈ N′n+1, i ̸= j.

3.2. Model Formulation

The following provides a rigorous formulation for the problem of interest through
discussing decision variables, objective functions, and system constraints. For modeling
convenience, the relevant notations and decision variables used in mathematical models
are summarized above. The mathematical model of H-MT-EVRP-PD can be formulated
as a mixed-integer program with the binary decision variable xkg

iju. This binary decision

variable xkg
iju is associated with indexes of trip u, vehicle g, vehicle type k, and nodes i, j,

implying whether vehicle g of type k travels arc (i, j) in the trip u. The objective of the
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H-MT-EVRP-PD is to minimize the total cost, which includes traveling cost, waiting cost,
recharging cost, and vehicle fixed cost. Therefore, the mixed-integer programming model
for H-MT-EVRP-PD is formulated as follows.

min ∑
i∈N′0

∑
j∈N′n+1,i ̸=j

∑
k∈K

∑
u∈Hkg

∑
g∈Ik

CkDijx
kg
iju + ∑

i∈N0

∑
j∈N′n+1,i ̸=j

∑
k∈K

∑
u∈Hkg

∑
g∈Ik

PkWkg
iu xkg

iju

+ ∑
i∈F′0

∑
j∈N′n+1,i ̸=j

∑
k∈K

∑
u∈Hkg

∑
g∈Ik

RCkRTkxkg
iju + ∑

j∈N′
∑
k∈K

∑
u∈Hkg

∑
g∈Ik

Fkxkg
0ju (1)

The problem involves minimizing an objective Function (1) that comprises four
components. The first part calculates the overall travel cost for each vehicle based on
the distance covered. The second part is the aggregate waiting costs for all vehicles.
The third part represents the total recharging costs, while the last part sums up the costs
of all the vehicles utilized. Specifically, if a vehicle of type k on trip u is in transit from
the depot to any other node (indicated by a value greater than zero), the fixed cost Fk of
type k is added.

s.t.

∑
j∈N′n+1

∑
k∈K

∑
u∈Hkg

∑
g∈Ik

xkg
iju = 1, ∀i ∈ N (2)

∑
j∈N′n+1

∑
k∈K

∑
u∈Hkg

∑
g∈Ik

xkg
iju ≤ 1, ∀i ∈ F

′
(3)

∑
j∈N′n+1

∑
u∈Hkg

∑
g∈Ik

xkg
iju − ∑

j∈N′0

∑
u∈Hkg

∑
g∈Ik

xkg
iju = 0, ∀i ∈ N

′
(4)

The flow constraints are encapsulated in constraints (2)–(4). Constraint (2) guarantees
that each customer is visited by any vehicle exactly once, while (3) addresses the scenario
where a recharge station is not utilized in a solution. Constraint (4) ensures the balance of
flow at each node.

tkg
iu + Wkg

iu + Tk
ij + Sk

i −Mij(1− xkg
iju) ≤ tkg

ju , ∀i ∈ N0, j ∈ N
′
n+1, k ∈ K, u ∈ Hkg, g ∈ Ik, i ̸= j (5)

tkg
iu + RTk + Tk

ij −Mij(1− xkg
iju) ≤ tkg

ju , ∀i ∈ F′, j ∈ N
′
n+1, k ∈ K, u ∈ Hkg, g ∈ Ik, i ̸= j (6)

Bkg
u ≥ Bkg

u−1 + ε
kg
u−1, ∀u ∈ Hkg, k ∈ K, g ∈ Ik (7)

Ei ≤ tkg
iu ≤ Li, ∀i ∈ N̄, k ∈ K, u ∈ Hkg, g ∈ Ik (8)

Ei − tkg
iu > 0, i ∈ N\N̄, ∀u ∈ Hkg, g ∈ Ik (9)

The timing constraints are defined by constraints (5)–(9). Constraint (5) ensures time
continuity, i.e., the arrival time of customer i plus the waiting time, service time, and travel
time cannot exceed the arrival time of its successor node j. When the previous node is a
recharging station (i.e., i ∈ F

′
), constraint (6) accounts for the recharging time instead of

the service time. Constraint (7) ensures that two consecutive trips of a vehicle must be
arranged so that the start time of the latter trip is later than the end time of the previous
one. Constraints (8) and (9) ensure that the start of service time tkg

iu must fall within the time
window [Ei, Li], and if the vehicle needs to wait upon reaching node i, the start of service
time tkg

iu must be smaller than Ei.
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0 ≤ mkg
ju ≤ mkg

iu + ΦiQix
kgu
ij + MLk(1− xkgu

ij ), ∀i ∈ N
′
0, j ∈ N

′
n+1, k ∈ K, u ∈ Hkg, g ∈ Ik (10)

0 ≤ mkg
ju ≤ MLk, ∀j ∈ Nn+1, k ∈ K, u ∈ Hkg, g ∈ Ik (11)

0 ≤ ckg
ju ≤ ckg

iu + ΦiVix
kgu
ij + MVk(1− xkgu

ij ), ∀i ∈ N
′
0, j ∈ N

′
n+1, k ∈ K, u ∈ Hkg, g ∈ Ik (12)

0 ≤ ckg
ju ≤ MVk, ∀j ∈ N

′
n+1, k ∈ K, u ∈ Hkg, g ∈ Ik (13)

The capacity constraints are addressed by (10) and (11), and the volume constraints
are covered by (12) and (13). These constraints ensure that the assigned vehicles can satisfy
the customers’ needs. Constraint (10) ensures that the cargo capacity of the vehicle mkg

ju
upon reaching node j does not exceed the capacity when it left the previous customer
i. Constraint (11) ensures that the cargo capacity of the vehicle at customer i does not
exceed the maximum capacity of the vehicle. Constraint (12) ensures that the cargo volume
ckg

ju of the vehicle g of type k on trip u at node j does not exceed the volume when it left
the previous customer i. Constraint (13) ensures that the cargo volume of the vehicle at
customer i does not exceed the maximum volume of the vehicle. Equation Φi = 1 indicates
that the vehicle picks up goods at node i, and the current load and volume upon leaving i
are adjusted to include the taken goods. Φi = −1 signifies that the vehicle delivers goods
at node i, and the load and volume of the delivered goods need to be subtracted.

0 ≤ ykg
ju ≤ ykg

iu − Dijx
kgu
ij + Yk(1− xkgu

ij ), ∀i ∈ N, j ∈ N
′
n+1, k ∈ K, u ∈ Hkg, g ∈ Ik (14)

0 ≤ ykg
ju ≤ Yk − Dijx

kgu
ij , ∀i ∈ F

′
0, j ∈ N

′
n+1, k ∈ K, u ∈ Hkg, g ∈ Ik (15)

ykg
0u = ykg

n+1,u = Yk, ∀k ∈ K, g ∈ Ik, u ∈ Hkg (16)

xkgu
ij ∈ {0, 1}, i ∈ N

′
0, j ∈ N

′
n+1, k ∈ K, u ∈ Hkg, g ∈ Ik, i ̸= j (17)

The distance constraints are stipulated by (14) and (15). In (14), it is mandated that
the remaining range of the vehicle to customer j must not surpass the remaining range of
the vehicle leaving the previous customer i by a distance less than the distance between
the two points. If the vehicle commences from a recharging station, (15) ensures that the
remaining range of the vehicle to the next customer cannot exceed the maximum range
of the vehicle minus the distance from the station to the next customer. Constraint (16)
guarantees that the vehicle is charged upon returning to the depot. Constraint (17) imposes
a binary nature (0 or 1) for the decision variable xkgu

ij .

4. Solution Methodology

This section presents two heuristic algorithms, i.e., VNS and ALNS, to solve the
HF-EVRP-PD. These two heuristics have been widely implemented to solve large-scale
various EVRPs. VNS-based heuristics have successfully solved the following problems,
e.g., the electric vehicle routing problem with time windows and recharging stations [4],
the dial-a-ride problem with electric vehicles and battery swapping stations [34], and
the electric two-echelon vehicle routing problem [35]. Additionally, the ALNS also can
successfully solve the following related problems, e.g., electric fleet size and mixed vehicle
routing problem with time windows and recharging stations [3], the electric vehicle routing
problem with time windows and partial recharge strategies [9], and the electric vehicle
battery swap station location routing problem [5]. In order to reflect the characteristics of
multiple vehicles and heterogeneous types, the distribution solutions are represented based
on vehicles (see Section 4.1). The generation process of the initial solution is described in
Section 4.2. Section 4.3 and Section 4.4, respectively, present the solution procedure and
corresponding pseudo-code for the variable neighborhood search algorithm and adaptive
large neighborhood search algorithm.
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4.1. Representation of the Solution

Various approaches exist for representing a vehicle routing problem (VRP) solution.
However, in this paper, a sequence is employed, which may not directly capture the nu-
ances of a heterogeneous fleet and multi-trip scenarios. In alignment with object-oriented
programming principles, the distribution sequence is stored independently for each ve-
hicle, and individual vehicle costs are computed. The aggregate cost of all vehicles then
constitutes the total cost of the distribution plan.

Specifically, the vehicle serves as the fundamental unit for storing the distribution plan,
which is organized in an array based on the distribution task number, with 0 representing
the distribution center. For example, the array [0, 340, 500, 121, 0] signifies that the vehicle
initiates from the distribution center, sequentially serves customers 340, 500, and 121,
and eventually returns to the distribution center.

The re-utilization of a vehicle is denoted by the insertion of 0 in the sequence. For in-
stance, the sequence [0, 340, 0, 500, 121, 0] signifies that the vehicle first serves customer
340, returns to the distribution center to complete cargo handling, and then proceeds to
serve customers 500 and 121 before returning to the distribution center once more.

4.2. Generation of the Initial Solution

Both the adaptive large neighborhood algorithm and the variable neighborhood search
algorithm employ a random insertion method to generate initial solutions. Unlike the
traveling salesman problem (TSP), the numerous constraints of the heterogeneous and
multi-trip electric vehicle routing problem with pickup and delivery (H-MT-EVRP-PD) in
this paper make it challenging to generate feasible solutions using a conventional random
insertion approach. Hence, the random insertion algorithm is modified as follows: the core
idea is to track the instances of infeasible insertions. When a customer point cannot be
served despite multiple attempts, the algorithm attempts to create a new vehicle for service.

During the insertion operation, the following feasibility checks are conducted:

(1) Driving range constraint and recharging judgment: Calculate and store the remaining

range at each node ykg
iu . If the driving range is insufficient to reach the next node,

the vehicle proceeds to recharge. If the vehicle cannot reach the nearest recharging
station, it returns to the previous node before recharging.

(2) Vehicle load and volume constraint: Calculate the total weight mkg
iu and volume ckg

iu
of vehicle type k at node i. Verify compliance with the vehicle load and volume
constraints, completing the inspection during a single traversal process that considers
pickup and delivery.

(3) Time window constraint: Calculate vehicle arrival time tkg
iu ; check time window

constraint and record waiting time wkg
iu .

If more than one of the above three constraints is infeasible, the vehicle type is changed
and rechecked. If all vehicle types fail to satisfy the constraints, the sequence S is deemed
infeasible, and its cost is set to a predefined maximum. Simultaneously, cache the load,
volume surplus, departure time, and other data of the vehicle at each node. This optimiza-
tion eliminates the need to recalculate the cost from the start when altering the distribution
sequence, significantly enhancing computational efficiency.

4.3. The Variable Neighborhood Search Algorithm

The variable neighborhood search algorithm (VNS) proposed by [36] is an effec-
tive metaheuristic to solve a variety of routing problems such as VRPTW [37] and E-
VRPTW [4]. Algorithm 1 presents the pseudo-code of this algorithm using the random
insertion method to generate the initial solution and swap and relocate as operators of the
neighborhood search.
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Algorithm 1 Variable neighborhood search algorithm

1: LS = [ls1, · · · , lsn];
2: function VNS(sol)
3: k← 0;
4: while (k ≤ LS.length) do
5: solt ← lsk(sol);
6: if (cost(solt) < cost(sol)) then
7: sol ← solt;k← 0;
8: else
9: k ++;

10: end if
11: end while
12: return VNS(sol);
13: function ALNS(sol)
14: xb ← x;p− ← (1, · · · , 1); p+ ← (1, · · · , 1); R← (r1, · · · , rn); D ← (d1, · · · , dn);
15: repeat
16: select destroy and repair methods d ∈ D and r ∈ R using p− and p+;
17: xt ← VND(r(d(x)));
18: if (accept(xt, x)) then
19: x ← xt;
20: end if
21: if (cost(xt) < cost(xb)) then
22: xb ← xt;
23: end if
24: update p− , p+;
25: until stop criterion is met
26: return xb;

4.3.1. The Swap Operator

The swap operator involves randomly selecting two nodes for exchange within se-
quences. The swap operators utilized in this paper are delineated as follows: (1) randomly
selecting one node from each of two sequences and exchanging them; (2) exchanging two
nodes within the same sequence.

The new sequence supersedes the original one if the cost post-exchange is lower
than that pre-exchange. The pseudo-code for this operator is defined in Algorithm 2,
presented below.

Algorithm 2 Swap operator
1: input:a solution x
2: length← x.vehicles.length;
3: i← 0;
4: for (i→ length) do
5: j← i + 1
6: for (j→ length) do
7: type← random(1, 2, 3);
8: if (type = 1) then
9: ca, cb ← Swap(x.vehicles[i], x.vehicles[j]);

10: end if
11: if (type = 2) then
12: ca ← Swap(x.vehicles[i]), cb ← x.vehicles[j];
13: end if
14: if (type = 3) then
15: ca ← x.vehicles[i], cb ← Swap(x.vehicles[j]);
16: end if
17: if (ca.cost + cb.cost < x.vehicles[i].cost + x.vehicles[j].cost) then
18: x.vehicles[i]← ca, x.vehicles[j]← cb;
19: end if
20: end for
21: end for
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4.3.2. The Relocation Operator

Relocation involves the insertion of a node from a sequence ca into another sequence
cb. In the algorithm, when executing a relocation neighborhood operation, the following
two methods are randomly selected:

(1) Remove a node randomly from ca and insert it into a randomly selected position in
sequence cb.

(2) Remove a node randomly from cb and insert it into a randomly selected position in
sequence ca.

The pseudo-code for the relocation operator is defined in Algorithm 3, presented below.

Algorithm 3 Relocation operator

1: input: a solution x
2: length← x.vehicles.length;
3: i← 0;
4: for (i→ length) do
5: j← i + 1;
6: for (j→ length) do
7: type← random(1, 2); ca ← x.vehicles[i]; cb ← x.vehicles[j];
8: if (type = 1) then
9: node← ca.randomRemove(); cb.randomInsert(node);

10: end if
11: if (type = 2) then
12: node← cb.randomRemove(); ca.randomInsert(node);
13: end if
14: if (ca.cost + cb.cost < x.vehicles[i].cost + x.vehicles[j].cost) then
15: (x.vehicles[i]← ca, x.vehicles[j]← cb;)
16: end if
17: end for
18: end for
19: return x;

4.4. Adaptive Large Neighborhood Search Algorithm

We adopt the ALNS framework from [32]: utilizing the random insertion method to
generate the initial solution and employing random removal and worst removal as destroy
methods and random insertion and optimal insertion as repair methods. To enhance
the algorithm’s performance, a local search algorithm employing two-point switch and
reposition as domain operators is incorporated. The pseudo-code for Algorithm 4 is
provided below.

Algorithm 4 Adaptive large neighborhood search algorithm

1: input: a feasible solution x, maximum number of iterations n

2: LS = [ls1,
. . . , lsn];

3: function ALNS(sol)
4: k← 0;
5: while (k ≤ LS.length) do
6: solt ← lsk(sol);
7: if (cost(solt) < cost(sol)) then
8: sol ← solt; k← 0;
9: else

10: k ++;
11: end if
12: end while
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Algorithm 4 Cont.

13: return sol;
14: end function
15: function SHAKING(sol)
16: sol ← randomDistroy(sol);
17: sol ← randomRepair(sol);
18: return sol;
19: end function
20: function ALNSsol, n
21: i← 0;
22: for (i→ n) do
23: solt ← VND(sol);
24: if (cost(solt) < cost(sol)) then
25: sol ← solt;
26: end if
27: sol ← SHAKING(sol);
28: end for

4.4.1. The Worst Removal Operator

Drawing upon the observation that customers with significant impact on the solution
often warrant rearrangement, we introduce the worst removal operator. This operator
begins by determining the number of removal points, denoted as N. Subsequently, it
iterates through all points in the distribution sequence and calculates the cost change
value after removing a specific point. The point i with the maximum ∆Costi is selected
for removal, and this process is repeated N times. The pseudo-code for the worst removal
method is described in Algorithm 5 below.

Algorithm 5 Worst removal

1: input: a solution x
2: N ← random(); i← 0;
3: for (i→ N) do
4: Nodew ← 0; costw ← 0;
5: for (vehiclea ∈ x.vehicles) do
6: for (noden ∈ a.sequence) do
7: cost← evaluateRemove(n);
8: if (cost < costw) then
9: costw ← cost; Nodew ← node;

10: end if
11: end for
12: end for
13: x.remove(Nodew);
14: end for
15: return x;

4.4.2. The Optimal Insertion Operator

The optimal insertion operator is developed using a greedy algorithm. It traverses the
set of uninserted task points and selects the task point that incurs the least increase in cost
after insertion. Algorithm 6 outlines the optimal insertion operator.
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Algorithm 6 Insertion operator
1: input: a solution x
2: while (x.nonInstert.size() ̸= 0) do
3: Nodeb ← 0; costb ← maxNum; vehicleb ← 0; posb ← 0;
4: for node n ∈ nonInstert do
5: for vehicle ∈ x.vehicles do
6: for pos← 0→ a.sequence.length do
7: cost← evaluateInsert(n, pos);
8: if cost < costb then
9: costb ← cost; vehicleb ← vehicle; posb ← pos; Nodeb ← node;

10: end if
11: end for
12: end for
13: end for
14: vehicleb.instert(Nodeb, posb);
15: end while
16: return x;

5. Numerical Example

In this section, we present the computational results of the two proposed variable
neighborhood search (VNS) and adaptive large neighborhood search (ALNS) approaches
for solving the mixed-integer programming model H-MT-EVRP-PD. Both algorithms
are implemented in C++, and the mixed-integer programming model is solved using
IBM ILOG CPLEX 12.6.2. All experiments are conducted on a Windows Server 2012
R2 server of Alibaba Cloud platform from China with an Intel Xeon Skylake 6146 CPU
(3.2 GHz/3.9 GHz).

5.1. Test Instances for the H-MT-EVRP-PD

The test instances are derived from real-world instances presented in [38]. The compe-
tition comprises five data sets involving tasks numbering 1100, 1200, 1300, 1400, and 1500,
respectively. Detailed information about these five data sets is provided in Table 1.

Table 1. Data set information.

Num Pickup Tasks Delivery Tasks Charging Stations

1 900 200 100
2 1000 200 100
3 1100 200 100
4 1200 200 100
5 1300 200 100

The vehicle data sets in the experiments involve two types of electric vehicles. The pa-
rameters for these vehicles are configured as follows:

max_volume: Maximum volume of a vehicle (unit: m3);
max_weight: Maximum load capacity of a vehicle (unit: t);
max_vehicle_cnt: Maximum number of available vehicles;
driving_range: Vehicle range (unit: m);
charge_tm: Charging time (unit: minutes);
unit_trans_cost: Driving cost of the vehicle per kilometer;
vehicle_cost: Cost associated with using each vehicle.
The specified data sets are presented in Table 2.
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Table 2. Vehicle data.

Type Max_Volume Max_Weight Max_Vehicle_Cnt Driving_Range Charge_tm Unit_Trans_Cost Vehicle_Cost

1 12 2 500 100,000 30 12 200
2 16 2.5 500 120,000 30 14 300

To accurately represent real-world scenarios, distances like Euclidean, Chebyshev,
and Manhattan distances, calculated based on node coordinates, may not adequately reflect
the actual road network conditions. In this experiment, all road network data directly
define the driving distance and time between any two nodes. The specific format of the
road network data is illustrated in Table 3, where ID represents the road network data
number; from_node and to_node denote the starting and arrival nodes, respectively; and
distance and spend_tm represent the travel distance and time between the two nodes,
respectively. For example, the second row in Table 3 signifies data with an ID of 1200,
a travel distance of 58,509 m from node 1 to node 2, and a travel time of 73 min.

Table 3. Network data instance.

ID From_Node To_Node Distance (m) Spend_tm
(min.)

0 0 1 57611 68
1200 1 0 58,509 73

5.2. Experimental Results for Small Data Sets

Initially, 15 tasks, comprising 10 delivery tasks and 5 pickup tasks, are randomly
selected from the five data sets to form small data sets. Experiments using variable neigh-
borhood search (VNS) and adaptive large neighborhood search (ALNS) are conducted
separately on these five small data sets. The experiment duration is capped at one minute,
and each experiment is repeated ten times with different initial solutions. The objective is
to investigate whether the two algorithms can converge to optimal solutions and to assess
the efficiency of variable neighborhood search and adaptive large neighborhood search for
solving small data sets.

The experimental results are presented in Table 4.

Table 4. Experimental data.

Data ID

VNS ALNS

Optimal
Value Iterations Time (s) Optimal

Value Iterations Time (s)

1100-15 5642.34 405.2 2.05 5642.34 3503.6 14.41
1200-15 7056.74 410.7 2.40 7056.74 2758.1 14.15
1300-15 5664.24 201 1.18 5664.24 1773.3 8.03
1400-15 5791.46 186.5 1.12 5791.46 1015.5 4.35
1500-15 5557.29 198.1 1.01 5557.29 1368.7 5.08

The results reveal that both the VNS and ALNS algorithms can achieve the optimal
solution within the specified time constraint. However, the VNS algorithm exhibits a
significantly smaller average number of iterations and average solution time compared to
the ALNS algorithm. The variable neighborhood algorithm demonstrates its ability to reach
the optimal solution with fewer iterations and in less time. Algorithmic disparities arise
from the VNS algorithm’s preference for small-scale local searches in simple search spaces
of small problems. VNS efficiently explores the search space, utilizing straightforward local
searches across diverse neighborhood structures. In contrast, ALNS, designed for large-
scale problems, introduces complexity with adaptive adjustments unsuitable for small-scale
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problems, for which extensive neighborhood searches may be inappropriate, limiting the
benefits of large neighborhood search. Consequently, for small data sets, the variable
neighborhood search proves superior to the adaptive large neighborhood algorithm.

In the second phase of testing the solution effectiveness of the proposed algorithms,
12 tasks are randomly selected from the data set containing 1100 tasks. These tasks are then
solved using VNS, ALNS, and the commercial solver CPLEX. The experimental results are
detailed in Table 5.

Table 5. ALNS experimental data.

Num
ALNS VNS CPLEX

Results Time (s) Results Time (s) Results Time (s)

1 1214.9 0.062 1214.9 0.101 1214.9 0.777
2 1214.9 0.069 1214.9 0.029 1214.9 0.884
3 1214.9 0.010 1214.9 0.011 1214.9 0.949
4 1214.9 0.061 1214.9 0.032 1214.9 0.914
5 1214.9 0.029 1214.9 0.037 1214.9 0.796
6 1214.9 0.046 1214.9 0.032 1214.9 0.781
7 1214.9 0.114 1214.9 0.033 1214.9 0.792
8 1214.9 0.035 1214.9 0.026 1214.9 0.941
9 1214.9 0.040 1214.9 0.029 1214.9 1.217
10 1214.9 0.112 1214.9 0.011 1214.9 0.811

average 1214.9 0.0578 1214.9 0.0341 1214.9 0.8862

As indicated in Table 5, the results from 10 repeated experiments converge to 1214.9.
Both the VNS and ALNS algorithms achieve the optimal solution in a shorter time compared
to CPLEX, with the average runtime of VNS being shorter than that of ALNS. Consequently,
it can be inferred that VNS outperforms ALNS for small-scale data sets.

5.3. Experimental Results of Large Data Sets

To further assess the performance of our algorithms, experiments are conducted on
large-scale instances. The five data sets of 1100, 1200, 1300, 1400, and 1500, as described
earlier, are each run 10 times with the two algorithms. The averages and variances of the
approximately optimal values are presented in Table 6 (unit: ten thousand).

Analyzing the data in Table 6, for the first three data sets (1100, 1200, and 1300),
the optimization results of ALNS are marginally better than those of VNS. However, for the
two data sets 1400 and 1500, the optimization results of VNS are slightly superior to those
of ALNS. This outcome suggests that data sets of varying sizes may align with different
problem structures and complexities. The characteristics of the first three data sets may be
better suited to the search strategy of adaptive large neighborhood search (ALNS). As the
data set size increases, the altered problem structure might contribute to slightly better
performance when using variable neighborhood search (VNS) on these larger data sets.
However, despite the modest differences in data set sizes, the overall disparity in solution
results between the two algorithms remains minimal. Nevertheless, for all five data sets,
the variance of ALNS is notably higher than that of VNS. This indicates that different data
sets can influence the optimization results of the algorithm. In comparison with VNS,
the solution results of the ALNS algorithm are less stable.

Table 6. Experimental results of large data sets.

Data ID
VNS-60min ALNS-60min

Average Variance Average Variance

1100 25.12 0.028 25.00 0.071
1200 28.20 0.043 28.10 0.098
1300 27.36 0.106 27.30 0.139
1400 35.70 0.038 35.97 0.049
1500 37.79 0.179 37.94 0.492
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5.3.1. Analysis of Cost

By analyzing the relationship between the cost of each data set and the data set based
on the experimental results, the correlation between the cost of the optimal solution and
the data set can be observed, as shown in Figure 1.

Figure 1. Graph of size and cost.

Examining Table 7, it becomes apparent that the cost to solve is not linearly correlated
with the size of the dataset. However, as the number of customer points increases, the cost
exhibits an upward trend. Notably, the cost to solve the data set with a task point size of
1300 is generally lower than that of the dataset with a task point size of 1200, presenting
an anomalous situation. Consequently, further exploration into the cost composition
is conducted for experiments with customer point capacities of 1200 and 1300. This
exploration utilizes the results from the first experiment of variable neighborhood search
(unit: ten thousand).

Table 7. Cost composition.

Data Set Charging Cost Driving Cost Waiting Cost Vehicle Cost Total Cost

1200 0.38 23.27 0.46 4.14 28.25
1300 0.26 21.59 0.69 4.52 27.05

Cost Variance −0.12 −1.68 0.23 0.38 −1.2

Analyzing the cost structure of the two experimental results in Table 7, it is evident
that an increase in the number tasks leads to higher vehicle usage costs, with the driving
cost constituting the majority of the total cost. Variations in driving costs contribute to
differences in total costs. It can be reasonably inferred that the lack of a strong correlation
between mileage and the number of tasks is due to factors such as the spatial distribu-
tion of task points, variations in time windows, and differences in road network data.
Consequently, there is no linear correlation between the cost to solve and the number
of tasks.
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The table data indicate that as the number of customer points increases, the vehicle
utilization cost exhibits an upward trend in the solution results, contributing to an overall
cost increase with more customer points. However, in the 1300 data set, the customer points
are evenly distributed, and the warehouse is situated close to the center of these points.
This proximity allows vehicles to efficiently serve more customers within a shorter driving
distance. Consequently, this results in reduced driving and charging costs compared to
the 1200 data set. Given that driving costs constitute a substantial portion of the total cost,
the 1300 data set yields a smaller overall cost than its 1200-sized counterpart.

During the experiment, the completion time of each iteration was recorded. The ex-
perimental data from the adaptive large neighborhood search and variable neighborhood
search for the 1100 data sets were plotted on a line chart based on the iteration time and the
optimal solution cost at that time. The resulting line chart is depicted in Figure 2.

Figure 2. Iteration time and cost trend of optimal solution.

It is evident from Figure 2 that the variable neighborhood search algorithm demon-
strates superior search efficiency compared to the adaptive large neighborhood search
within a short timeframe. When the program’s running time is under 1500 s, the solu-
tion cost of the variable neighborhood search is lower than that of the adaptive large
neighborhood search.

However, with prolonged search times, the adaptive large neighborhood search out-
performs the variable neighborhood search in terms of solution results. As illustrated by
the line chart, the variable neighborhood search algorithm is more prone to converging to
a local optimal solution. Remarkably, the cost of the adaptive large neighborhood search
continues to decrease even after 3000 s.

5.3.2. Analysis of Variance

We gauge the fluctuation of experimental results by calculating the variance. Figure 3
illustrates that ALNS performs least effectively on the 1500 data set, with a variance of 0.492,
while its best performance is observed on the 1400 data set (0.049). The fluctuation of ALNS
results is notably influenced by the inherent characteristics of the data set. Conversely,
VNS exhibits better variances than ALNS across all five data sets, indicating superior
stability. Moreover, the considerable variation in results between the two algorithms
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across different data sets emphasizes the substantial impact of data set characteristics on
algorithmic performance.

Analyzing the variance in relation to the number of tasks in the data set and algorithmic
results reveals no discernible correlation. This lack of correlation can be attributed to
variations in time windows, geographical distribution, and road network data within
the data sets.

Figure 3. Variance of the algorithm.

5.4. Experiments of Partition Optimization

To enhance solution efficiency, customers are grouped into multiple regions based
on their geographical locations. In this section, we illustrate this approach using data sets
with 1100 customers and dividing into nine regions. The comparative results between
partitioned and non-partitioned scenarios are presented in Figure 4. The partition ex-
periment demonstrates an average reduction of 3.87% in the total cost compared to the
non-partitioned result, indicating a significant degree of optimization. After partition-
ing the data set, the objective values of VNS and ALNS decrease by 4.05% and 3.69%,
respectively. The optimization level achieved through partitioning is comparable for both
algorithms in this data set.

To validate solution efficiency, the correlation between the total cost and running
time is depicted in Figure 5 for VNS with and without partitioning. Given the higher
iterative efficiency post-partitioning, the cost of the partitioning experiment is lower than
that of the non-partitioning experiment from the initial solution generation. Notably,
the non-partitioning experiment becomes trapped in a local optimal solution around
1500 s. Due to its superior optimization effect compared to the non-partitioning experiment,
the partitioning experiment achieves a better cost in the same timeframe.
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Figure 4. Partition optimization comparison results.

Figure 5. The time series diagram of partitioning and non-partitioning experiments.

In theory, partitioned solutions, driven by local considerations rather than global
ones, should avoid the global solution being more expensive. However, experimental
results indicate that the outcomes of the partitioning experiment are superior to those of the
global experiment. To further investigate, we control for the same number of iterations and
compare the solution results of the partitioning and non-partitioning experiments, as shown
in Figure 6. Interestingly, when the number of iterations is the same, the results of the non-
partitioning experiment surpass those of the partitioning experiment. These experiments
suggest that, despite the side effects caused by the failure of local considerations due
to partitioning, the significant increase in iteration efficiency post-partitioning leads to
a higher degree of optimization. When both experiments are conducted with the same
number of iterations, the non-partitioned result is lower than that of the partitioned.
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Figure 6. Sequence diagram of partitioning experiment cost and number of iterations.

5.5. Sensitivity Analysis

To further assess the effectiveness of the proposed model, a sensitivity analysis was
conducted on the service time and vehicle range.

5.5.1. The Customer Service Time

Sensitivity experiments were conducted by varying the service time by reducing
it from 30 min to 15 min or 0 min. The experimental results are illustrated in Figure 7.
From the scatter plot in Figure 7, it is evident that the relationship between distribution cost
and customer time is nearly linear. Comparing the trajectory curves of the two algorithms,
it is observed that the ALNS program is more sensitive to the reduction in customer service
time, while the VNS exhibits a relatively slower response to the change in time.

Figure 7. Customer service time and cost diagram.

5.5.2. Vehicle Range

Next, the vehicle’s range is varied by an appropriate percentage, i.e., 50%, 75%, 100%,
125%, or 150%, to analyze the experimental results. The outcomes are depicted in a bar
chart, as shown in Figure 8.



World Electr. Veh. J. 2024, 15, 69 20 of 23

Figure 8. Bar chart of the relationship between vehicle range and electricity costs.

From the experimental results and data in Figure 8, it is evident that the vehicle cost
increases with a reduction in the vehicle range. Conversely, as the vehicle range increases,
the vehicle cost decreases relative to the original solution. However, there is no significant
difference in the resulting cost between the 125% battery range and the 150% battery range.
To investigate this phenomenon, the charging times of the experimental results with 125%
and 150% battery quantities are statistically analyzed, and the results are presented in
Figure 9.

Figure 9. Vehicle average charging time diagram.

Based on the initial assumption of the original vehicle battery range, the average
number of charging times is 42.8. When the vehicle range is reduced to 75% or 50% of the
original solution, the average charging times increase to 97 or 142 times, respectively. These
results demonstrate that as the vehicle range decreases, the charging frequency significantly
rises, leading to increased costs. Conversely, when the vehicle range is increased to 125%
of the original solution, the average charging times decrease to 11.8 times, resulting in a
notable reduction in costs. Further, increasing the vehicle range from 125% to 150% yields
an average of 2.3 charging times, indicating a more modest reduction compared to the 125%
scenario. It can be inferred that the experiment is constrained by other factors, such as time
windows and service times, and the number of task points to which a vehicle can deliver is
limited. Consequently, distribution costs cannot decrease indefinitely by simply extending
the vehicle range.
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6. Conclusions and Future Research

This paper introduces an enhanced version of the electric vehicle routing problem,
known as H-MT-EVRP-PD, which incorporates multiple vehicle types with varying capaci-
ties and volumes. The problem involves vehicles performing multiple trips per day due to
capacity limitations and the goal of minimizing the fleet size. Both delivery and pickup
activities are considered in the context of express delivery parcels. While a mathematical
programming model is presented to formally define the problem, it is noted that this
model is optimal only for very small instances. To address larger real-world scenarios,
two heuristic algorithms, namely VNS and ALNS, are proposed and comprehensively
evaluated through computational experiments.

The primary focus of this paper revolves around the scenario and model of the problem
and features two key innovations:

(1) We introduce a novel multi-attribute multi-vehicle routing problem by integrating
established problem domains, including the heterogeneous vehicle routing problem
(HVRP), multi-trip vehicle routing problem (MTVRP), pickup problem for cargo trans-
portation (PDP), and the recently formulated electric vehicle routing problem with
time windows and charging stations (E-VRPTW). We formulate this amalgamation as
a mixed-integer programming model (H-MT-EVRP-PD).

(2) We propose an effective variable neighborhood search algorithm (VNS) and an adap-
tive large neighborhood search algorithm (ALNS) specifically designed to address
the challenges posed by the problem defined in this paper. The experimental results
highlight the efficiency of the developed algorithms in solving the vehicle routing
problem within the proposed scenario. These findings underscore the algorithms’
effectiveness in addressing the unique challenges associated with electric vehicle
logistics distribution.

By analyzing the experimental results, the following conclusions are drawn:
(1) The VNS is more efficient in the initial search stage, and thus the VNS outperforms

the ALNS in conditions of high requirements for computing time. However, the ALNS is
more effective in conditions for which we are expecting to obtain a lower cost and which
are less sensitive to computing time. (2) For large-scale problems, H-MT-EVRP-PD can
obtain a high-quality solution in the same computing time by means of partitioning: even a
simple partition according to the geographical location. (3) Due to the impact of complex
constraints, increasing the vehicle range cannot significantly reduce the vehicle operating
cost, yet reducing customer service time can significantly reduce delivery costs.

This paper assumes that the vehicle is always recharged to full capacity, whereas it
would be interesting to relax the full-recharge restriction and allow partial recharging,
which is more practical in the real world (e.g., [9]). Furthermore, the travel speeds on the
road might vary during peak and off-peak hours in urban areas as discussed in [1], which is
also an interesting topic for future research focusing on extending our model to real-world
cases. In addition, it is assumed that recharging stations are always available, whereas
vehicles may need to queue at the station. Thus, considering the stochastic recharging time
will be one of the subjects of future work. Simultaneously, we anticipate delving into more
efficient algorithms in future studies.
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36. Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]
37. Polacek, M.; Hartl, R.F.; Doerner, K.; Reimann, M. A variable neighborhood search for the multi depot vehicle routing problem

with time windows. J. Heuristics 2004, 10, 613–627. [CrossRef]
38. Yao, Y.; Zhu, X.; Dong, H.; Wu, S.; Wu, H.; Tong, L.C.; Zhou, X. ADMM-based problem decomposition scheme for vehicle routing

problem with time windows. Transp. Res. Part B Methodol. 2019, 129, 156–174. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0360-8352(95)00181-6
http://dx.doi.org/10.1016/S0191-2615(99)00016-8
http://dx.doi.org/10.1287/trsc.37.3.347.16044
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1287/opre.1100.0881
http://dx.doi.org/10.1016/j.tre.2018.08.005
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1007/s10732-005-5432-5
http://dx.doi.org/10.1016/j.trb.2019.09.009

	Introduction
	Motivation
	Contributions of This Paper

	Literature Review
	Related Works on the Electric Vehicle Routing Problem with Time Windows
	Related Works on the Vehicle Routing Problem with a Heterogeneous Fleet
	Related Works on the Multi-Trip Vehicle Routing Problem
	Related Works on the Vehicle Routing Problem with Pickup and Delivery

	Problem Description and Formulation
	Parameter Settings
	Model Formulation

	Solution Methodology
	Representation of the Solution
	Generation of the Initial Solution
	The Variable Neighborhood Search Algorithm
	The Swap Operator
	The Relocation Operator

	Adaptive Large Neighborhood Search Algorithm
	The Worst Removal Operator
	The Optimal Insertion Operator


	Numerical Example
	Test Instances for the H-MT-EVRP-PD
	Experimental Results for Small Data Sets
	Experimental Results of Large Data Sets
	Analysis of Cost
	Analysis of Variance

	Experiments of Partition Optimization
	Sensitivity Analysis
	The Customer Service Time
	Vehicle Range


	Conclusions and Future Research
	References

