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Abstract: As network technology advances, there is an increasing need for a trusted new-generation
information management system. Blockchain technology provides a decentralized, transparent,
and tamper-proof foundation. Meanwhile, data islands have become a significant obstacle for
machine learning applications. Although federated learning (FL) ensures data privacy protection,
server-side security concerns persist. Traditional methods have employed a blockchain system in
FL frameworks to maintain a tamper-proof global model database. In this context, we propose a
novel personalized federated learning (pFL) with blockchain-assisted semi-centralized framework,
pFedBASC. This approach, tailored for the Internet of Things (IoT) scenarios, constructs a semi-
centralized IoT structure and utilizes trusted network connections to support FL. We concentrate on
designing the aggregation process and FL algorithm, as well as the block structure. To address data
heterogeneity and communication costs, we propose a pFL method called FedHype. In this method,
each client is assigned a compact hypernetwork (HN) alongside a normal target network (TN) whose
parameters are generated by the HN. Clients pull together other clients’ HNs for local aggregation to
personalize their TNs, reducing communication costs. Furthermore, FedHype can be integrated with
other existing algorithms, enhancing its functionality. Experimental results reveal that pFedBASC
effectively tackles data heterogeneity issues while maintaining positive accuracy, communication
efficiency, and robustness.

Keywords: blockchain; semi-centralized framework; personalized federated learning; hypernetwork;
non-iid data

1. Introduction

In recent years, the digital era has experienced continuous growth, leading to increased
interactions among internet users. This surge in data generated by electronic devices
presents significant challenges to data security. Consequently, there is an imperative
need to establish a new generation of reliable information management systems. These
systems enhance the efficiency of societal operations, lower collaboration costs, and wield
substantial influence on economic growth and engineering research.

With the enforcement of General Data Protection Regulation (GDPR), data aggregation
has become increasingly complex. This complexity makes it difficult for individual develop-
ers to obtain large volumes of high-quality data, resulting in a critical issue of data islands.
As an emergent machine learning technique, federated learning (FL) [1,2] enables multiple
devices and users to collaboratively develop models in a distributed data storage environ-
ment. FL overcomes the data islands problem by offering a cooperative learning approach
for machine learning and establishing neural network models that protect data privacy.

Blockchain combines several technologies, including distributed networks, encryp-
tion, and smart contracts, to create a trust-based data management infrastructure. In
a blockchain, participants collaboratively confirm transactions, and the information is
stored in an ever-expanding chain-like structure. Blockchain’s decentralization reduces
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reliance on trusted third parties. Transaction transparency allows all participants to view
and verify transactions, while tamper-proofing ensures the authenticity and reliability of
transaction information.

In practical situations, acquiring a trusted server can be challenging. Blockchain satis-
fies requirements for decentralized, transparent, and tamper-proof data storage, catering
to the needs of a decentralized FL. Consequently, blockchain-based federated learning
(BFL) has emerged as a novel approach to distributed network data computation. There
are several studies in BFL frameworks, with a primary focus on client selection [3,4], ag-
gregation weights [5,6], local training adjustment [5,7], privacy preservation [8–11], and
model compression [12]. Additionally, these studies explore consensus mechanisms [3,4,13],
block structure [13–15], committee selection [6,15], and incentive mechanism design for
blockchain [8–10]. The papers [3–16] identify several issues: the bottom-level FL has not
fully exploited the potential of the blockchain, and the top-level blockchain cannot provide
comprehensive support for FL. Specifically, the existing BFL framework does not fully
take advantage of all network connections in real-world Internet of Things (IoT) situations,
leading to high communication costs and low training efficiency. Additionally, the lack of a
logical and comprehensive block structure design does not ensure sufficient protection and
maintenance of users’ intellectual property.

FL also faces challenges such as high communication costs and data heterogeneity.
With the increase in device computation capabilities and model complexity, user devices
are required to transmit a large number of parameters in each training round. Simultane-
ously, data heterogeneity issues stemming from user behavior, regional differences, and
variations in data size between individuals and organizations affect model accuracy and
even convergence.

In the statistical heterogeneity situation, a single global model is not suitable for
highly non-independent and identically distributed (non-iid) data. Training using model
decoupling methods still involves transmitting all feature knowledge to users subjectively,
without providing personalized knowledge specific to local users. To address these issues,
we adopt personalized federated learning (pFL), in which a personalized model is learned
for every client. Typically, the final personalized models outperform global models that are
trained using normal FL techniques.

We propose a new personalized federated learning with blockchain-assisted semi-centralized
framework (pFedBASC). This framework focuses on real-world applications, utilizing various
types of network connections for collaborative training and leveraging the blockchain
to provide comprehensive distributed training support for FL. The pFedBASC aims to
minimize communication costs and increase flexibility. The proposed framework allocates
aggregation tasks to clients, reduces aggregation time through trusted client connections,
and applies a blockchain-assisted approach to optimize the aggregation of untrusted client
models, ensuring the local model’s adaptability and performance.

We embed a new algorithm, personalized federated learning with hypernetwork (FedHype),
into pFedBASC. FedHype is designed to address the challenges of pFL training and data
heterogeneity. FedHype directs each client to train a small hypernetwork (HN) and a larger
local target network (TN) whose model parameters are generated by the small HN. Clients
are permitted to perform local aggregation of HN to train a personalized TN. Only the
compact local HN is involved in knowledge exchange among clients, which helps mitigate
data heterogeneity and reduces communication costs. pFedBASC can utilize FedHype to
solve personalized training issues effectively in BFL.

The main contributions of this paper are as follows:

• We propose a blockchain-assisted semi-centralized pFL framework called pFedBASC,
which provides a reliable collaborative training environment for distributed data in
IoT and offers guidance for designing BFL algorithms.

• We design the block structure of the blockchain for pFedBASC. We model and formally
describe the semi-centralized framework. Building upon this, we design an FL aggre-
gation method, utilizing loss functions and delayed rounds for weight adjustment.



Future Internet 2024, 16, 164 3 of 18

• We propose a pFL algorithm called FedHype, which takes advantage of the hypernet-
work’s characteristics. FedHype significantly enhances the overall pFL performance
and meets the personalized training needs of different users. We also integrate Fed-
Hype with other existing algorithms, further extending its functionality.

2. Related Work
2.1. Blockchain-Based Federated Learning

In recent years, the study of BFL frameworks has seen remarkable growth, drawing
extensive research interest due to their auditable training processes and serverless archi-
tectures, which avoid the single point of failure typical in FL systems. Traditional BFL
methods replace the original server with a blockchain, increasing generality and security.
For instance, the paper [16] introduces a multi-layer BFL framework, where the upper
layer is responsible for global model management, and the lower layer focuses on resource
scheduling and updating local models. By utilizing a blockchain, a blended framework of
a blockchain and FL has been proposed to manage security and trust issues when applying
FL in mobile edge networks. Furthermore, Ref. [12] employs a top-k model compres-
sion mechanism in the centralized BFL framework to improve the overall performance,
while [14] introduces an autonomous BFL design for privacy-aware and efficient vehicular
communication networks that theoretically optimizes Proof of Work (PoW), reducing the
latency of BFL.

In research focusing on blockchain mechanisms in BFL, particularly regarding secu-
rity against malicious attacks on global models or user privacy data, BFLC [15] designs
committee mechanisms and block structures to assist in model storage and downloading
and innovatively reduces the computation required for consensus and the potential for
malicious attacks. FGFL [6] calculates client trustworthiness within the blockchain com-
mittee for election, determines aggregation weights based on client contributions, and
enhances the system’s convergence and effectiveness. In terms of reward mechanisms,
FedTwin [8] relies on a centralized BFL framework and utilizes a Generative Adversarial
Network (GAN) to ensure privacy preservation, establishing a reward mechanism based
on model performance. Additionally, PF-PoFL [9] addresses the drawbacks of PoW and
proposes a novel energy-recycling consensus mechanism that utilizes computational power
wasted on difficult but meaningless PoW puzzles for practical FL tasks.

The above introduces various examples of blockchain applications in FL. We also apply
the blockchain to FL scenarios that we need to improve efficiency and security. Current BFL
frameworks primarily focus on optimization and improvement within FL or the blockchain
separately. Our pFedBASC emphasizes the collaborative design of both the blockchain and
FL. We will introduce a method to support semi-centralized FL training throughout the
entire process starting from the blockchain design.

2.2. Personalized Federated Learning

PFL is a method to reduce the effects of data heterogeneity [17]. It maintains different
models on different clients, achieving higher accuracy on their respective datasets. Previous
methods in pFL encompass fine-tuning [18,19], federated meta-learning [20], federated
multi-task learning [21,22], model mixup [23], and federated clustering [24,25]. Recent
pFL methods involve FedBN [26], which similar to FedAvg [2], keeps batch normalization
layers local. FedPer [27] divides the model into a global layer and a personalized layer,
with only the global layer being aggregated. FedRep [23] builds upon FedPer by further
analyzing the effectiveness and rationality of local training and separately trains global and
personalized layers. FedBABU [28] adopts a similar neural network partitioning approach
by aggregating only the global layer. The difference lies in that FedBABU does not train
the personalized layer but fine-tunes it after training has been completed. FedFomo [29]
enables each client to obtain the complete models from other clients and choose those
that offer greater advantages for local aggregation to update their local model, but the
communication cost increases exponentially.
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Paper [30] presented the fast weighting concept in hypernetworks, wherein one net-
work can generate context-dependent weight adjustments for another network. The first
attempt to apply hypernetworks to pFL was in pFedHN [31]. The pFedHN deploys a
hypernetwork on the server that is larger than the local target model. The hypernetwork
acquires parameters for local models and creates personalized models for each client,
though the communication expenses are approximately equivalent to those of FedAvg.
Paper [32] implements separate hypernetworks for each user on the server. Additionally,
during the model aggregation phase, the server assesses the significance of each layer
across various networks. Paper [33] applies the hypernetwork to the local deployment and
trains the hypernetwork, local personalization layer, and embedding vector, respectively,
reducing communication overhead and increasing accuracy. In the Fed-RoD [34], each
client’s architecture includes a feature extractor and two separate headers. The global
header collaborates with the feature extractor to aggregate data and update models, while
a personalized header is produced by the local hypernetwork.

3. Preliminaries
3.1. Semi-Centralized Federated Learning Framework

Traditional BFL frameworks mainly replace the centralized server in FL with a
blockchain, functioning similarly to centralized FL. The blockchain’s core framework
consists of a distributed system and a chain-based database. This database stores block
information, with each block containing data, a timestamp, and the previous block’s hash
value. Block data can take various forms, such as transaction records or a contract code,
while timestamps indicate the block creation time. The hash value of the previous block
connects the current block to all prior blocks, forming a tamper-proof chain structure.
Ensuring credibility by replacing the server side with a blockchain will increase the time
for aggregation and thus reduce the overall training efficiency.

In centralized FL, synchronous aggregation is commonly used, causing faster clients to
wait for slower clients to complete training before aggregation. In contrast, decentralized FL
replaces client–server with peer-to-peer (P2P) communication among clients. In this paper,
we consider real-world applications, particularly IoT based on 5G/6G technologies, where
clients are interconnected, essentially creating a purely distributed framework. However,
when using a decentralized FL, not all connections are available due to their credibility
and network latency. Clients may not establish a P2P data transfer if they lack mutual
trust or are outside each other’s direct connection range, reducing the training efficiency
and accuracy. In this situation, we adopt a semi-centralized BFL framework, as shown in
Figure 1.

Figure 1. The semi-centralized BFL framework based on trusted client groups.
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It integrates centralized and decentralized FL frameworks. We employ the decentral-
ized framework to enhance BFL’s transmission efficiency and reduce computation on the
blockchain while leveraging the high credibility and connectivity of BFL framework to
improve client accuracy and address the data islands problem. Within the trusted client
group, clients communicate with each other using the Gossip protocol, directly exchanging
model knowledge, which reduces communication costs with the blockchain. For clients
without trusted partners, they can also register on the blockchain and collaborate in FL
through the blockchain.

3.2. Hypernetwork

The hypernetworks (HNs) [35] belong to the category of generative networks that
generate parameters for the target model (TN). The output of a HN is the parameters of TN,
which vary based on the input (representing the embedding vector of TN). HN and TN are
trained end-to-end, and this process is carried out entirely at the user’s local client. The
knowledge transfer process in HN involves the following steps: (1) HN generates model
parameters for TN, transmitting knowledge in the form of parameter distribution from HN
to TN; (2) TN directly trains on the local dataset; (3) HN’s parameters are updated using
the variances in TN’s parameters before and after training, transferring the latest TN’s
knowledge to HN. This process is repeated until the target model converges. Essentially,
HN acts as a knowledge medium, continuously transferring the parameter distribution
of TN during user and server training. The structure of HN and TN is shown in Figure 2.
With an output dimension of 400, our HN is smaller than the TN’s parameter capacity.
Consequently, HN is invoked multiple times in a stacked manner to generate parameters.
HN input is represented as the embedded vector that combines client id and chunk id. Every
400 parameters form a chunk, with ids sequentially increasing from 0 and incremented
by 1.

embedding 100×3layers 400 parameters

conv pool conv pool fc fcfc

32×32×3

1920

80
10

28×28×16 14×14×16 14×14×32 5×5×32

Hypernetwork

Target Network

Figure 2. The structure of a hypernetwork and its generated target network.

3.3. Problem Definition

In traditional processes, FL consists of clients Ci where i ∈ {1, 2, ..., N} and a server
responsible for aggregating parameters. Each Ci possesses a private sample dataset Di. The
objective of FL is to cooperatively solve an optimization problem. The objective function [2]
is defined as follows:

argmin
w

[
F(w) :=

N

∑
i=1

piFi(w)

]
(1)

where w denotes the model parameters and pi represents the weight of Ci participating
in aggregation, typically based on the rate of Ci data size in training. Fi(w) represents the
local optimization objective function of Ci, defined as follows:

Fi(w) = E(x,y)∈Di
L(w; (x, y)) (2)

where L(w; (x, y)) is the loss function for each client. PFL allows each user to build
personalized model to better adapt to local data features. Therefore, the goal of solving pFL
in this paper can be transformed into proposing an automated method for generating model
summaries to adaptively complete FL training under external conditions. We use the input
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embedding vector of HN to describe heterogeneous features of user data. These embedding
vectors act as representation vectors, capturing the characteristics and differences between
different user entities. For simplicity, we use h(·) to denote model generation operation.
In the t-th round, the HN of Ci is φt

i , and the TN is wt
i . Following [31], we can use φt

i
and the unique embedding vector υi to generate the parameters wt

i through the process
(forward propagation):

wt
i = h(υi;φt

i) (3)

For convenience, υi represents a set of embedding vectors for all features of Ci, with
each embedding vector having 400 parameters. Since HN of each client uses different
embedding vectors, the generated TNs are personalized. After generating a TN, we train
it on the local dataset to obtain the latest TN ŵt

i , which will be used to update the HN.
Following [31], we can use the locally trained TN to perform a one-shot update (backward
propagation) of HN, expressed as follows:

φt
i ← φt−1

i − η ∇
φt−1

i

(
ŵt−1

i

)T
∆wt−1

i (4)

where ∇
φt−1

i

(
ŵt−1

i

)T
is the derivative of the latest trained TN ŵt−1

i with respect to the

HN φt−1
i in the (t− 1)-th round, and ∆wt−1

i = ŵt−1
i −wt−1

i represents the variation of
generated wt−1

i before and after executing local training. Based on the above setup, the
objective for pFL is adjusted to

argmin
φ

[
N

∑
i=1

piFi(h(υi;φ))

]
(5)

The logic behind our training approach is as follows: we use the embedding vectors
to represent local features of user’s data, iteratively update HN parameters, and finally
obtain a global optimal pFL model set φ∗ and w∗ = {w1, w2, ..., wN} that satisfies the
training goal.

4. Methodology
4.1. pFedBASC Framework Overview

We combine centralized and decentralized FL methods to propose a more realistic
semi-centralized FL framework, pFedBASC. The overall design of pFedBASC includes
designs in both FL methods and the blockchain framework. In the FL part, the main
components include the design of the aggregation process and pFL algorithm, FedHype.

During the aggregation process, pFedBASC adopts a local aggregation mode, allowing
each client to perform global aggregation individually, which significantly reduces the
computation burden on the blockchain. The aggregation among trusted client group
members uses the Gossip protocol, which utilizes P2P connections to improve model
transmission and aggregation efficiency. Additionally, pFedBASC involves a loss-based
weighting aggregation scheme that determines aggregation weights according to model
performance, thus enhancing model accuracy. The framework also employs a delayed
round based weighting aggregation scheme, which adjusts weights based on the rounds of
different local models, preventing outdated parameters from affecting accuracy. Regarding
the design of FedHype, the process will be detailed in the following section. FedHype uses
HN to replace TN for parameter transfer and aggregation.

In the blockchain design part, we focus on the block structure design to support
training. From the block-type perspective, we primarily design the upload block, download
block, and evaluation block. In terms of block attributes, we design header information, model
information, and validation information.
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4.2. Block Structure Design

The design of all blocks in pFedBASC includes three parts: header information, model
information, and validation information as shown in Figure 3.

• Header information: The block header primarily records information necessary for
blockchain’s historical records and traceability. This section consists of three standard-
ized pieces of information: the block ID, which provides a unique identifier for the
current block, allowing other blocks to distinguish and reference it; the timestamp,
which records the time when the block was added to the chain, facilitating subsequent
tracebacks and timeline construction for any anomalies; and the block type, which
indicates whether the block is a download, evaluation, or upload block, aiding in the sub-
sequent processing of block-specific information. Additionally, the client ID records
the identification information of the client involved in the operation, facilitating the
traceability of the actor.

• Model information: This part contains the information and attributes necessary for the
FL training process. It is strongly related to the block type, and detailed descriptions
will follow based on the type of block involved.

• Validation information: The block includes data crucial for verifying the accuracy of the
content within the blockchain. By recording the previous hash of the parent block and
the current block’s hash, the blockchain’s tamper-proof nature is ensured, preventing
attackers from compromising the integrity of the blockchain by altering a single block.

Figure 3. The training procedure of pFedBASC and the design of the block structure.

Based on the above block design, certain personalized designs were made for blocks
with different functions to support the designated functions of the blocks.
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• Download Block: Blocks record the model parameters that a client downloads from the
blockchain system. This enables the system to update the contribution score of the
model’s uploader or provide rewards based on intellectual property rights. Moreover,
suppose a client’s local model encounters security issues or errors. In that case, the
download records can be traced to determine if the problem originated from a model
stored in the blockchain system, thus ensuring traceability. In the header information
of a download block, the client ID records which client performed the download,
facilitating traceability. The model information section records which uploaded block’s
model parameters were downloaded, specifically noting the block ID where the model
parameters reside. Recording the block ID instead of the model parameters effectively
reduces the storage space required for this block.

• Evaluation Block: Blocks are tasked with recording a client’s evaluation of model
parameters within the blockchain system. Primarily, they log the loss function value
derived from model inference on this client, allowing the system to track and record
the quality and reliability of a particular model’s parameters. This tracking can inform
incentives for the clients who uploaded the high-quality model parameters, thus
encouraging high-quality training. In the header information, the evaluation block’s
client ID identifies which client performed the evaluation, enhancing traceability. The
model information section records which uploaded block’s model parameters were
evaluated, including the block ID and the corresponding scores. This paper primarily
designs and discusses evaluation blocks, without delving into their further utilization.

• Upload Block: Blocks are designated for storing new rounds of locally aggregated
model parameters from a client. They are crucial for providing other clients with
reliable model parameters for aggregation, aimed at enhancing the accuracy and
generalizability of local models across clients. In the header information, the upload
block’s client ID indicates which client uploaded the model parameters, ensuring
traceability. The model information section records all the model parameters uploaded
during this operation.

These specialized block designs are critical for maintaining the functionality, security,
and efficiency of the FL system integrated with blockchain technology. Each type of block
plays a strategic role in the overarching process, from initiating updates to validating and
consolidating learning outcomes, thereby ensuring the robustness and integrity of the
FL process.

4.3. pFedBASC Aggregation Method

In pFedBASC, only HN parameters φ are involved in the model transfer. Therefore,
we only discuss the aggregation method for φ. We mainly focus on the design of the
aggregation method and weight setting. The pFedBASC performs aggregation on client-
side, and local aggregation of Ci includes three parts: the first part is local model φt

i , the

second part consists of trusted models φ
tj
j from trusted client group Cgroup

i , and the third

part involves registered models φ
tk
k obtained from the blockchain. Clients aggregate model

parameters of these three types locally, generating a global model φ̃t
i for the next round of

training. In pFedBASC, we use the following aggregation formula for each client:

φ̃t
i = pt

iφ
t
i + ∑

Cj∈Cgroup
i

pt
jφ

tj
j + ∑

Ck /∈Cgroup
i

pt
kφ

tk
k (6)

where the weight p denotes the aggregation weight. We employ the Gossip protocol for
model transmission within the trusted client group Cgroup

i . The Gossip protocol shares
updated models after Ci has completed local training by broadcasting the new local model
φt

i to trusted Cj. All Cj within group Cgroup
i will repeat this operation to share the model

until all connected Cj receive the model updates from other clients in the group. This
method can effectively improve the communication efficiency.
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In particular, considering the inconsistency of data distribution among clients, we
design an aggregation weight adjustment scheme based on the loss function. We use local

dataset Di to perform inference on the models φ
tj
j and φ

tk
k , incorporating the loss function

into the weight definition. That is, we randomly sample a batch of data from the client
dataset for inference, approximating the loss function on the global dataset. The weight
based on the loss function is defined as follows:

pt
1,j =

1

L(φ
tj
j ;Di)

pt
1,k =

1

L(φtk
k ;Di)

(7)

Simultaneously, we consider the inconsistency of computational capabilities among
clients, also known as system heterogeneity. System heterogeneity arises from differences
in computing hardware and environments, leading to different time costs for client training.
Although the decentralized aggregation scheme and Gossip protocol reduce the waiting
time between clients, system heterogeneity can lead to models situated in different rounds
during aggregation, as shown below:

t− 1 ̸= tj, t− 1 ̸= tk, tk ̸= tj (8)

Therefore, it is necessary to compensate and adjust outdated models. This paper
designs an outdated model compensation scheme based on delayed rounds. This scheme

adjusts the weights according to the difference between φ
tj
j and φ

tk
k and the current training

t-th round. The delayed round-based weight definitions are as follows:

pt
2,j =

{
e(tj−t), tj < t
1 , tj ⩾ t

pt
2,k =

{
e(tk−t), tk < t
1 , tk ⩾ t

(9)

Based on the designs of weight adjustment and compensation methods, the overall
aggregation formula of the proposed pFedBASC is shown as follows:

φ̃t
i =

pt
i pt

1,i

pt φt
i + ∑

Cj∈Cgroup
i

pt
j p

t
1,j p

t
2,j

pt φ
tj
j + ∑

Ck /∈Cgroup
i

pt
k pt

1,k pt
2,k

pt φ
tk
k (10)

The weights in the above formula include the normalization process, where the
normalization parameters pt satisfy

pt = pt
i pt

1,i + ∑
Cj∈Cgroup

i

pt
j p

t
1,j p

t
2,j + ∑

Ck /∈Cgroup
i

pt
k pt

1,k pt
2,k (11)

4.4. Proposed FedHype

We will introduce the design of FedHype. We attempt to embed HN mentioned in
Figure 2 into FL, using the methods in propagation (3) and (4) for parameter updates to
satisfy the pFL training objective in (5). HN takes the 400-parameter embedding vector
set υi that combines client ID and chunk ID as input and output TNs according to the
knowledge of HN. During the parameter exchange, FedHype only transmits HN. By
aggregating HN, the knowledge and parameter generation abilities can be shared with
other users.

As shown in Algorithm 1, the workflow is divided into the aggregator and user parts.
After training starts, clients’ TN parameters, HN parameters, and embedding vectors
{υ1, ..., υN} are initialized. Then, Ci generates wt−1

i using φt−1 and υi. Next, Ci carries
out local training and updates HN via (4). After completion, HN φt

i will be sent back to
the aggregator, waiting for global aggregation. The aggregator executes the algorithm,
obtaining global model φt, and proceeds with model distribution. This process is repeated
until the network converges or target rounds are reached. We call it the aggregator because
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the aggregation function can be undertaken by a blockchain or user, not solely by a server.
FedHype can easily be combined with other FL algorithms to replace aggregation methods,
where typically FedAvg is utilized in aggregation by default.

Algorithm 1: FedHype
Input: total communication rounds T, client learning rate α, HN learning rate η,

datasets {D1, ..., DN}
Output: φT

1: Initialize the clients’ TN parameters, HN parameters, and embedding vectors
{υ1, ..., υN}

2: for each round t = 1 to T do
3: at client i = 1 to N in parallel do
4: wt−1

i = h(υi;φt−1)
5: ClientUpdate:
6: ŵt−1

i ← wt−1
i − α∇Fi(wt−1

i )

7: ∆wt−1
i = ŵt−1

i −wt−1
i

8: φt
i ← φt−1 − η∇φt−1

(
ŵt−1

i

)T
∆wt−1

i

9: Communication: send φt
i to aggregator

10: end at client
11: at aggregator do
12: φt ←ModelAggregation(φt

i)
13: Communication: send φt to each client Ci
14: end at aggregator
15: end for

We also conducted a qualitative analysis of the algorithm’s time complexity. On the
client side, each participant executes the following primary operations sequentially: first,
local parameter generation via the hypernetwork; second, local training, which typically
represents the most significant consumption of computational resources, influenced by
the dataset size and model complexity; and third, updating hypernetwork parameters, an
operation whose complexity is generally determined by the size of the hypernetwork. On
the aggregator side, the complexity primarily depends on the aggregation algorithm and
the number of parameters within the hypernetwork. Optimizing any of these factors can
effectively reduce the overall consumption of computing resources.

4.5. pFedBASC Workflow

The training procedure of pFedBASC is shown in Figure 3. We will explain the
workflow of pFedBASC in combination with Algorithm 2. When users participate in the
training for the first time, they need to initialize both the model and blockchain parameters.
The framework can use any FL algorithm; in this paper, we use FedHype, where the passed
and aggregated parameters are denoted as φ. After training starts, clients update their
models locally and broadcast their new model φt

i to the trusted client group Cgroup
i via

the Gossip protocol. Ci receives updated models φ
tj
j from ∀Cj ∈ Cgroup

j , while for ∀Ck /∈(
Cgroup

i ∪ {Ci}
)

, the latest uploaded models φ
tk
k are downloaded from the blockchain.

The blockchain constructs a download block based on client behavior and proceeds with
on-chain processes.
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Algorithm 2: pFedBASC
Input: total communication rounds T, HN learning rate η, datasets {D1, ..., DN}, trusted

client group {Cgroup
1 , ..., Cgroup

N }
Output: φ̃T =

{
φ̃T

1 , ...,φ̃T
N
}

1: Initialize both local client and blockchain related parameters
2: at client i = 1 to N in parallel do
3: for each round t = 1 to T do
4: φt

i ←ClientUpdate
(

φ̃t−1
i

)
via Fedhype

5: Communication: broadcast φt
i to client within Cgroup

i via Gossip protocol
6: Communication:
7: receive φ

tj
j from clients in Cgroup

i

8: receive φ
tk
k from blockchain

9: construct a download block and submit it to blockchain for on-chain processes
10: Evaluate each received model φ and calculate all required weights for pt = pt

i pt
1,i

+∑Cj∈Cgroup
i

pt
j p

t
1,j p

t
2,j + ∑Ck /∈Cgroup

i
pt

k pt
1,k pt

2,k
11: Communication:
12: upload evaluation scores to blockchain
13: construct an evaluation block with the evaluation scores and submit it to

block-chain for on-chain processes

14: ModelAggregation: φ̃t
i =

pt
i pt

1,i
pt φt

i + ∑Cj∈Cgroup
i

pt
j pt

1,j pt
2,j

pt φ
tj
j + ∑Ck /∈Cgroup

i

pt
k pt

1,k pt
2,k

pt φ
tk
k

15: Communication:
16: upload the aggregated model φ̃t

i to blockchain
17: construct an upload block containing the aggregated model and submit it to

blockchain for on-chain processes
18: end for
19: end at client

Then, Ci evaluates each received and downloaded model to determine the weights pt
j

and pt
k. Ci conducts local dataset model inference, determining the weights pt

1,j and pt
1,k

by the loss function. Ci records the round of each model and computes delayed round
compensation weights pt

2,j and pt
2,k. The clients submit the above evaluation scores, such as

the loss and distinct model index for the blockchain. The construction of an evaluation block
and execution of on-chain processes follow. Ci aggregates models to obtain the new round’s
φ̃t

i for training and uploads it. The blockchain constructs an upload block, and on-chain
processes follow accordingly. This iterative process continues until the network converges
or reaches the target number of rounds.

We also conducted a qualitative analysis of the algorithm’s time complexity. On
the client side, firstly, each participant executes local parameter updates using FedHype.
Secondly, there is model parameter communication, where each client must access data
from all other clients; the complexity of this operation depends on the number of clients and
the size of the model parameters. Finally, in terms of blockchain interaction, clients perform
parameter evaluation and model aggregation based on the results and must submit various
types of blocks (download, evaluation, upload blocks) to the blockchain. The complexity is
mainly influenced by the model size and the number of clients. Blockchain operations
typically involve network delays and processing times, which are not traditionally included
in the time complexity analysis.

5. Experiments
5.1. Experiment Settings

Datasets and models. We use four common datasets: MNIST [36], FMNIST [37],
CIFAR-10, and CIFAR-100 [38]. Each dataset is divided into an 80% training set and a 20%
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testing set. These datasets are distributed across 50 clients. The training set and testing
set on each user have the same data distribution, with no overlap between the training
and testing sets. We construct non-iid datasets using the Dirichlet distribution Dir(0.5).
We train a LeNet for MNIST and several Convolutional Neural Networks (CNN) for the
FMNIST, CIFAR-10, and CIFAR-100 datasets. Each CNN comprises two convolutional
layers and three fully-connected layers. The HN used in all three tasks is an MLP model
with two hidden layers. To visualize the data heterogeneity among users, we described
the heterogeneity for the first three datasets of 10 users using Dir(0.5), as demonstrated in
Figure 4. The presence or absence of dots indicates the existence of specific data, while the
dot size reflects the quantity of that data.

Figure 4. Data distribution of Dir(0.5).

Baselines. We implement the following baseline algorithms: (1) Centralized training,
where all data are concentrated for training. This method, while not guaranteeing data
security, serves as an upper bound for FL accuracy. (2) FedAvg [2], an important FL
algorithm that is effective in various data distributions. (3) Local training, which involves
no parameter exchange, and users only use their own data for training. (4) FedProx [39],
addressing non-iid data by adding approximation terms to prevent user models from
deviating from global model. (5) FedGen [40], which improves FL accuracy by training
feature generators. (6) FedBN, addressing FL data heterogeneity problems by adding
batch normalization layers to local models. (7) FedBabu [28], an algorithm that updates
and aggregates model bodies, requiring fine-tuning after convergence. (8) FedDyn [41],
proposing a dynamic regularizer for each user in each round. (9) FedPer [27], which
combats adverse effects of statistical heterogeneity by retaining a personalization layer
locally. (10) FedRep [23], training classifiers and feature extractors sequentially, only
aggregating feature extractors. (11) pFedSim [42], a personalized algorithm based on model
similarity. (12) pFedLa [32], deploying a HN on the server-side for each user, granting
users tiered aggregation weights. (13) FedFomo [29], providing the best weights for clients
to aggregate models by assessing the benefits clients gain from other clients’ models.
(14) Fed-RoD [34] with HN, involving a feature extractor and two distinct headers for
each client.

Settings. Our experiments were conducted on an Ubuntu 18.04 system equipped
with an Intel i7-8700K CPU, GTX 1080 Ti GPU, and 16 GB of RAM. We employed Golang
for blockchain component development, while PyTorch 1.4.0 was used for developing
and training FL network models. Communication between the Go-based blockchain and
Python-based models was facilitated using the go-python library. A simulated blockchain
network with multiple virtual nodes was run on a single machine, and training data
were pre-processed in Python to ensure readiness for model training. We use SGD as the
optimizer, setting Nesterov Momentum to 0.9, weight decay to 5× 10−4, batch size to 128,
the total number of users to 50, global communication rounds for MNIST and FMNIST
to 100, and for CIFAR-10 and CIFAR-100 to 150. We conducted several experiments to
determine the best learning rates for all algorithms in each experiment. The learning rates
considered include multi-step rates decaying from 0.1 and fixed rates of 0.1, 0.01, and
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0.001. The optimal learning rate is chosen for all algorithms. In centralized FL, all clients
participate in every round of aggregation. The default training process addresses non-iid
data heterogeneity but does not include system heterogeneity situations.

5.2. Impact of System Heterogeneity

We conducted an extensive evaluation on CIFAR-10, taking into account system
heterogeneity in which we set the computation speed of 50% of clients to be twice as slow
as the other 50%. From the perspective of an increased average device training time ratio
and decreased device computing runtime ratio, all algorithms are significantly affected
by system heterogeneity. As shown in Table 1, this results in an increased training time
ratio, compelling devices to wait longer to complete training. In contrast, pFedBASC is less
affected by system heterogeneity, with training taking only 1.38 times longer than normal.
Considering the device non-idle runtime ratio, normal FL and pFL methods have a ratio
below 50%. On the other hand, the framework proposed in this paper achieves a 100%
device runtime ratio. Although the aggregation adopted by pFedBASC is distributed and
carried out synchronously on various clients, it does not restrict aggregation to only the
current round’s model. This feature implies that there is no need to wait for other clients to
complete training, thus avoiding the wait time and increasing time utilization efficiency.
Hence, we observed in the experiment that the overall running time of semi-centralized
pFedBASC is not significantly different from other algorithms. This design effectively
prevents outdated parameters from affecting aggregation.

Table 1. The experimental results of pFedBASC performance under system heterogeneity and
non-system heterogeneity situations on CIFAR-10.

Method

System
Heterogeneity

Non-System
Heterogeneity Training

Time Incr-
Ease RatioAccuracy Device

Runtime Accuracy Device
Runtime

FedAvg 60.96% 36.67% 63.44% 45.82% 2.06×
FedProx 58.98% 34.45% 63.26% 44.75% 2.31×
FedDyn 59.74% 35.29% 61.33% 47.68% 2.38×
FedGen 57.76% 36.45% 60.85% 49.73% 2.07×
FedBN 60.24% 32.29% 62.91% 42.2% 2.04×

FedBabu 64.01% 36.06% 66.79% 42.59% 2.02×
FedPer 63.54% 36.66% 65.76% 43.9% 1.93×
FedRep 65.6% 32.66% 68.19% 42.64% 2.72×
pFedLa 57.71% 36.91% 60.26% 45.92% 2.25×

pFedBASC 65.73% 100% 69.8% 100% 1.38×

As system heterogeneity is eliminated, the device computation time ratio increases
but does not exceed 50%. This outcome shows that under training tasks and network
models in this paper, fluctuations in the device itself lead to significant communication
overhead, reducing the system training efficiency and device utilization. This observation
further demonstrates the necessity and effectiveness of adopting the semi-centralized FL
framework proposed in this paper.

5.3. Performance Evaluation of pFedBASC

Table 2 displays the personalized accuracy for independent and identically distributed
(iid) data and non-iid data under the same communication round limit. The performance
advantage of pFedBASC is not obvious when starting with the simpler MNIST. This obser-
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vation is largely due to the straightforward nature of the MNIST dataset and the relatively
simple model structure employed. In such scenarios, even the basic FedAvg suffices to
capture most dataset features. Continuing to use HN would introduce unnecessary compu-
tational overhead and complicate the training process, potentially deteriorating outcomes.
Despite this, it is noteworthy that there is only a small gap between our method and the
optimal value method in MNIST. This is because each method can readily accomplish
the training task with MNIST, which necessitates further experiments on the remaining
datasets. It is also worth noting that HNs were initially designed for more complex datasets
and model architectures. The strength of the result on the FMNIST dataset is not consis-
tently apparent, and although pFedBASC demonstrates some advantages in iid data, the
difference compared to other methods remains marginal.

Table 2. The experimental results of pFedBASC performance on iid and non-iid datasets across
four datasets.

Method
MNIST FMNIST CIFAR-10 CIFAR-100

non-iid iid non-iid iid non-iid iid non-iid iid

Central 90.3% 85.38% 76.99% 49.48%

FedAvg 89.43% 90.02% 83.84% 81.56% 63.44% 56.24% 30.72% 30.62%

Local 86.39% 84.79% 78.72% 69.92% 51.75% 27.59% 18.21% 6.33%

FedProx 89.75% 90.09% 84.68% 82.04% 63.26% 55.13% 28.28% 30.94%

FedDyn 89.44% 89.98% 84.76% 82.18% 61.33% 56.05% 26.43% 31.13%

FedGen 88.78% 89.1% 83.54% 80.86% 60.85% 56.76% 23.92% 14.57%

FedBN 90.09% 90.07% 82.98% 81.55% 62.91% 30.59% 32.13% 29.14%

FedBabu 89.9% 89.25% 85.21% 82.59% 66.79% 58.52% 39.74% 33.3%

FedPer 89.55% 89.62% 83.86% 81.61% 65.76% 57.04% 28.3% 15.53%

FedRep 88.75% 89.11% 83.45% 78.8% 68.19% 59.57% 26.1% 11.2%

pFedSim 89.58% 89.88% 83.78% 82.4% 64.05% 59.48% 39.72% 33.75%

pFedLa 89.59% 89.14% 83.96% 80.49% 60.26% 51.76% 26.73% 23.73%

pFedBASC 88.45% 89.45% 84.54% 83.19% 69.8% 70.99% 43.6% 41.31%

The advantage of pFedBASC becomes more apparent when utilized in more complex
models and datasets (CIFAR series). This is because, in complex tasks, model parameter
selection may be more critical, and HN’s embedding vector can provide more suitable
parameters by adaptively generating higher-accuracy models.

As demonstrated in Table 3, pFedBASC ensures the highest accuracy while main-
taining reasonable communication costs, suggesting an optimal balance between model
accuracy and communication efficiency. Subsequent experiments revealed that although
FedFomo exhibits minimal communication overhead on the CIFAR-10/100 datasets, its
accuracy significantly lags behind that of our pFedBASC.
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Table 3. Performance of pFedBASC on non-iid CIFAR series datasets: ’Method (xx%)’ indicates
communication traffic (GB) required to achieve xx% accuracy.

Method CIFAR-10 (40%) CIFAR-100 (10%)

FedFomo 1.82 0.52
pFedHN 2.08 10.86
Fed-RoD 9.58 6.17

pFedBASC 7.97 10.62

5.4. Robustness of pFedBASC

For CIFAR-10 datasets, to construct imbalance, we adjust the quantity of samples
per class among various clients. The class sample ratios are determined using a ran-
dom.uniform(low,high) function, where (low,high ≤ 1). A greater disparity between the
minimum and maximum values leads to a more pronounced imbalance among the classes.

Handling Non-iid Class Numbers. We assign varying numbers of data classes
{2, 4, 6, 8, 10} to each client. Figure 5a shows that our pFedBASC consistently delivers
optimal accuracy on all non-iid datasets, demonstrating its robust performance against
non-iid conditions.

Handling Imbalance Rate. To create varying levels of imbalance, each client is config-
ured to contain only 2 out of 10 classes of data, with high = 1 and low = {0.2, 0.4, 0.6, 0.8, 1}.
A greater disparity between these low and high values corresponds to an increased rate
of imbalance. The data presented in Figure 5b reveal that pFedBASC consistently outper-
forms in terms of accuracy across varied imbalance rates, demonstrating its robustness to
such imbalances.
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(b) Imbalance
Figure 5. The accuracy of pFedBASC and baseline methods varies depending on (a) non-iid levels,
with the x-axis displaying number of classes held by a single client, labeled as ‘class’, and (b) rates
of imbalance, where the x-axis represents the value of the low rate used in the random function to
generate imbalance rates, denoted by ‘Low’, when high = 1, on CIFAR-10.

5.5. FedHype Scalability

The advantage of FedHype is its compatibility with existing FL aggregation algorithms,
benefiting from their contributions. FedHype can not only be combined with our pFedBASC
but also integrated with some of the baseline algorithms. The results are shown in Table 4.
In this table, the accuracy improvement of the combined algorithm compared to the original
one is presented. The results show that by incorporating FedHype, the efficiency of all
baseline algorithms is significantly improved.
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Table 4. The accuracy variation when FedHype is combined with other baseline algorithms.

Method
MNIST FMNIST CIFAR10 CIFAR100

non-iid iid non-iid iid non-iid iid non-iid iid

FedHype + FedAvg −1.22% −0.9% 1.18% 1.13% 10.75% 12.33% 10.53% 10.94%
FedHype + FedProx −1.09% −0.66% 0.3% 0.82% 6.54% 13.65% 12.95% 10.06%
FedHype + FedDyn −0.98% −0.66% −0.41% 0.98% 7.47% 13.16% 14.58% 9.39%
FedHype + FedBN −1.03% −1.55% −1.07% 0.98% 0.13% 29.35% 3.67% 4.25%
FedHype + pFedLa −0.46% −0.25% 0.26% 2.51% 8.76% 16.18% 13.24% 15.62%

FedHype + FedFomo 4.74% 5.25% 7.8% 12.44% 13.83% 40.25% 16.7% 22.88%

6. Conclusions

This paper presents pFedBASC, a novel blockchain-assisted semi-centralized pFL
framework designed to improve accuracy and efficiency in real-world environments, par-
ticularly suited to the distributed data landscapes of IoT. By integrating both centralized
and decentralized FL frameworks, pFedBASC effectively leverages network connections
within IoT to facilitate FL tasks while decentralizing aggregation operations across clients to
minimize communication overhead. The framework not only involves meticulous system
modeling and formal process descriptions but also includes the design of blockchain block
structures—download blocks, upload blocks, and evaluation blocks—that guide the deployment
of BFL systems. Our extensive experiments demonstrate pFedBASC’s excellent accuracy,
efficiency, and robustness to imbalance rates. Embedding FedHype into pFedBASC, which
utilizes small local HNs for client-side knowledge exchange, addresses the challenges of
pFL training and data heterogeneity by training personalized target networks through
local HN aggregation. This innovative approach not only alleviates issues of data het-
erogeneity but also conserves communication costs. Moreover, HNs enable collaborative
training among clients with heterogeneous models by generating parameters for TNs with
varying architectures.

While our experiments have validated the effectiveness of the method, our next focus
will be on providing theoretical proof of algorithm convergence for the semi-centralized
framework. In pFedBASC, the initial design did not address FL tasks regarding blockchain
consensus mechanisms effectively, and evaluation blocks, despite being designed, were not
utilized. Future work will refine the integration of the blockchain algorithm design and
FL. Additionally, since HNs can generate parameters for TNs with varying architectures,
this supports collaborative training among clients with heterogeneous models. Moving
forward, we plan to explore whether pFedBASC can maintain satisfactory model accuracy
in heterogeneous model FL scenarios.
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