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Abstract: The movement of organic anionic drugs across cell membranes is partly governed by 

interactions with SLC and ABC transporters in the intestine, liver, kidney, blood–brain barrier, 

placenta, breast, and other tissues. Major transporters involved include organic anion transporters 

(OATs, SLC22 family), organic anion transporting polypeptides (OATPs, SLCO family), and 

multidrug resistance proteins (MRPs, ABCC family). However, the sets of molecular properties of 

drugs that are necessary for interactions with OATs (OAT1, OAT3) vs. OATPs (OATP1B1, OATP1B3) 

vs. MRPs (MRP2, MRP4) are not well-understood. Defining these molecular properties is necessary 

for a better understanding of drug and metabolite handling across the gut–liver–kidney axis, gut–

brain axis, and other multi-organ axes. It is also useful for tissue targeting of small molecule drugs 

and predicting drug–drug interactions and drug–metabolite interactions. Here, we curated a 

database of drugs shown to interact with these transporters in vitro and used chemoinformatic 

approaches to describe their molecular properties. We then sought to define sets of molecular 

properties that distinguish drugs interacting with OATs, OATPs, and MRPs in binary classifications 

using machine learning and artificial intelligence approaches. We identified sets of key molecular 

properties (e.g., rotatable bond count, lipophilicity, number of ringed structures) for classifying 

OATs vs. MRPs and OATs vs. OATPs. However, sets of molecular properties differentiating OATP 

vs. MRP substrates were less evident, as drugs interacting with MRP2 and MRP4 do not form a tight 

group owing to differing hydrophobicity and molecular complexity for interactions with the two 

transporters. If the results also hold for endogenous metabolites, they may deepen our knowledge 

of organ crosstalk, as described in the Remote Sensing and Signaling Theory. The results also 

provide a molecular basis for understanding how small organic molecules differentially interact 

with OATs, OATPs, and MRPs. 

Keywords: drug transport; machine learning; AI; organ crosstalk; gut microbiome; proximal tubule; 

hepatocyte; SLC22A6; SLC22A8; SLCO1B1; SLCO1B3; ABCC2; ABCC4 

 

1. Introduction 

Many common drugs are organic anions [1]. Along several organ axes—such as the 

gut–liver–kidney axis—a group of multi-specific organic anion transporters from the SLC 

and ABC families appear to be responsible for the movement of small molecule drugs 

(roughly 100–1000 Da), toxins, metabolites, signaling molecules, natural products, gut 

microbiome products, antioxidants, and vitamins into and out of organs [2–5]. 

Understanding the molecular determinants of substrate affinity for these transporters is a 
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key aspect of modern pharmacokinetics, particularly as it pertains to the absorption, 

distribution, metabolism, and excretion (ADME) of small organic anion drugs [6]. 

Among multi-specific uptake transporters, the OATs (especially OAT1 or SLC22A6 

and OAT3 or SLC22A8) are key to the influx of diverse small organic anion drugs into the 

proximal tubules of the kidney [7]. For the liver, the main multi-specific uptake 

transporters are from the OATP (SLCO) family (especially OATP1B1 or SLCO1B1 and 

OATP1B3 or SLCO1B3) [4]. Among the most important multi-specific ABC transporters 

involved in efflux (extrusion) of organic anions across the gut, liver, and kidney are 

members of the MRP family, including MRP2 (ABCC2) and MRP4 (ABCC4) [8]. Antiviral 

drugs, statins, NSAIDs, and chemotherapeutic drugs can interact with two or more of 

these six transporters during the passage through organs and body fluid compartments. 

Defining the substrate specificity of these multi-specific transporters (in the gut, liver, 

kidney, and elsewhere) is essential to a deeper understanding of how they help coordinate 

the movement of small organic molecules in the body [9–12]. 

The ADME of organic anion drugs along the gut–liver–kidney axis, and inter-organ 

crosstalk via metabolites and signaling molecules—as, for example, described by the 

Remote Sensing and Signaling Theory [7,13]—depends to a substantial extent on the 

ability of this set of six multi-specific transporters to communicate across organs and 

between tissues and body compartments (e.g., feces, bile, urine). Other multi-specific, 

oligo-specific, and mono-specific transporters are also involved, but we focus here only 

on this set of OATs, OATPs, and MRPs, the coordinated functioning of which is clearly 

necessary for the vectorial transport of organic anions between, for example, the blood 

and bile and between the blood and urine, as well as between organs. 

The polarized localization of these SLC transporters (generally basolateral, uptake) 

and ABC transporters (generally apical, efflux) is necessary for the coordinated vectorial 

transport of small molecule drugs and other small molecules across epithelial cells of the 

gut, liver, and kidney as well as endothelial cells of the brain capillary endothelium 

(blood–brain barrier) [8]. For example, in the proximal tubule cells of the kidney, OAT1 

(SLC22A6) and OAT3 (SLC22A8) are mainly responsible for the basolateral uptake of 

numerous organic anion drugs (e.g., NSAIDs, antivirals, antibiotics) from the blood into 

the cell, whereas MRP2 (ABCC2) and MRP4 (ABCC4) are mainly responsible for the efflux 

of these drugs from the cell into the urine [7]. 

These SLC transporters (OATs, OATPs) and ABC transporters (MRPs) have many 

organic anion drug substrates (e.g., methotrexate, statins) in common as well as relatively 

unique substrates (e.g., tenofovir), the latter type of substrate perhaps being transported 

mainly by a subset of transporters (e.g., OATs and MRPs but not OATPs). Characterization 

of the molecular features dictating substrate selectivity for these sets of transporters may 

facilitate the development of better predictive pharmacokinetic models and an improved 

understanding of drug–drug interactions or drug–metabolite interactions occurring at the 

transporter level [14,15]. 

To this end (Figure 1), we have applied chemoinformatic approaches and machine 

learning approaches, combined with a variety of data visualization methods, to analyze 

substrate selectivity of OATs vs. OATPs, OATs vs. MRPs, and OATPs vs. MRPs. Building 

on our previous work on uptake transporters [16,17], this study provides new insight into 

how uptake (SLC) transporters function in coordination with efflux (ABC) transporters to 

mediate vectorial transport of organic anions across the gut, liver, and kidney as well as 

organ cross-talk. 
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Figure 1. Schematized workflow for identification of molecular properties for binary classification. 

(A) Based on in vitro transport data in the literature, a curated database of drugs interacting with 

OATs (OAT1, OAT3), OATPs (OATP1B1, OATP1B3), and MRPs (MRP2, MRP4) was created as 

described in the text. (B) Cheminformatics methods (using RDKIT2D) were applied to identify 

molecular properties (features) of the drugs (instances) and added to the database. (C) Data 

visualization and statistical analysis in Orange, Python libraries, and R (ggplot2) were used to 

logically narrow down to sets of molecular properties used in machine learning approaches for 

binary classifications of either OATs vs. MRPs, OATs vs. OATPs, or OATPs vs. MRPs. Particularly 

useful for choosing features were information gain and the FreeViz diagram. (D) Various machine 

learning classification methods (e.g., Random Forest, Decision Tree, kNN, Naive Bayes, neural 

network, support vector machines, logistic regression) were applied using the chosen sets of 

molecular properties (features). (E) Classification accuracy and other metrics were calculated. (F) 

Misclassifications of drugs (instances) were evaluated in a confusion matrix. This figure was 

generated using Biorender. 

2. Materials and Methods 

2.1. Data Curation 

As indicated in Supplementary Table S1, data from transport assays were curated 

from a variety of online databases and publications and molecular properties for each 

drug were assigned by importing RDKit2D into Python. To arrive at a final dataset with 

~150 drugs, initially we analyzed drug interaction data for 6 individual transporters, 

which have been designated as OAT1, OAT3, OAT Both, OATP1B1, OATP1B3, OATP Both, 

MRP2, MRP4, and MRP Both. However, it soon became evident that for several of the 9 

groups, especially the MRPs, there were not enough data for a reliable classification 

scheme for each of the multi-specific transporters. Thus, to obtain enough unique drug 

sets to perform the machine learning analyses, we grouped OAT1 and OAT3 into the 

OATs, OATP1B1 and OATP1B3 into the OATPs, and MRP2 and MRP4 into the MRPs. 

Hence, there were three classes: OATs, OATPs, MRPs. Although it was challenging to find 
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drugs that had been tested for all transporters—OAT1, OAT3, OATP1B1, OATP1B3, 

MRP2, and MRP4—it was mostly possible to find drugs that had been tested for members 

of OATs, OATPs, and MRPs, or two out of the three families. For example, that made it 

possible to perform three separate balanced binary classifications of non-overlapping 

drugs in the context of transporter families: OATs vs. MRPs, OATs vs. OATPs, and OATPs 

vs. MRPs. 

2.2. Chemoinformatic Approaches and Selection of Molecular Properties 

Molecular properties (features) for drugs (instances) were found by importing 

RDKit2D into Python. Initially, this gave hundreds of molecular descriptors. These were 

then narrowed down into a set of ~25 mostly interpretable molecular properties. 

Depending on the separate classifications (OATs vs. MRPs, OATs vs. OATPs, OATPs vs. 

MRPs), the sets of molecular properties were further narrowed down to 5–10 based on 

univariate analyses, correlations, information gain, FreeViz analyses, principal 

component analysis (PCA), and other methods. 

2.3. Data Mining and Machine Learning 

Orange Data Mining software (version 3.29) was used for visual programming and a 

workflow-based approach to data mining. The Orange software package is based in 

Python libraries, including Scikit-Learn, Numpy, and Scipy [16]. Various statistical and 

visualization approaches, including Principal Component Analysis, FreeViz [16], 

information gain-based ranking, and supervised machine learning-based binary 

classifications (i.e., k-means classification, decision trees, random forests, neural networks, 

logistic regression, and Naive Bayes) were utilized [18,19]. Some confirmatory machine 

learning analyses were carried out using Python Pandas, SciKit-Learn, and Seaborn. Some 

visualizations were also performed in the R package ggplot2. 

3. Results 

3.1. Curation of a List of Drugs Interacting with OATs, OATPs, and MRPs 

From pharmacokinetic and physiological analyses, it is clear that OATs, OATPs, and 

MRPs handle large numbers of organic anion drugs, often with overlapping substrate 

specificity. Nevertheless, it is also clear from experimental in vitro transport assays that 

these transporters—while sharing many substrates—can uniquely, or relatively uniquely, 

interact with particular drugs depending on their molecular properties [16,17,20–22]. 

Our initial goal was to identify a large set of drugs uniquely interacting with OATs 

(OAT1, OAT3), OATPs (OATP1, OATP3), and MRPs (MRP2, MRP4). This turned out to be 

challenging, as it is not common that all six transporters are analyzed for the same drug 

in a single study, making it difficult to identify data collected under the same conditions 

to assess whether a drug is uniquely transported by OATs, OATPs, and MRPs. 

Nevertheless, we identified many drugs that had a strong affinity for OATs compared 

to OATPs (and vice versa) or OATs compared to MRPs (or vice versa). For OATPs 

compared to MRPs (and vice versa), it was challenging to find as many drugs that favored 

one transporter family or the other. This was in part due to another problem encountered; 

there appeared to be more published data for drugs interacting with the OATs and OATPs 

than there were for the MRPs. This seems at least partly due to the inclusion of OAT1, 

OAT3, OATP1B1, and OATP3 in the original “FDA Seven” group of transporters, 

presumably leading to a greater focus on these transporters over the past decade or so. 

All these factors led us to curate a database for the machine learning and data 

visualization studies that follow. Although compounds in the database of ~150 small 

organic anion drugs sometimes interacted apparently uniquely with one family (e.g., 

OATs), they mainly included those that interact “relatively uniquely” (two of the three 

families). Thus, while the dataset was not ideal for multiple classification, it did appear 

suitable for binary classification. We thus focused on binary classification of (1) OATs vs. 
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MRPs, (2) OATs vs. OATPs, and (3) OATPs vs. MRPs. However, because of the factors 

cited above, we also anticipated that unsupervised techniques and complex data 

visualizations were likely to be useful in the analyses, particularly with respect to OATPs 

vs. MRPs, where there were fewer drugs uniquely interacting with each family. 

3.2. Molecular Properties Useful for Classification of OATs vs. MRPs 

In the kidney, OAT1 and OAT3 account for by far the largest fraction of the uptake 

of small organic anion drugs (particularly albumin-bound) from the blood (basolateral 

side) into the proximal tubules. It is generally held that MRP2 and MRP4 are the major 

apical transporters responsible for efflux of the bulk of the same (presumably unmodified) 

organic anions into the urine. 

Thus, current views are that the basolateral OATs and apical MRPs work in series to 

mediate the trans-tubular transport of organic anions from blood to urine. While this 

indicates substantial substrate overlap, the fact that MRPs are well-known to be involved 

in handling of larger, more hydrophobic drugs in the liver—compared with smaller, more 

hydrophilic small molecules handled by the kidney—suggests that there may also be 

important differences in molecular properties of drugs interacting with the OATs 

compared to MRPs. 

Thus, it is interesting and important to define the substrate selectivity of OATs (OAT1, 

OAT3, OAT Both) vs. MRPs (MRP2, MRP4, MRP Both). If the two families could be 

separated by chemoinformatic-derived “interpretable” molecular properties, this could 

provide considerable physiological and pharmaceutical insight that may improve 

understanding of how the kidney, by dint of these four transporters, enables vectoral 

transport (blood to urine) of a large number of organic anions. It may also lead to new 

approaches for targeting small molecules to or away from the renal organic anion 

transport system (OATs and/or MRPs). This could be important in, for example, renal 

disease. 

3.3. OATs (OAT1, OAT3) Vs. MRPs (MRP2, MRP4) 

Beginning with OATs vs. MRPs, we performed a number of univariate analyses of 

the molecular properties of the OAT and MRP drugs, correlations, and other analyses (e.g., 

Information Gain, FreeViz) to reduce the hundreds of molecular properties calculated by 

RDKIT to 5–10 interpretable molecular properties that could be used for machine learning 

classification. The dataset was balanced with 32 OAT-interacting drugs (e.g., penicillin G, 

acyclovir, naproxen) and 32 MRP-interacting drugs (e.g., losartan, atorvastatin, 

doxorubicin) with no overlap among the selected sets. 

Figure 2A shows the final set of molecular properties chosen (MolLogP, RingCount, 

NumRotatableBonds, FractionCSP3, TPSA/LabuteASA, fr_amide), in terms of 

Information Gain in a binary classification of OATs vs. MRPs. Visualizations included sets 

of molecular properties in a FreeViz diagram, where the length of the vector reflects the 

importance of the molecular property (feature) and the angle between vectors relates to 

the correlation between various molecular properties (Figure 3). It should be noted that 

these different analyses may depend on different mathematical approaches/algorithms, 

so the relative importance of a molecular property may vary with the analysis. However, 

taken together, they (along with other analyses not shown) demonstrate the potential 

value of considering this set of interpretable molecular properties for classification of 

OATs vs. MRPs. 

The FreeViz diagram (Figure 3) is particularly helpful for understanding how the 

OAT-interacting drugs separate from the MRP-interacting drugs based on sets of features. 

For example, a high molLogP is associated with MRP-interacting drugs, whereas a high 

TPSA/LabuteASA (an indication of surface charge density) is associated with OAT-

interacting drugs. The MRP-interacting drugs that appear to interface with OAT-

interacting drugs tend to be those that interact with MRP4 as opposed to MRP2. 
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By Principal Component Analysis, this set of features accounted for 85 percent of the 

variance (three components) (Figure 2B). In the Python-based Orange Data Mining 

environment, we performed Supervised Machine Learning using the aforementioned set 

of six molecular properties. We analyzed binary classification (OAT vs. MRP) using 

Decision Trees, Random Forests, Support Vector Machines, Naive Bayes, Logistic 

Regression, and a simple Neural Network. Several of these performed well using the 

“leave one out” method (Table 1), yielding 70–75% classification accuracy (e.g., 73% for 

Random Forests) and reasonable areas under the curve (AUC 0.763 for Random Forests). 

By confusion matrix, Random Forests misclassification of OATs and MRPs was about the 

same (nine and eight, respectively, out of a total of seventeen misclassified instances 

compared to forty-seven correctly classified instances) (Figure 4). 

Table 1. Success of different algorithms for binary classification of OAT- vs. MRP-interacting drugs 

and OAT- vs. OATP-interacting drugs based on classification accuracy and other metrics. 

 OAT- Versus MRP-Interacting Drugs OAT- Versus OATP-Interacting Drugs 

Model 
Area under the ROC 

Curve 

Classification 

Accuracy 

Area under the ROC 

Curve 

Classification 

Accuracy 

SVM 0.823 0.766 0.900 0.821 

Lasso Regression 0.863 0.766 0.909 0.808 

Random Forest 0.763 0.734 0.924 0.833 

Neural Network 0.809 0.734 0.903 0.859 

Ridge Regression 0.816 0.719 0.900 0.833 

Naive Bayes 0.819 0.688 0.924 0.821 

AdaBoost  0.604 0.625 0.796 0.756 

Tree  0.631 0.609 0.831 0.756 

ROC, receiver operating characteristic. Shown are classification metrics relating to Random Forest, 

Logistic Regression (Lasso and Ridge Regression), Support Vector Machine, Decision Tree, Naive 

Bayes, k-Nearest Neighbors, and the “out of the box” Neural Network in Orange. The data shown 

are using the “leave one out” method. The scores are weighted averages over all classes. Given the 

relatively good classification accuracies, the misclassifications in the confusion matrices were 

generally low to modest. 

 

Figure 2. Ranking of molecular properties for binary classification of OAT-interacting and MRP-

interacting drugs based on the information gain metric and principal component analysis (PCA). 

(A) Shown is a bar graph of the molecular properties ranked based on information gain. As 

described in the text, this was one of several methods used to come up with the final set of molecular 
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properties for binary classification. (B) Principal component analysis indicates that the initial three 

principal components explain ~85 percent of the variance. 

 

Figure 3. FreeViz diagram depicting distinction of OAT-interacting and MRP-interacting drugs 

based on selected molecular properties. As described in more detail in the text, the FreeViz diagram 

is a method to analyze the potential impact of sets of features (molecular properties) in determining 

the interaction of drugs with OATs vs. those interacting with MRP space. The shading of red and 

blue indicates the general OAT (OAT1 and/or OAT3) vs. MRP (MRP2 and/or MRP4) space. In the 

representation, the red crosses depict the OAT-interacting drugs, and the blue circles depict the 

MRP-interacting drugs. In a FreeViz diagram, the length of the arrow reflects magnitude of the 

feature according to the FreeViz optimization algorithm in Orange, and the angle between arrows 

is indicative of the correlation between the features (molecular properties). It is evident that OAT-

interacting drugs have a high TPSA/LabuteASA (~surface charge density), and MRP-interacting 

drugs have a high MolLogP (~hydrophobicity). 

 

Figure 4. Confusion matrix for random forest binary classifier of OATs vs. MRPs. 

3.4. OATs (OAT1 and OAT3) vs. OATPs (OATP1B1 and OATP1B3) 

For completion in the context of this study, it was important to analyze OATs vs. 

OATPs using drugs from the same dataset and using the same methodology. Thus, 

although we used a different approach for calculating molecular properties (RDKIT2D as 

opposed to ICM Chemist Pro) and a somewhat different dataset, the binary classification 

analysis of OATs vs. OATPs came out similar to prior analyses [16]. That said, it is worth 
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emphasizing that, for a balanced set of 78 drugs (39 OATs and 39 OATPs), six molecular 

properties (MolLogP, RingCount, NumRotatableBonds, MolWt, TPSA/LabuteASA, 

fr_COO) were sufficient to obtain classification accuracies 75–85% for a wide range of 

machine learning methods (83% for Random Forests, 82% for Support Vector Machines) 

with excellent AUCs (≥0.8) (Table 1). 

3.5. OATPs (OATP1B1, OATP1B3) vs. MRPs (MRP2, MRP4) 

The OATPs and MRPs were analyzed as a balanced set with 32 instances from each 

class (total 64). From initial visualizations of distributions of one molecular property at a 

time, it soon became clear that there were few clear separations between OATP-interacting 

drugs (e.g., erythromycin, bosentan, cyclosporine) and MRP-interacting drugs, and that it 

was likely that more features (molecular properties) would be necessary to classify the 

OATPs vs. MRPs than were needed for OATs vs. OATPs and OATs vs. MRPs. Indeed, 

analyses of features based on Information Gain and the FreeViz diagram suggested that 

close to 10 molecular properties may be necessary for classification. In the end, we chose 

molLogP, MolWt, RingCount, NumRotatableBonds, FractionCSP3, TPSA/LabuteASA, 

fr_ether, fr_aniline, fr_amide. Even these only gave classification accuracies of around 55–

62% (62.5% for Random Forests). 

Looking at the FreeViz diagram (Figure 5), it became clear that one of the problems 

might be the tendency of a large subset of MRP4-interacting drugs to group separately 

from MRP2 and somewhat more closely with OATP1B1. These tendencies are clearer in 

the ggplot2 graph made using R (Figure 6). 

 

Figure 5. FreeViz diagram depicting distinction of OATP-interacting and MRP-interacting drugs 

based on selected molecular properties. Red crosses depict the OATP-interacting drugs and blue 
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circles depict the MRP-interacting drugs. When compared to the OAT vs. MRP classification in 

Figure 3, it is clear that the separation of the red-shaded and blue-shaded areas is less distinct. 

 

Figure 6. Analysis of OATP- vs. MRP-interacting drugs by MolLogP, BertzCT (measure of molecular 

complexity), Number of Rotatable Bonds, and Transporter (OATP1B1, OATP1B3, OATP Both, 

MRP2, MRP4, MRP Both). The graph was created using ggplot2 in R. As with the FreeViz diagram, 

it becomes clear that MRP2 and MRP4 distribute differently, with MRP2 having a higher molLogP, 

BertzCT, and NumRotatable Bonds. MRP4-interacting drugs appear more similar to OATP1B1-

interacting drugs. 

4. Discussion 

For small molecule drugs that are organic anions, the multi-specific organic anion 

transporters of the OAT, OATP, and MRP families may play essential roles in ADME along 

the gut–liver–kidney axis as well as other axes. A detailed analysis of the molecular basis 

of substrate selectivity is key to a deeper understanding of pharmacokinetics and for 

prediction of potential drug–drug and drug–metabolite interactions. Such predictions 

may have applications both in the drug development setting and clinical practice. 

Furthermore, data from metabolomics of knockout mice, as well as metabolic 

reconstructions, indicate a critical role for these multi-specific transporters in tissue and 

systemic metabolism as well as organ crosstalk involving organic anion metabolites, many 

of which are signaling molecules, antioxidants, or participants in key metabolic pathways 

(e.g., TCA cycle). Organ crosstalk involving metabolites and signaling molecules 

transported by these multi-specific transporters is a key concept in the Remote Sensing 

and Signaling Theory [2]. 

The combination of chemoinformatic approaches, machine learning (ML), and a 

variety of data visualization techniques allowed us to define important differences in 

substrate preferences between the OATs, OATPs, and MRPs. Although there are a number 

of drugs and metabolites handled with differing affinities by at least one OAT, one OATP, 

and one MRP of the six multi-specific organic anion “drug” transporters studied here, to 

identify the substrate preferences of each family, we focused as much as possible on 

unique or relatively unique substrates. Because there was much more in vitro transport 

data for OATs and OATPs, this was easier to do for the OAT vs. OATP analysis than the 

analysis involving the MRPs (OATs vs. MRPs, OATPs vs. MRPs), for which there were 

considerably less transport studies. 

The current study has some limitations. To have enough uniquely labeled data to 

perform the unsupervised and supervised ML studies, we combined OAT1 and OAT3 into 
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the OATs, and likewise, combined OATP1B1 and OATP1B3 into the OATPs and MRP2 

and MRP4 into the MRPs. After preliminary analysis of the individual transporters—what 

have been designated as OAT1, OAT3, OAT Both, OATP1B1, OATP1B3, OATP Both, 

MRP2, MRP4, and MRP Both—it was clear that for some of the nine groups, especially the 

MRPs, there were simply not enough instances for reliable classification by a single 

transporter. Ideally, one would have an independent test set of drugs that interact with 

OATs and MRPs in order to ascertain the model’s predictive value in a binary 

classification. However, currently there is a paucity of data on drugs interacting with 

MRPs, and these data were used to build the model. 

Clear differences in substrate preference, consistent with previous analyses [16,17], 

were found in the OAT vs. OATP analysis, with high classification accuracy and good 

ROC curves. Similarly, the classification accuracy and other metrics were good for the 

OAT vs. MRP analysis. However, the classification of the OATPs vs. MRPs was suboptimal 

using a variety of classification approaches, including Random Forests, Decision Tree, 

kNN, Naive Bayes, Logistic Regression, and others. 

For the OATP vs. MRP analyses, different data visualization tools were particularly 

useful and revealing. The ML analyses had revealed that OATs preferred smaller, more 

polar molecules, whereas the OATPs and MRPs preferred larger, more complex, more 

hydrophobic molecules with a greater number of rings. Thus, it was relatively easy to 

classify OATs vs. OATPs and OATs vs. MRPs. 

But because OATPs and MRPs, grouped as families, both preferred larger, more 

complex, more hydrophobic molecules with more rings, classification by family 

membership (based on chemoinformatic analyses of properties of interacting drugs) was 

not very successful. Perhaps the results would have been better had there been a larger 

number of MRP drug substrates or had we used more molecular properties (features). 

However, although our preliminary chemoinformatic analyses gave over a hundred 

molecular properties, we chose to focus on those that were easily interpretable, such as 

molecular weight, number of rings, hydrophobicity (logP), and so on. We also aimed to 

use a ratio of features to instances of 10–20 percent. 

Notwithstanding, the data visualizations revealed why OATPs vs. MRPs are difficult 

to classify. In the visualizations, instances were also labeled as OAT1, OAT3, OAT Both, 

OATP1B1, OATP1B3, OATP Both, MRP2, MRP4, and MRP Both. From this it became clear 

that there were major differences between OATP1B1 and OATP1B3, and likewise, between 

MRP2 and MRP4. Indeed, MRP2 and OATP1B3 tended to group closer that expected to 

each other, whereas OATP1B1 and MRP4 tended to group closer to each other, and 

indeed, to OAT1 and/or OAT3 in a number of instances. These are some generalizations, 

and one should refer to the data visualizations for a more precise picture. 

Taken together, the analyses indicate important similarities and differences in 

substrate selectivity between the OATs, OATPs, and MRPs, and between the individual 

multi-specific drug transporters themselves. In the context of pharmacokinetics, or organ 

crosstalk, such as that described in the Remote Sensing and Signaling Theory [2], the 

analyses may suggest certain “transporter axes” for drugs and metabolites involved in 

uptake and efflux. 

For example, OAT1, OAT3, and OATP1B1—SLC uptake transporters in the kidney 

and liver—seem better matched to the ABC efflux transporter MRP4. In contrast, 

OATP1B3 and MRP2, highly expressed, respectively, on the basolateral and apical surface 

of hepatocytes, seem better matched for vectorial transport in the liver. There is a hint in 

the visualizations that OAT3 is better matched than OAT1 for interaction with OATP1B3 

and MRP2 transported molecules, and thus one might postulate a transporter axis 

involving OATP1B3 and MRP2 in the liver with OAT3 and MRP2 in the kidney. Such an 

axis may be important for remote communication of certain larger, more complex, multi-

ringed organic anions between the liver and kidney. These ideas need to be tested by 

experiments in vivo or in multi-organ ex vivo experiments. 



Pharmaceutics 2024, 16, 592 11 of 12 
 

 

While the OAT vs. OATP ML classification results were clear and robust, consistent 

with previous work [16,17], and the OATs vs. MRPs also had excellent classification 

metrics, we were unable to obtain clear results for the OATPs vs. MRPs. Indeed, the 

confusion matrices were quite poor at the level of the family (OATPs vs. MRPs). However, 

when we examined the four individual transporters (OATP1B1, OATP1B3, MRP2, MRP4) 

with a number of different types of data visualizations, the difficulty in machine learning 

classification by family membership became apparent. 

For example, in certain visualizations, it was evident that a few drugs corresponding 

to MRP2 and OATP1B3 bring these two transporters closer together when molecular 

properties such as MolLogP and complexity (BertzCT) are considered. Interestingly, 

MRP4 tends to be found closer to OAT1 and OAT3 than MRP2 or OATP1B3, probably 

because MRP4 appears to have a greater preference for molecules with higher surface 

charge density (TPSA/LabuteASA). If there had been a considerably larger number of 

relatively unique MRP2 and MRP4 drugs in the database, it might have been possible to 

successfully perform ML classification with the individual transporters (OATP1B1, 

OATP1B3, MRP2, MRP4). Nevertheless, the various data visualizations provide 

considerable insight into the molecular properties that distinguish drug selectivity by each 

of these multi-specific drug transporters. 

Future work will benefit from larger datasets, particularly for drugs interacting with 

MRPs. This would allow testing of predictive models on an independent dataset as well 

as a clearer analysis of the similarities and differences between the six transporters. There 

is also a great deal of interest in graph neural networks for molecular representation, 

though it is at yet unclear to what extent these improve upon established methods using 

molecular descriptors [23]. 

Supplementary Materials: The following supporting information can be downloaded at: 
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