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Abstract: Precision diagnosis-guided efficient treatment is crucial to extending the lives of cancer pa-
tients. The integration of surface-enhanced Raman scattering (SERS) imaging and phototherapy into a
single nanoplatform has been considered a more accurate diagnosis and treatment strategy for cancer
nanotheranostics. Herein, we constructed a new type of mesoporous silica-layered gold nanorod
core@silver shell nanostructures loaded with methylene blue (GNR@Ag@mSiO2-MB) as a multi-
functional nanotheranostic agent for intracellular SERS imaging and phototherapy. The synthesized
GNR@Ag@mSiO2-MB nanostructures possessed a uniform core–shell structure, strong near-infrared
(NIR) absorbance, photothermal conversion efficiency (65%), dye loading ability, SERS signal, and
Raman stability under phototherapy conditions. Under single 785 nm NIR laser irradiation, the intra-
cellular GNR@Ag@mSiO2-MB nanostructures were dramatically decreased to <9%, which showed
excellent photothermal and photodynamic effects toward cancer cell killing, indicating that the combi-
nation of photothermal therapy (PTT) and photodynamic therapy (PDT) of the GNR@Ag@mSiO2-MB
nanostructures could greatly enhance the therapeutic efficacy of cancer cell death. GNR@Ag@mSiO2-
MB nanostructures demonstrated a strong Raman signal at 450 and 502 cm−1, corresponding to
the δ(C–N–C) mode, suggesting that the Raman bands of GNR@Ag@mSiO2-MB nanostructures
were more efficient to detect CT-26 cell SERS imaging with high specificity. Our results indicate that
GNR@Ag@mSiO2-MB nanostructures offer an excellent multifunctional nanotheranostic platform for
SERS imaging and synergistic anticancer phototherapy in the future.

Keywords: gold nanorod core; silver shell; cancer; phototherapy; SERS imaging

1. Introduction

Cancer is one of the most deadly diseases worldwide that kills millions of people every
year [1]. Despite many efforts to develop new cancer nanotheranostics, the integration of
diagnostic and therapeutic functions in an all-in-one single nanotheranostic platform is
highly desired, which has recently emerged as a promising strategy for early diagnosis
and therapy of cancer [2–4]. As a recently developed detection technique, SERS using
plasmonic nanomaterials has emerged as a new and noninvasive imaging technique that
has great promise to be applied as a powerful tool for cell detection and imaging of
biological samples because of their high specificity, sensitivity, and low cost [5–7]. As
a newly arising therapeutic strategy, phototherapy, such as PTT and PDT, has attracted
widespread attention in recent years for the treatment of cancer because of its minimal
invasion and high selectivity [8–10]. In PTT, the photothermal conversion materials convert
NIR laser light into heat to destroy cancer cells [11,12]. In PDT, photosensitizers (PSs)
absorb visible light or NIR light and convert molecular oxygen in the surrounding areas,
generating cytotoxic reactive oxygen species (ROS), including singlet oxygen (1O2) to
destroy cancer cells [13,14]. Thus, the combination of PTT/PDT functions with single NIR
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laser irradiation and cell SERS imaging into a single nanotheranostic platform is highly
attractive and promising to achieve diagnostic, maximized therapeutic outcomes, and
minimized recurrences.

Plasmonic nanoparticles (NPs), especially gold nanorods (GNRs), have received con-
siderable attention from biomedical researchers in the past few decades because of their
unique properties, such as excellent biocompatibility, good stability, tunable NIR localized
surface plasmon resonance (LSPR), photothermal heat conversion efficiency, and facile sur-
face functionalization [15–21]. GNRs have also been employed as SERS active substrates for
cancer cell imaging [22,23]. Silver (Ag) is another widely used plasmonic metal that demon-
strates attractive size- and shape-dependent plasmonic properties and tunable LSPR [24].
The gold nanorod core@silver shell (GNR@Ag) is an excellent candidate for biomedical
applications such as phototherapy and SERS imaging due to its high absorption from the
ultraviolet (UV) to the NIR region by controlling its size or the Ag shell thickness [25].
However, the limited dye-loading capability of GNR@Ag with nonporous architectures
severely restricts its usefulness in PDT [17,26]. Mesoporous silica (mSiO2) has been widely
used as a coating material for GNR@Ag to enhance its dye-loading capability because of its
large surface area, tunable size, and high pore volume [27,28]. Methylene blue (MB) is a
photosensitizer (PS) that has been employed for PDT [29,30]. MB is well known to generate
ROS, including 1O2 to destroy cancer cells under light irradiation [31]. MB was loaded
into GNR@Ag@mSiO2 to form GNR@Ag@mSiO2-MB nanostructures [29]. Therefore, the
combination of GNR@Ag@mSiO2-MB-based SERS imaging and phototherapy functions
into a single nanoplatform is an innovative theranostic strategy for cancer therapy. To date,
Wen et al. have developed a novel lysosome-targeted gold nanorod-cysteine-hydroxyl
merocyanine for in situ SERS imaging and PTT [32]. Another study by Narayanan [8]
reported that cucurbit uril can be regarded as glue for connection gold nanorods for SERS
imaging and phototherapy [33]. To the best of our knowledge, there is no report about
using GNR@Ag@mSiO2-MB nanostructures for intracellular SERS imagining and pho-
totherapy. In this study, a new method was utilized to generate highly monodisperse and
uniform GNR@Ag@mSiO2-MB nanostructures with strong NIR absorbance, photothermal
conversion efficiency, large surface area, tunable size, dye loading ability, SERS signal,
and Raman stability under phototherapy conditions, which were synthesized to develop a
multifunctional nanosystem for cancer cell SERS imaging and phototherapy.

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA) and were used
as received without further purification.

2.2. Synthesis of Gold Nanorods

The gold nanorod (GNR) solution was prepared using a silver (Ag)-catalyzed and
seed-mediated method in a binary surfactant system [34]. In brief, a gold seed solution
was prepared by mixing 5 mL of 0.2 M hexadecyltrimethylammonium bromide (CTAB;
≥99%) aqueous solution with 5 mL of 0.5 mM gold(III) chloride trihydrate (HAuCl4·3H2O;
≥99.9%) before adding 0.6 mL of cold 10 mM sodium borohydride (NaBH4; ≥99.99%) to
the solution and vortexing the mixture for 3 min. The resultant brownish-yellow seed
solution was aged at 25 ◦C for 30 min. The growth solution was prepared by adding
100 mL of 1 mM HAuCl4·3H2O to 50 mL of 0.15 M CTAB solution and 50 mL of 0.1 M
benzyldimethylhexadecylammonium chloride (BDAC; ≥99%) solution. Subsequently, a
solution containing 5 mL of 4 mM silver nitrate (≥99.0%) and 1.4 mL of 7.9 mM L-ascorbic
acid (AA; ≥99.0%) was added to the mixture under magnetic stirring, with the result that
the yellow solution became colorless. Finally, 0.24 mL of the seed solution was gradually
added while stirring the growth solution, resulting in dark-red color changes within a few
hours. After the resulting solution was left to further react at 25 ◦C for 12 h, the excess
reagents were removed by centrifugation and washed with deionized water (DI).
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2.3. Synthesis of GNR Core@Ag Shell Nanostructure

A silver (Ag) shell was created on the surface of the GNR core using a procedure
developed by the Niidome group [35]. In brief, a 0.08 M cetyltrimethylammonium chloride
(CTAC) solution was mixed with 10 mL of the GNR aqueous solution. The pH of the
resulting mixture was adjusted to 5.4 by combining it with 0.4 mL of 0.5 M NaOH and 2 mL
of 0.1 M AA solution, and subsequently, 0.1 mL of 0.01 M AgCl solution was slowly added
under magnetic stirring. The resulting solution (GNR@Ag) was further incubated at 25 ◦C
for 3 h, which led to a color change from red to green. The excess reagents were removed
from the final solution by centrifugation and washed with DI.

2.4. Synthesis of GNR Core@mSiO2 Shell Nanostructure

mSiO2 layer was coated on the as-prepared GNRs using a cationic surfactant-mediated
method [36]. Briefly, 10 mL of the GNR solution was added with anhydrous ethanol (4 mL)
and DI (6 mL). After aging for 3 h, 200 µL of 0.1 M NaOH solution and 60 µL of 20%
tetraethylorthosilicate (TEOS) in EtOH were gently stirred and injected three times for
30 min intervals. The resultant solutions were then kept at 25 ◦C for two days while under-
going vigorous stirring. Finally, the product (GNR@mSiO2) was purified by centrifugation
and washed with DI water.

2.5. Preparation of GNR Core@Ag@mSiO2 Shell Nanostructure

GNR@Ag@mSiO2 samples were synthesized using two different procedures. The first
approach involved coating the surface of the GNR@Ag with mSiO2 (procedure (1)). The
procedure was identical to that of the GNR@mSiO2 synthesis, with the only difference being
the use of a GNR@Ag solution instead of a GNR solution. The second method involved
the diffusion of Ag+ ions into the mSiO2 layer of GNR@mSiO2 using a concentration
gradient, and this was followed by the formation of an Ag layer on the surface of the GNRs
(procedure (2)). Procedure (2) was the same as that used to prepare GNR@Ag, except for
the use of a GNR@mSiO2 solution instead of a PEGylated GNR solution.

2.6. Synthesis of Methylene Blue (MB)-Loaded GNR@Ag@mSiO2

The GNR@Ag@mSiO2 aqueous solution (10 mL) was combined with an excess of MB
dye (1 mg) under magnetic stirring at 25 ◦C for 24 h. During the reaction, to prevent the
photodegradation of the MB dye, the mixture was protected from exposure to external light
using aluminum foil. The resultant products underwent several centrifugations and DI
water washes until the supernatant became colorless, which was resuspended in DI water
and then lyophilized (GNR@Ag@mSiO2-MB).

2.7. Characterization

The morphology of all nanostructures was characterized via transmission electron
microscopy (TEM; JEOL, JEM2100, Tokyo, Japan). The morphology and elemental com-
position of GNR@Ag@mSiO2-MB were analyzed using field-emission TEM (FETEM) and
scanning TEM (STEM) in combination with energy dispersive X-ray spectroscopy (EDX)
and mapping (JEM-ARM200F, JEOL, Tokyo, Japan). Optical absorption was performed
on an Optizen 3220 UV–visible spectrophotometer (Mecasys, Daejeon, Republic of Korea).
Micro-Raman analysis using 785 nm excitation (laser power = 2 µW; spot area = 51 µm2;
accumulation = 5 times) was obtained using an inVia Raman microscope system (Renishaw,
Wotton-under-Edge, UK) equipped with a Leica DM 2500 microscope (Leica, Wetzlar, Ger-
many) using a 1200 g/mm grating. We investigated the LSPR properties of the plasmon
hybridization-based GNR@Ag using a numerical simulation method. The gold (Au) con-
tent was accomplished using inductively coupled plasma optical emission spectroscopy
(ICP-OES, USA).
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2.8. Measurement of Photothermal Properties

To measure the photothermal effect of nanomaterials, a single 785 nm NIR laser
(power = 0.6 W/cm2; 600 s) was used to irradiate the GNR, GNR@mSiO2, GNR@Ag@mSiO2,
and GNR@Ag@mSiO2-MB aqueous solutions with concentrations of 100 µg/mL. During
NIR laser irradiation, the temperature monitoring of the dispersed NP solutions was
captured using an infrared (IR)–thermal camera (SE/A325, FLIR Systems Inc., Wilsonville,
OR, USA) controlled by a PC application. Furthermore, the gold (Au) concentration of
the GNR@Ag@mSiO2-MB was measured to 100 µg/mL, and the GNR@Ag@mSiO2-MB
suspension at different volumes (12, 16, 20, and 24 µL of 100 µg/mL) was exposed to a
single 785 nm NIR laser (0.6 W/cm2) for 600 s. The temperature variation was captured
by an IR-thermal camera. The photothermal stability of GNR@Ag@mSiO2-MB (24 µL
of 100 µg/mL) solution was recorded by continuous five cycles of NIR laser irradiation
and natural cooling. The photothermal conversion efficiency (η) of GNR@Ag@mSiO2-MB
(24 µL of 100 µg/mL) can be calculated according to Equation (1) [37,38].

η =
hS(TMax − TSur)− Qdis

I(1 − 10−A785)
(1)

2.9. Cell Culture and In Vitro Phototherapy

The CT-26 murine colorectal carcinoma cell line was obtained from the Korean
Cell Line Bank (KCLB). The CT-26 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% fetal bovine serum (FBS) and 100 units/mL of penicillin–
streptomycin at 37 ◦C with 5% CO2. Subsequently, the CT-26 cells were seeded in a
48-well culture dish at a density of 6 × 104 cells/well and incubated overnight. After
injecting the different concentrations of GNR, GNR@mSiO2, GNR@Ag@mSiO2, MB, and
GNR@Ag@mSiO2-MB (0–24 µL of 100 µg/mL) in culture media into each well, the CT-26
cells were further cultured for 8 h and were or were not exposed to a single 785 nm NIR
laser (0.6 W/cm2) for 600 s. After incubating for 6 h, the cellular viability was assessed via
3-(4,5)-dimethylthiahiazo-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore,
CT-26 cells were cultured in a 48-well culture dish for 24 h. The cells were then treated with
GNR@Ag@mSiO2, MB, and GNR@Ag@mSiO2-MB at the same concentrations (24 µL of
100 µg/mL) for 8 h. Subsequently, the cells were exposed to 785 nm laser (0.6 W/cm2) for
600 s or 660 nm laser (0.6 W/cm2) for 600 s or the combination of 785/660 nm two lasers
irradiation (0.6 W/cm2) for 600 s. After laser irradiation, the cells were incubated for
another 6 h, and the cell viability was then assessed by MTT assay.

To assess and visualize the intracellular phototherapy activity of GNR, GNR@mSiO2,
GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB, CT-26 cells were co-stained with calcein-
acetoxymethyl ester (calcein-AM) and propidium iodide (PI) solution of a live/dead double
staining kit using a Nikon A1R confocal laser scanning microscope (Nikon, Tokyo, Japan).
CT-26 cells were cultured in 35 mm covered glass-bottom culture plates for 24 h. CT-26 cells
were incubated with GNR, GNR@mSiO2, GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB
(24 µL of 100 µg/mL) for 8 h, were or were not exposed to 785 nm laser (0.6 W/cm2) for
600 s and then incubated for 6 h. Finally, CT-26 cells were stained and imaged using a
confocal laser scanning microscope.

2′,7′-Dichlorodihydrofluorescein diacetate (H2DCFDA) can serve as a fluorescent
probe for the detection of photodynamic therapy (PDT)-stimulated intracellular ROS
generation that enters the cells and interacts with reactive oxygen to generate strong green
fluorescence in the presence of ROS. Based on this, CT-26 cells were cultured in 35 mm
covered glass-bottom culture plates overnight. Then, CT-26 cells were incubated with GNR,
GNR@mSiO2, GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB (24 µL of 100 µg/mL) for 8 h
and were or were not exposed to 785 nm laser (0.6 W/cm2) for 600 s. After incubating
for another 6 h, CT-26 cells were stained with H2DCFDA (40 µM) for 30 min, which were
captured on a confocal laser scanning microscope.
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2.10. Cell SERS Imaging

To explore the temperature changes and ROS between cells and the temperature
distribution and ROS generation inside a single cell during cell death induced by pho-
totherapy, cell SERS imaging was performed using an inVia Raman microscope system
(Renishaw, Wotton-under-Edge, UK) equipped with a Leica DM 2500 microscope (Leica,
Wetzlar, Germany) using a 1200 g/mm grating and a 785 nm NIR laser (power = 2 µW; spot
area = 51 µm2; accumulation = 5 times) beam directed to the sample via a 20× objective
lens. For cell SERS mapping experiments, CT-26 cells were cultured into glass slides for
24 h. CT-26 cells were treated with MB, GNR@mSiO2-MB, and GNR@Ag@mSiO2-MB for
8 h and subsequently were exposed to 785 nm NIR laser (power = 2 µW; spot area = 51 µm2;
accumulation = 5 times) for 600 s. The laser spot was adjusted to completely cover the area
of each slide. The slides were fixed with 4% paraformaldehyde solution and rinsed with DI
water. After that, the glass slides were performed for cell SERS mapping using an inVia
Raman microscope system.

2.11. Statistical Analysis

Data are represented as mean ± standard deviation (SD). Statistical analysis was
measured using a one-way analysis of variance by SPSS 23.0 software. * p < 0.05 and
** p < 0.01 were regarded as statistically significant.

3. Results and Discussion
3.1. Synthesis and Characterization of GNR@Ag@mSiO2-MB

The schematic diagram of two different procedures for the synthesis of GNR@Ag@mSiO2
and GNR@Ag@mSiO2-MB nanostructures is shown in Scheme 1. The first procedure in-
volved coating the surface of the GNR@Ag with mSiO2 to form GNR@Ag@mSiO2 nanos-
tructures. The second procedure involved the diffusion of Ag+ ions into the mSiO2 layer of
GNR@mSiO2 using a concentration gradient, and this was followed by the formation of
an Ag layer on the surface of the GNRs and then MB was loaded into GNR@Ag@mSiO2
to form GNR@Ag@mSiO2-MB nanostructures. Figure 1 shows TEM images of the pre-
pared GNR@Ag@mSiO2 and GNR@Ag@mSiO2-MB nanostructures obtained using the
two different procedures. As shown in Figure 1a,b, the GNRs as a raw material exhibit
excellent well-defined rod structures with an average length and width of 65.0 ± 5.3 nm
and 15.1 ± 3.1 nm, respectively, yielding an aspect ratio of 4.3 ± 0.4. In procedure (1),
GNR@Ag@mSiO2 was synthesized from GNR@Ag using a mSiO2 coating process. As
shown in Figure 1c, a 4.5 nm thick Ag layer was homogeneously coated onto the GNRs.
However, the mSiO2 layer did not uniformly coat the GNR@Ag surface and seemed to be
preferentially coated on one side, as indicated by the arrows in Figure 1d. In our previous
study, we successfully created a uniform mSiO2 layer on GNRs by adjusting the ratio of
EtOH to H2O within the range of 0.25 to 0.5 [39]. At this optimized ratio of EtOH to H2O,
an EtOH-rich phase developed in the hydrophobic tail region of the CTAB bilayer attached
to the GNR surface because of the variance in the dielectric constants of EtOH (ε = 25.3) and
H2O (ε = 80.1), whereas a water-rich phase was generated in the hydrophilic head group.
Therefore, hydrophobic TEOS, as a silica precursor, tends to diffuse preferentially into the
lipophilic hydrocarbon chain region with the EtOH-rich phase of the CTAB bilayer [39,40].
In other words, the presence of a homogeneous surfactant bilayer on the GNR surface is
crucial for the formation of a uniform mSiO2 layer [41]. This indicates that in the current
study, the partial elimination of the CTAC surfactant from certain GNR@Ag surfaces during
the washing procedure might have led to the asymmetric formation of the mSiO2 layer.



Pharmaceutics 2024, 16, 137 6 of 21Pharmaceutics 2024, 16, x FOR PEER REVIEW 6 of 23 
 

 

 
Scheme 1. Schematic illustration of two different procedures for the synthesis of GNR@Ag@mSiO2 
and GNR@Ag@mSiO2-MB nanostructures. 

Using procedure (2), GNR@Ag@mSiO2 was derived from GNR@mSiO2 via Ag layer-
coating. Although the same silica coating procedure was used to coat GNR@Ag, when 
GNR was coated, a homogeneous mSiO2 layer was created on the GNR surface, as shown 
in Figure 1e. This implies that the CTAB bilayer remained intact on the GNR surface even 
after washing, serving as a stable template for the formation of the mSiO2 layer. Further-
more, the Ag layer was selectively coated only on the GNR core within the GNR@mSiO2 
structure, as indicated by the arrow in Figure 1f. We believe that the Ag monolayer was 
created on the GNR surface through the underpotential deposition of Ag+ ions, which fa-
cilitated the preferential growth of the Ag layer. Finally, MB was loaded into mSiO2 with 
a high loading capability to form GNR@Ag@mSiO2-MB nanostructures (Figure 1g). Addi-
tionally, the morphologies of GNR@Ag@mSiO2-MB were further characterized by FETEM 
and STEM. The FETEM image of GNR@Ag@mSiO2-MB was uniformly coated with Ag 
and mSiO2 thicknesses of 4.5 nm and 21.1 nm, respectively (Figure 2a). As shown in the 
FETEM image in Figure 2b, it was confirmed that Ag quantum dots (QDs) of approxi-
mately 4.0 nm in size were crystallized not only in the mSiO2 layer but also around it. 
Furthermore, the bright-field (Figure 2c) and dark-field STEM images (Figure 2d) confirm 
that the bright Ag QDs are closer to the Ag layer than the mSiO2 layer. The formation of 
GNR@Ag@mSiO2-MB nanostructure was further verified via energy-dispersive X-ray 
(EDX) elemental mapping (Figure 2e) and spectroscopy (Figure 2f), confirming that Ag 
and Si were uniformly distributed at distances of approximately 5.2 and 20.5 nm, respec-
tively, from the surface of the GNR. Nonetheless, the EDX intensity of the Ag detected 
between the Ag and mSiO2 layers was almost negligible, indicating that the amount of Ag 
QDs on the mSiO2 layer was significantly smaller than that in the Ag layer on the surface 
of the GNR. 

The optical properties of GNR, GNR@Ag, GNR@Ag@mSiO2, and GNR@Ag@mSiO2 
nanostructure were recorded using an UV–vis spectrophotometer (Figure 3a). GNR ex-
hibits a strong longitudinal surface plasmon resonance (λLSPR) band in the NIR region, 
which makes it suitable for PTT [42]. After layering with an Ag shell, the Ag peak was 
observed at 410 and the λLSPR peak of GNR@Ag had a slight blue shift to 557 nm, which is 
different from the original GNR. Subsequent surface coating with mSiO2 and 
GNR@Ag@mSiO2 gives rise to a small redshift at 575 nm. After MB loading, the UV–vis 
absorption spectra of GNR@Ag@mSiO2-MB exhibited an absorption peak of MB at 625 nm 
and a slight red shift in the NIR region, suggesting that MB was successfully loaded. The 
particle size and surface charge of GNR, GNR@mSiO2, GNR@Ag@mSiO2, and 
GNR@Ag@mSiO2-MB were recorded via DLS (Figure 3b) and zeta potential (ZP) (Figure 
3c). The particle size distributions of GNR, GNR@mSiO2, GNR@Ag@mSiO2, and 

Scheme 1. Schematic illustration of two different procedures for the synthesis of GNR@Ag@mSiO2

and GNR@Ag@mSiO2-MB nanostructures.

Pharmaceutics 2024, 16, x FOR PEER REVIEW 7 of 23 
 

 

GNR@Ag@mSiO2-MB nanostructures were determined to be 41.5 ± 2.3 nm, 161.1 ± 4.7 nm, 
187.0 ± 1.7 nm, and 195.4 ± 3.5 nm, respectively. Additionally, the ZP of GNR, GNR@mSiO2, 
GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB were +36.8 ± 0.8 mV, −27.5 ± 0.6 mV, −16.4 ± 
1.0 mV, and −16.9 ± 0.4 mV, respectively, suggesting that GNR was coated with various 
functional materials. 

 
Figure 1. TEM images of two different procedures for the synthesis of GNRs (a,b), GNR@Ag (c), 
GNR@mSiO2 (e), GNR@Ag@mSiO2 (d,f), and GNR@Ag@mSiO2-MB nanostructures (g). 

 
Figure 2. (a,b) FETEM images of GNR@Ag@mSiO2-MB. Bright-field (c) and dark-field (d) STEM 
images of GNR@Ag@mSiO2-MB. EDX elemental mapping (e) and spectroscopy (f) of 
GNR@Ag@mSiO2-MB. 

Figure 1. TEM images of two different procedures for the synthesis of GNRs (a,b), GNR@Ag (c),
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Using procedure (2), GNR@Ag@mSiO2 was derived from GNR@mSiO2 via Ag layer-
coating. Although the same silica coating procedure was used to coat GNR@Ag, when
GNR was coated, a homogeneous mSiO2 layer was created on the GNR surface, as shown
in Figure 1e. This implies that the CTAB bilayer remained intact on the GNR surface even
after washing, serving as a stable template for the formation of the mSiO2 layer. Further-
more, the Ag layer was selectively coated only on the GNR core within the GNR@mSiO2
structure, as indicated by the arrow in Figure 1f. We believe that the Ag monolayer was
created on the GNR surface through the underpotential deposition of Ag+ ions, which
facilitated the preferential growth of the Ag layer. Finally, MB was loaded into mSiO2

with a high loading capability to form GNR@Ag@mSiO2-MB nanostructures (Figure 1g).
Additionally, the morphologies of GNR@Ag@mSiO2-MB were further characterized by
FETEM and STEM. The FETEM image of GNR@Ag@mSiO2-MB was uniformly coated with
Ag and mSiO2 thicknesses of 4.5 nm and 21.1 nm, respectively (Figure 2a). As shown in
the FETEM image in Figure 2b, it was confirmed that Ag quantum dots (QDs) of approx-
imately 4.0 nm in size were crystallized not only in the mSiO2 layer but also around it.
Furthermore, the bright-field (Figure 2c) and dark-field STEM images (Figure 2d) confirm
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that the bright Ag QDs are closer to the Ag layer than the mSiO2 layer. The formation
of GNR@Ag@mSiO2-MB nanostructure was further verified via energy-dispersive X-ray
(EDX) elemental mapping (Figure 2e) and spectroscopy (Figure 2f), confirming that Ag and
Si were uniformly distributed at distances of approximately 5.2 and 20.5 nm, respectively,
from the surface of the GNR. Nonetheless, the EDX intensity of the Ag detected between
the Ag and mSiO2 layers was almost negligible, indicating that the amount of Ag QDs
on the mSiO2 layer was significantly smaller than that in the Ag layer on the surface of
the GNR.
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The optical properties of GNR, GNR@Ag, GNR@Ag@mSiO2, and GNR@Ag@mSiO2
nanostructure were recorded using an UV–vis spectrophotometer (Figure 3a). GNR exhibits
a strong longitudinal surface plasmon resonance (λLSPR) band in the NIR region, which
makes it suitable for PTT [42]. After layering with an Ag shell, the Ag peak was observed
at 410 and the λLSPR peak of GNR@Ag had a slight blue shift to 557 nm, which is different
from the original GNR. Subsequent surface coating with mSiO2 and GNR@Ag@mSiO2
gives rise to a small redshift at 575 nm. After MB loading, the UV–vis absorption spectra of
GNR@Ag@mSiO2-MB exhibited an absorption peak of MB at 625 nm and a slight red shift
in the NIR region, suggesting that MB was successfully loaded. The particle size and surface
charge of GNR, GNR@mSiO2, GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB were recorded
via DLS (Figure 3b) and zeta potential (ZP) (Figure 3c). The particle size distributions of GNR,
GNR@mSiO2, GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB nanostructures were deter-
mined to be 41.5 ± 2.3 nm, 161.1 ± 4.7 nm, 187.0 ± 1.7 nm, and 195.4 ± 3.5 nm, respectively.
Additionally, the ZP of GNR, GNR@mSiO2, GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB
were +36.8 ± 0.8 mV, −27.5 ± 0.6 mV, −16.4 ± 1.0 mV, and −16.9 ± 0.4 mV, respectively,
suggesting that GNR was coated with various functional materials.
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3.2. Changes in LSPR Absorption of GNR@Ag@mSiO2 upon Increasing Ag Layer Thickness

Figure 4a shows photographic images of the GNR@Ag@mSiO2 prepared by adding 0
to 5000 µL of 0.01 M AgCl solution to the GNR@mSiO2 solution. The resultant solution
changed from wine red to green and finally to dark brown as the concentration of AgCl
increased, and the absorption wavelength of the λLSPR of the GNR blue shifted from 807
to 547 nm (Figure 4b,c). However, the λLSPR of the Ag layer in GNR@Ag@mSiO2 was
red-shifted from 361 to 446 nm when the AgCl concentration was increased from 50 to
5000 µL (Figure 4b,d). This indicates that the GNR@Ag aspect ratio in the mSiO2 layer
decreased as the Ag layer thickness increased.

Figure 5a–j shows TEM images of GNR@Ag@mSiO2 prepared using different volumes
of AgCl solution in the range of 2–5000 µL. Significant differences among the samples were
observed not only in the lateral thickness of the Ag layer but also in the aspect ratio of
GNR@Ag, as shown in Figure 5k,l. Specifically, within the AgCl solution volume range
from 0 to 1000 µL, the aspect ratio of the GNR@Ag rapidly decreased from 4.0 ± 1.4 to
2.1 ± 1.0 as the lateral thickness of the Ag layer increased from 0 to 10.4 ± 3.8 nm. However,
for AgCl solution volumes of greater than 1000 µL of AgCl, the change in the GNR@Ag
aspect ratio was minimal as (2.0 ± 0.4), even though the lateral thickness of the Ag layer
increased to 18.9 ± 5.9 nm. This indicates that the growth rate of the lateral Ag layer
is faster than that in the longitudinal direction when the volume of AgCl in the growth
solution is between 0 to 1000 µL. However, with the use of AgCl solution volumes greater
than 1000 µL, the growth rates in the two directions become similar.
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As shown in Figure 6, Ag+ ions, acting as catalysts for GNR synthesis, protect the {110}
facets of the GNRs. Consequently, it is possible that the {110} facets coated by Ag+ ions
or Ag monolayers play a catalytic role in the further growth of the Ag layer on the GNR,
resulting in faster lateral growth of the Ag layer in GNR@Ag@mSiO2. However, using
more than 2500 µL of AgCl solution led to the partial destruction of the mSiO2 layer due to
the excessive thickness of the Ag layer in GNR@Ag@mSiO2.
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To further investigate the origin and shift of the absorption peak with the increase in
the shell thickness, we analyze the surface plasmon modes using the plasmon hybridization
mechanism to explain the absorption band shift. The plasmon response of the Ag shell
can be used as an interaction between an Ag core (ωcore) mode and an Ag cavity (ωcavity)
mode [43]. As illustrated in Figure 7, a hollow Ag shell exhibits a symmetrically coupled
plasmon mode (or bonding mode, |ω−⟩) with a lower energy and an anti-symmetrically
coupled plasmon mode (or antibonding mode, |ω+⟩) with a higher energy owing to the
hybridization of Ag cavity and Ag nanorod plasmons [44–47]. The strength of the coupling
interaction between the Ag cavity and Ag nanorod plasmons is controlled by the thickness
of the Ag shell [44]. For GNR@Ag in the mSiO2 layer, hybridization between the GNR
core plasmon and the bonding plasmon of the Ag shell leads to the generation of bonding
(|ω− −⟩) and anti-bonding (|ω− +⟩) modes. This plasmonic hybridization efficiently
suppresses the interband damping of the Ag shell because the plasmon resonance energy of
the GNR core is higher than that of the bonding mode of the Ag shell [44]. Therefore, there
are three dipolar plasmon resonances for the GNR@Ag, such as antibonding mode (|ω+⟩),
bonding (|ω− −⟩) mode, and antibonding (|ω− +⟩) mode, respectively. Figure 7 exhibits
the energy of these hybridized plasmon modes as a function of the Ag shell thickness,
indicating that Ag shell thickness increased because of their blue shift of the lower energy
mode (|ω− ⟩) and also observed blue shifts in the absorption surface plasmon resonance
(SPR) peak because of their antibonding (|ω− +⟩) mode (Figure 5b) [48].
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3.3. SERS Effect of GNR@Ag@mSiO2-MB

Figure 8a,b compare the micro-Raman spectra of GNR@Ag@mSiO2-MB with different
Ag layer thicknesses with that of the MB solid film and GNR@mSiO2-MB acquired using
a 785 nm excitation laser (power = 2 µW; spot area = 51 µm2; ND filter = 10−4%). In a
previous study, we measured the Raman spectra of MB-GNR@mSiO2 using an excitation
laser power of 70 µW [49]. However, the Raman intensity of the GNR@Ag@mSiO2-MB
sample synthesized using more than 1000 µL of the AgCl solution (hereinafter referred to
as GNR@Ag@mSiO2-MB (1000 µL)) was remarkably strong, exceeding the detection limit.
Consequently, we reduced the excitation laser power to 2 µW for the Raman analysis in the
present study. Table 1 lists the characteristic MB Raman band assignments observed in the
spectra of the GNR@Ag@mSiO2-MB nanostructure [50–52].

As shown in Figure 8b, there are no Raman bands in the spectrum of the solid MB
film, which can be attributed to the difference between the excitation laser wavelength
(785 nm) and absorption wavelength (655 nm) of MB. In contrast, the Raman intensities
of the Au–N stretching mode (ν(Au–N)) at 249 cm−1, the C–N–C skeletal deformation
mode (δ(C–N–C)) at 450 cm−1, the C–H out-of-plane bending mode (γ(C–H)) at 772 cm−1,
the C–N symmetric stretching mode (ν(C–N)) at 1398 cm−1, and the C–C ring stretching
mode (ν(C–C)ring) at 1625 cm−1 in the spectra of the GNR@Ag@mSiO2-MB nanostructure
increased significantly with the thickness of the Ag layer. In particular, the observation
of the ν(Au–N) mode indicates that the MB molecules loaded onto the mSiO2 layer were
bonded to the GNR@Ag surface [49,50].

Figure 8c shows the variation in the intensities of the δ(C–N–C), ν(C–N), and ν(C–
C)ring modes for the GNR@Ag@mSiO2-MB samples prepared using different volumes
of AgCl solution; these Raman band intensities increased significantly with the AgCl
solution volume in the range of 1000 to 5000 µL. Interestingly, within the AgCl solution
volume range of 0 to 500 µL, the intensity of the three aforementioned Raman modes of
GNR@Ag@mSiO2-MB was maximized when 25 µL of AgCl solution was used (Figure 8d).
However, these intensities decreased when the volume of AgCl was larger or smaller than
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25 µL. According to Zhang et al., the coupling interaction between the Ag cavity and Ag
nanorod plasmons is strongest when the thickness of the Ag shell is 2.0 nm [44]. This
results in the plasmon energy of the bonding mode for the Ag shell being lower than that
of the GNR core. Consequently, the splitting energy between the bonding and anti-bonding
modes in the GNR@Ag nanostructure increases, leading to the amplification of the LSPR
in this nanostructure. The Ag shell thickness of GNR@Ag@mSiO2-MB synthesized using
25 µL of AgCl solution appears to be approximately 2.0 nm (Figure 5a), which explains the
increase in Raman intensity for the nanostructures prepared using 25 µL of AgCl solution.
However, there is a significant increase in the Raman intensity once again when the Ag
shell thickness exceeds 10.2 nm (corresponding to AgCl volumes of 1000 µL or more). This
indicates that the splitting energy between the |ω− −⟩ and |ω− +⟩ modes for GNR@Ag
increased remarkably owing to the enhanced strength of the coupling between the Ag
cavity and Ag-nanorod plasmons when the Ag-layer thickness exceeded 10.2 nm. However,
additional theoretical studies are required to explain these phenomena.
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Figure 8. Micro-Raman spectra (laser wavelength = 785 nm; power = 2 µW; spot area = 51 µm2)
of MB, GNR@mSiO2-MB, and GNR@Ag@mSiO2 synthesized using different volumes of 0.01 M
AgCl solution: (a) 25–5000 µL and (b) 25–500 µL. Change in Raman intensity of δ(C–N–C), ν(C–N),
and ν(C–C)ring modes at 450, 1398, and 1625 cm−1 for GNR@Ag@mSiO2-MB synthesized different
volumes of 0.01 M AgCl solution: (c) 25–5000 µL and (d) 25–500 µL.
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Table 1. Raman frequencies and corresponding assignments for characteristic bands observed in the
spectra of the GNR@Ag@mSiO2-MB solution excited using a near-infrared laser (λ = 785 nm).

Assignment Frequency (cm−1)

ν(Au–N) 249

δ(C–N–C) 450

δ(C–N–C) 502

δ(C–S–C) 596

γ(C–H)

672

772

885

953

β(C–H)
1043

1154

ν(C–N) 1184

ν(N–CH3)

1225

1302

1324

νsym(C–N) 1398

νasym(C–N) 1432

νasym(C–C)ring
1471

1502

ν(C–C)ring 1625

3.4. Measurement of Photothermal Properties

To explore the photothermal effect of NPs, GNR, GNR@mSiO2, GNR@Ag@mSiO2,
and GNR@Ag@mSiO2-MB aqueous solutions with concentrations of 100 µg/mL were
irradiated by a single 785 nm NIR laser (0.6 W/cm2) for 600 s (Figure 9a). The photother-
mal heating curves of GNR, GNR@mSiO2, GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB
exhibited a strong concentration and laser power density-dependent photothermal effi-
cacy with the maximum temperature increment up to 54.78 ◦C, 56.78 ◦C, 58.09 ◦C, and
59.68 ◦C. In contrast, the temperature of pure water increased by only 30.41 ◦C. In addi-
tion, the Au concentration of the GNR@Ag@mSiO2-MB was measured to be 100 µg/mL,
and the GNR@Ag@mSiO2-MB suspension with different volumes (12, 16, 20, and 24 µL
of 100 µg/mL) was exposed to a 785 nm laser (0.6 W/cm2) for 600 s (Figure 9b). The
photothermal heating curves of GNR@Ag@mSiO2-MB (24 µL/mL) solutions increased to
55.47 ◦C, which is high enough to kill cancer cells. By contrast, the photothermal heating
curves of pure water increased by only 28.74 ◦C, which is not enough to kill cancer cells.
The photothermal heating curves were captured using an IR–thermal camera (Figure 9c). To
investigate the photothermal conversion efficiency of GNR@Ag@mSiO2-MB, the solution
was irradiated by a single 785 nm NIR laser (0.6 W/cm2) for 600 s, and the temperature was
obtained followed by natural cooling down with laser turning off for 1200 s (Figure 9d).
The photothermal conversion efficiency (η) of GNR@Ag@mSiO2-MB (24 µL of 100 µg/mL)
was found to be 65%, indicating that the GNR@Ag@mSiO2-MB showed the potential to act
as an effective photothermal material (Figure 9e). Furthermore, the photothermal stability
of GNR@Ag@mSiO2-MB (24 µL of 100 µg/mL) was assessed by repeating the lasering and
cooling cycles five times. As seen in Figure 9f, no noticeable variations in the temperature
profiles were recorded for GNR@Ag@mSiO2-MB after repeating five cycles, suggesting that
GNR@Ag@mSiO2-MB possessed excellent photothermal stability.
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Figure 9. (a) The photothermal heating curves of GNR, GNR@mSiO2, GNR@Ag@mSiO2, and
GNR@Ag@mSiO2-MB suspensions under 785 nm laser irradiation (0.6 W/cm2) for 600 s. The
photothermal heating profiles (b) and IR thermal images (c) of GNR@Ag@mSiO2-MB suspension with
different volumes (12, 16, 20, and 24 µL of 100 µg/mL) under 785 nm laser irradiation (0.6 W/cm2)
for 600 s. (d) The photothermal heating curves of GNR@Ag@mSiO2-MB under 785 nm (0.6 W/cm2)
for 600 s, followed by natural cooling down with the laser turning off for 1200 s. (e) Plots of the
cooling period versus the negative natural logarithm of driving force temperature. (f) Repeated
heating/cooling profiles for five cycles.
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3.5. In Vitro Phototherapy

In order to evaluate the in vitro phototherapy using a single 785 nm NIR-absorbing
nanostructures, cytotoxicity was assessed using the MTT assay. Figure S1 displays the
results of the MTT assay for CT-26 cells treated with GNR, GNR@mSiO2, GNR@Ag@mSiO2,
MB, and GNR@Ag@mSiO2-MB at different concentrations (0–24 µL of 100 µg/mL) for 8 h
and CT-26 cells were or were not exposed to a single 785 nm NIR laser (0.6 W/cm2) for 600 s.
After incubating for another 6 h, the cell viability was above 70% at high concentrations
of all nanostructures without a single 785 nm NIR laser irradiation, suggesting very low
cytotoxic effects of all nanostructures. In contrast, cell viability decreased to less than
9% when GNR@Ag@mSiO2-MB (24 µL of 100 µg/mL) were treated with CT-26 cells
and to a single 785 nm NIR laser (0.6 W/cm2) for 600 s, suggesting the effectiveness of
GNR@Ag@mSiO2-MB as promising phototherapy agents [49].

To further investigate the in vitro phototherapy using double 785/660 nm laser ir-
radiation, cell viability was evaluated by MTT assay (Figure S2). The cell viability of
GNR@Ag@mSiO2-MB (24 µL of 100 µg/mL) was dramatically decreased to 5%, which was
triggered by a double 785 nm NIR laser (0.6 W/cm2) for 600 s and 660 nm laser (0.6 W/cm2)
for 600 s and showed the excellent synergistic PTT and PDT effects of GNR@Ag@mSiO2-
MB nanostructures. However, combined 785/660 nm two lasers generally suffer from
inevitable systemic side effects because of the use of two different irradiation wavelengths
for PTT and PDT [53]. To solve this issue, it is highly desirable to develop a novel single
NIR laser-induced multifunctional nanostructure for synergistic PTT/PDT. The cell viabil-
ity of GNR@Ag@mSiO2-MB (24 µL of 100 µg/mL) nanostructures was also significantly
decreased to <9% after a single 785 nm NIR laser irradiation for 600 s, which was slightly
lower than double laser irradiation (785/660 nm laser). Similarly, Phan et al. (2017) fab-
ricated polypyrrole-MB NPs for an effective combination of PTT and PDT using a single
808 nm NIR laser irradiation [54]. Another example, Fan et al. developed an MB-bound
nanoplatform for synergistic PTT/PDT using a single 785 nm NIR laser irradiation [55].

In order to direct observation of the intracellular photothermal activity of GNR,
GNR@mSiO2, GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB (24 µL of 100 µg/mL), CT-26
cells were stained with calcein-AM (live, green fluorescence) and PI (dead, red fluorescence),
respectively (Figure 10). The strong green fluorescences (viable cells) were found in control
and control + NIR laser. GNR, GNR@mSiO2, GNR@Ag@mSiO2, and GNR@Ag@mSiO2-
MB-treated groups without NIR laser irradiation showed negligible cell death. In contrast,
strong red fluorescence (cell death) was observed in the GNR@Ag@mSiO2-MB + NIR laser
irradiation, suggesting the excellent photothermal effect of the designed GNR@Ag@mSiO2-
MB [49,50].

To further investigate the photodynamic activity of GNR, GNR@mSiO2, GNR@Ag@mSiO2,
and GNR@Ag@mSiO2-MB (24 µL of 100 µg/mL), CT-26 cells were stained with
2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA). As shown in Figure S3, no fluores-
cence was found in control groups, and the negligible green fluorescence signal was found
in the GNR, GNR@mSiO2, GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB-treated groups
without NIR laser irradiation, By contrast, CT-26 cells treated with GNR@Ag@mSiO2-MB
+ NIR laser irradiation exhibit strong green fluorescence, suggesting an amount of ROS
production in cells.
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Figure 10. Confocal fluorescence images of CT-26 cells stained with calcein-AM/PI under various
treatment groups such as control, control + NIR laser, GNR only, GNR@mSiO2 only, GNR@Ag@mSiO2

only, GNR@Ag@mSiO2-MB only, and GNR@Ag@mSiO2-MB + NIR laser (20× magnification; scale
bar: 100 µm).
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3.6. Cell SERS Imaging

In order to achieve the real-time monitoring of microscopic temperature changes
during in vitro phototherapy, SERS-based monitoring techniques using nanomaterials
in theranostics have recently received considerable attention in the biomedical field be-
cause of their ultrahigh sensitivity, multiplex ability, and photostability, which have great
promise for accurate cancer detection [5,56]. For cell SERS mapping experiments, CT-26
cells were treated with MB, GNR@mSiO2-MB, and GNR@Ag@mSiO2-MB for 8 h and
subsequently were exposed to 785 nm NIR laser (power = 2 µW; spot area = 51 µm2; accu-
mulation = 5 times) for 600 s. Figure 11a,b shows micro-Raman spectra and the mapping
images of CT-26 cells treated with MB, GNR@mSiO2-MB, and GNR@Ag@mSiO2-MB. The
Raman intensity of the δ(C–N–C) mode of GNR@Ag@mSiO2-MB-treated CT-26 cells was
15 times stronger than GNR@mSiO2-MB-treated CT-26 cells, indicating that the Raman
peaks of GNR@Ag@mSiO2-MB were more efficient to detect cancer. In contrast, no Raman
peaks were observed in the MB-treated CT-26 cells. The cell SERS images demonstrate that
GNR@Ag@mSiO2-MB-treated CT-26 cells exhibit good performance in SERS imaging, indi-
cating that the SERS imaging can clearly reveal the distribution of NPs for image-guided
therapy. The laser spots indicated by the red cross in Figure 11b exhibited obvious bright-
ness differences in the SERs mapping, implying that SERS imaging-guided phototherapy
is advantageous for a better understanding of biological processes occurring within a cell
and precise treatment.
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Figure 11. Micro-Raman spectra and merged bright-field/Raman mapping images of CT-26 cells 
treated with MB, GNR@mSiO2-MB, and GNR@Ag@mSiO2-MB. The color contrast in the mapping Figure 11. Micro-Raman spectra and merged bright-field/Raman mapping images of CT-26 cells
treated with MB, GNR@mSiO2-MB, and GNR@Ag@mSiO2-MB. The color contrast in the mapping
images corresponds to the intensity of the δ(C–N–C) vibrational band of MB. The red cross in the
bright-field images shows the NIR laser excitation site corresponding to the spectra shown on the left
(laser wavelength = 785 nm; power = 2 µW; spot area = 51 µm2).
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4. Conclusions

In summary, we developed a novel method to produce monodisperse and uniform
GNR@Ag@mSiO2-MB nanostructures for intracellular SERS imaging and phototherapy.
The as-prepared GNR@Ag@mSiO2-MB nanostructures possessed high stability, broad NIR
absorbance, photothermal stability, dye loading ability, strong SERS effect, and low toxicity.
More importantly, GNR@Ag@mSiO2-MB nanostructures exhibited outstanding photother-
mal conversion efficiency of approximately 65%, which was significantly higher than that
of previously reported photothermal agents. The GNR@Ag@mSiO2-MB nanostructures
showed excellent SERS activities under 785 NIR laser excitation, which have served as
an efficient contrast agent for the rapid SERS imaging of cancer cells. The PTT/PDT of
GNR@Ag@mSiO2-MB nanostructures could synergistically kill cancer cells via a low power
density (0.6 W/cm2) of 785 nm NIR laser for 600 s, indicating that GNR@Ag@mSiO2-
MB nanostructures have superior photothermal conversion efficiency and excellent ROS-
generating ability. Therefore, we demonstrated that the GNR@Ag@mSiO2-MB nanos-
tructures hold tremendous potential as a new theranostic system for SERS imaging and
phototherapy. Despite its potential, SERS imaging-guided phototherapy is still in the
laboratory stage. Up to now, there have been no reports of clinical trials involving SERS
imaging-guided phototherapy. Hence, the emerging SERS imaging-guided phototherapy
using NPs had several issues and difficulties, and advances in science and technology
might also promote the clinical translation of SERS imaging-guided phototherapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics16010137/s1, Figure S1. MTT assay results for
CT-26 cells incubated with GNR, GNR@mSiO2, GNR@Ag@mSiO2, and GNR@Ag@mSiO2-MB at
various concentrations (0-24 µL of 100 µg /mL) with or without NIR laser irradiation (0.6 W/cm2)
for 600 s; Figure S2. MTT assay results for CT-26 cells incubated with GNR@Ag@mSiO2, MB, and
GNR@Ag@mSiO2-MB at the same concentrations (24 µL of 100 µg /mL) with or without 785 nm
laser (0.6 W/cm2) for 600 s or 660 nm laser (0.6 W/cm2) for 600 s or the combination of 785/660 nm
two lasers irradiation (0.6 W/cm2) for 600 s; Figure S3. Confocal fluorescence images of ROS
production in CT-26 cells stained with H2DCFDA under various treatment groups such as control,
control + NIR laser, GNR only, GNR@mSiO2 only, GNR@Ag@mSiO2 only, GNR@Ag@mSiO2-MB
only, and GNR@Ag@mSiO2-MB + NIR laser (20× magnification; scale bar: 100 µm).
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