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Abstract: Physiologically based pharmacokinetic (PBPK) models of skin absorption are a powerful
resource for estimating drug delivery and chemical risk of dermatological products. This paper
presents a PBPK workflow for the quantification of the mechanistic determinants of skin permeability
and the use of these quantities in the prediction of skin absorption in novel contexts. A state-of-the-art
mechanistic model of dermal absorption was programmed into an open-source modeling framework.
A sensitivity analysis was performed to identify the uncertain compound-specific, individual-specific,
and site-specific model parameters that impact permeability. A Bayesian Markov Chain Monte Carlo
algorithm was employed to derive distributions of these parameters given in vitro experimental
permeability measurements. Extrapolations to novel contexts were generated by simulating the
model following its update with samples drawn from the learned distributions as well as parameters
that represent the intended scenario. This algorithm was applied multiple times, each using a unique
set of permeability measurements sourced under experimental contexts that differ in terms of the
compound, vehicle pH, skin sample anatomical site, and the number of compounds under which
each subject’s skin samples were tested. Among the data sets used in this study, the highest accuracy
and precision in the extrapolated permeability was achieved in those that include measurements
conducted under multiple vehicle pH levels and in which individual subjects’ skin samples are
tested under multiple compounds. This work thus identifies factors for consideration in the design
of experiments for the purpose of training dermal models to robustly estimate drug delivery and
chemical risk.

Keywords: dermal; skin; modeling; pharmacokinetics; Bayesian; mechanistic; experiment design

1. Introduction

The development of dermatological drugs and skin products necessitates an in-depth
understanding of systemic exposure to xenobiotics present in these formulations. Measur-
ing this exposure typically involves in vitro [1] or in vivo testing of these products [2–4].
However, such experimental approaches have their limitations as they primarily provide
insights into dermal penetration under specific conditions, often failing to account for the
variations stemming from inter-individual differences, intra-individual differences between
anatomical sites of application, or diversity in application scenarios. Furthermore, these
experiments can be resource-intensive and time-consuming.

To address these challenges, predictive models of dermal absorption can serve as a
powerful tool in the evaluation of targeted formulation design and assessing chemical risks
associated with topically applied products [5]. One class of predictive models, based on
empirical Quantitative Structure–Property Relationships (QSPRs), predict skin permeability
based on correlations that are functions of characteristics of the permeating compound,
such as molecular weight and lipophilicity [6–8] or other descriptors that are derived via
computational methods [9].
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Another class of models derives from mechanistic considerations of the physical
processes underpinning solute absorption and transdermal diffusion. Such physiologically
based pharmacokinetic (PBPK) dermal absorption models capture the spatial structure of
the dermal membrane as well as the kinetics of solute transport and metabolism within the
skin. They additionally encompass a diverse set of parameters, ranging from the properties
of the permeating chemical, the vehicle, the application method, and environmental factors,
to the characteristics of the skin itself.

PBPK models offer versatility in predicting the dermal disposition of chemicals in
highly diverse and untested scenarios, thus reducing the need for extensive experimental
studies. However, these models are often limited by parameter uncertainty as well as
unknown levels of variability in model quantities. These sources of uncertainty and
variability can ultimately be reflected in widened confidence intervals in measures of
dermal disposition.

Prior to this study, the PBPK skin permeation model by Dancik et al. [10] was adapted
into MoBi and made available on GitHub [11]. This model consists of a one-dimensional
partial differential equation, but it lacks a pathway for ionized or polar species, leading to
under-prediction of hydrophilic compound absorption. Two modifications were proposed
to address this issue in later work by Kasting et al. and Yu et al. [12,13], which were
the addition of a follicular pathway bypassing the lipophilic environment of the stratum
corneum, and the addition of a transcellular pathway for polar species via pores within
the stratum corneum. Besides extending the earlier model in Dancik et al. [10] to polar
molecules, the Kasting et al. and Yu et al. [12,13] models are parameterized to describe the
anatomy of these additional pathways. This makes it possible to tune the skin descriptors
in these pathways to represent the properties of skin in distinct body regions. These include
quantities such as follicle density, hair shaft diameter, and follicle orifice diameter, which
are known to vary across anatomical sites [14–18]. Extensive validation of this model
was performed in Kasting et al. and Yu et al. [12,13] against permeability measurements
reported in Wang et al., 2007 [19], Chen et al., 2013 [20], and Baba et al., 2017 [9]. In this
study, the MoBi implementation of the Dancik et al. [10] model was updated to include
both of these additional pathways, and model details are provided in Nomenclature and
Appendix A.

In Hamadeh et al. [21], a Bayesian learning and extrapolation algorithm was em-
ployed to train PBPK dermal models. As depicted in the example workflow in Figure 1,
this algorithm infers the variability and uncertainty in dermal model parameters from
experimental training data, such as in vitro permeation tests. The training process yields
nonparametric joint probability distributions for these parameters, capturing their ranges
and correlations. These inferred distributions can then inform predictions beyond the
scope of the original training data. This extrapolation process involves updating and then
simulating the dermal model with samples drawn from the inferred distributions of model
parameters, known properties of the permeating active pharmaceutical ingredient (API) of
interest, the formulation, and ambient application conditions. Simulation of the updated
model using numerous samples from the inferred distributions yields predictions of the
expected range of dermal absorption under the intended scenario.

The experimental contexts from which training data are sourced can differ in terms
of the selections and diversities of test compounds, vehicles, subjects, anatomical sites,
experiment protocols, and ambient conditions. In addition, the identifiability of model
parameters can strongly depend on the choice of measurements used to train the model.
For instance, when measuring the permeability of multiple compounds across the skin of a
single individual, any observed disparities in permeability between the compounds can be
attributed to distinct physical and chemical properties of the permeants, rather than the
individual’s skin characteristics. Similarly, experiments that measure the permeability of
ionizable compounds while controlling all variables except for the vehicle pH allow the
learning algorithm to distinguish between the characteristics of both polar and non-polar
permeation pathways.
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Joint posterior distributions of model parameters are inferred from experimental training data. The 
trained model is then extrapolated to estimate dermal disposition in application scenarios of inter-
est: first, the inferred distributions are repeatedly sampled. Next, these samples are combined with 
descriptors of the active pharmaceutical ingredient (API), the formulation, and ambient conditions 
to update the dermal model. The updated model is subsequently simulated for each sampled pa-
rameter, resulting in a range of dermal disposition estimates. 

The experimental contexts from which training data are sourced can differ in terms 
of the selections and diversities of test compounds, vehicles, subjects, anatomical sites, 
experiment protocols, and ambient conditions. In addition, the identifiability of model 
parameters can strongly depend on the choice of measurements used to train the model. 
For instance, when measuring the permeability of multiple compounds across the skin of 
a single individual, any observed disparities in permeability between the compounds can 
be attributed to distinct physical and chemical properties of the permeants, rather than 
the individual’s skin characteristics. Similarly, experiments that measure the permeability 
of ionizable compounds while controlling all variables except for the vehicle pH allow the 
learning algorithm to distinguish between the characteristics of both polar and non-polar 
permeation pathways. 

This study examines how the choice of training data, from which model parameter 
distributions are inferred, influences the trained model’s accuracy and precision in pre-
dicting the skin permeability coefficient in previously untested dermal application scenar-
ios. A standard workflow, based on the learning algorithm of Hamadeh et al. [21], is 
adopted to separately train the model presented in Appendix A using each one of a series 
of data sets. Next, the model’s extrapolative performance is assessed in experimental con-
texts that differ from those of the training data in terms of the individuals to whom the 
drug is applied, the vehicle pH, the anatomical site, and the permeating compound. Fi-
nally, a comparison of the inferred parameter distributions is conducted to assess the im-
pact of training data on the identifiability of the permeability coefficients across the skin 
via polar and non-polar routes. 

2. Methods 
Data 

Roy and Flynn, 1990 [22], reported the results of diffusion cell measurements of fen-
tanyl and sufentanil permeability across human cadaver skin samples. In these experi-
ments, skin samples with an area of 0.785 cm2 were clamped between 3 mL donor and 

Figure 1. Illustration of the model training and extrapolation workflow from Hamadeh et al. [21].
Joint posterior distributions of model parameters are inferred from experimental training data. The
trained model is then extrapolated to estimate dermal disposition in application scenarios of interest:
first, the inferred distributions are repeatedly sampled. Next, these samples are combined with
descriptors of the active pharmaceutical ingredient (API), the formulation, and ambient conditions to
update the dermal model. The updated model is subsequently simulated for each sampled parameter,
resulting in a range of dermal disposition estimates.

This study examines how the choice of training data, from which model parameter
distributions are inferred, influences the trained model’s accuracy and precision in predict-
ing the skin permeability coefficient in previously untested dermal application scenarios.
A standard workflow, based on the learning algorithm of Hamadeh et al. [21], is adopted
to separately train the model presented in Appendix A using each one of a series of data
sets. Next, the model’s extrapolative performance is assessed in experimental contexts
that differ from those of the training data in terms of the individuals to whom the drug
is applied, the vehicle pH, the anatomical site, and the permeating compound. Finally, a
comparison of the inferred parameter distributions is conducted to assess the impact of
training data on the identifiability of the permeability coefficients across the skin via polar
and non-polar routes.

2. Methods
Data

Roy and Flynn, 1990 [22], reported the results of diffusion cell measurements of fen-
tanyl and sufentanil permeability across human cadaver skin samples. In these experiments,
skin samples with an area of 0.785 cm2 were clamped between 3 mL donor and receptor
chambers filled by citrate phosphate buffers of varying pH levels. The permeant flux
penetrating the skin was allowed to reach steady-state conditions, and skin permeability
was measured from the steady-state flux profile.

In one set of experiments, the results of which are summarized in Table 1, permeability
across heat-separated epidermis samples from each of eleven skin donors (D01 to D11) was
measured for both fentanyl (experiments F01 to F11) and sufentanil (experiments S01 to
S11). Each donor contributed sections from either the thigh or abdominal regions. The
permeant concentration in the donor solution was set to saturation and held at pH 7.4.
The combinations of skin donors, permeant compounds, and anatomical sites used in the
various experiments are illustrated in Figure 2.
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Table 1. Experimentally measured permeabilities of fentanyl and sufentanil at pH 7.4 across heat-
separated epidermis, as reported in reference [22].

Individual pH Region Number of
Replicates

Fentanyl Sufentanil

Experiment
Name

Permeability
Ptot/w

(×106) cm/s
Mean (SD)

Experiment
Name

Permeability
Ptot/w

(×106) cm/s
Mean (SD)

D01 7.40 Thigh 4 F01 2.83 (0.28) S01 4.36 (0.25)

D02 7.40 Thigh 4 F02 2.61 (0.47) S02 4.33 (0.53)

D03 7.40 Thigh 4 F03 4.86 (0.42) S03 5.81 (0.39)

D04 7.40 Abdomen 4 F04 1.53 (0.25) S04 3.44 (0.31)

D05 7.40 Thigh 4 F05 4.47 (0.17) S05 6.47 (0.33)

D06 7.40 Abdomen 5 F06 3.78 (0.72) S06 4.22 (0.81)

D07 7.40 Thigh 5 F07 0.83 (0.31) S07 1.53 (0.42)

D08 7.40 Abdomen 4 F08 3.25 (0.33) S08 4.83 (0.50)

D09 7.40 Abdomen 5 F09 4.22 (0.50) S09 4.61 (0.47)

D10 7.40 Abdomen 5 F10 3.86 (0.94) S10 4.53 (1.06)

D11 7.40 Abdomen 4 F11 2.22 (0.53) S11 2.33 (0.47)
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Figure 2. Combinations of permeants, individuals, anatomical sites, and vehicle pH levels used in
the pH 7.4 experiments, the results of which are summarized in Table 1, as reported in Roy and Flynn,
1990 [22].

A second set of experiments reported in Roy and Flynn, 1990 [22], tested fentanyl
(experiments FpH1 to FpH9) and sufentanil (experiments SpH1 to SpH9) permeability
across dermatomed thigh skin sections at nine different pH levels, from pH 2.88 to 9.37
(Table 2). The skin sections in this second set were sourced from a single individual (D12).
This combination of experiments is illustrated in Figure 3.
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Table 2. Summary of fentanyl and sufentanil permeabilities across thigh dermatomed skin sections
at various vehicle pH levels, as reported in Roy and Flynn, 1990 [22].

Individual pH Region Number of
Replicates

Fentanyl Sufentanil

Experiment
Name

Permeability
Ptot/w

(×106) cm/s
Mean (SD)

Experiment
Name

Permeability
Ptot/w

(×106) cm/s
Mean (SD)

D12 2.88 Thigh 4 FpH1 0.08 (0.01) SpH1 0.13 (0.01)

D12 5.08 Thigh 4 FpH2 0.36 (0.08) SpH2 0.69 (0.03)

D12 6.02 Thigh 4 FpH3 1.42 (0.22) SpH3 1.72 (0.31)

D12 6.95 Thigh 4 FpH4 1.97 (0.19) SpH4 2.81 (0.17)

D12 7.43 Thigh 4 FpH5 3.53 (0.83) SpH5 4.36 (0.22)

D12 7.95 Thigh 4 FpH6 6.22 (0.47) SpH6 6.42 (0.44)

D12 8.52 Thigh 4 FpH7 7.67 (0.64) SpH7 8.28 (1.03)

D12 9.04 Thigh 4 FpH8 9.69 (1.75) SpH8 9.58 (0.69)

D12 9.37 Thigh 4 FpH9 9.14 (1.75) SpH9 9.36 (1.86)
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Figure 3. Combinations of permeants, anatomical sites, and vehicle pH levels used in the variable
pH experiments by Roy and Flynn, 1990 [22]. All experiments in this set were conducted using skin
samples sourced from a single donor (D12). The corresponding permeability measurements are
summarized in Table 2.

3. Experiment Data Set Combinations for Model Training

A selection of the measurements in Tables 1 and 2 were arranged into five groups
of two or three data sets with which to independently train the model. We denote these
groups as A, B, C, D, and E. Each data set within these groups consisted of a combination of
twelve experiments, as shown in Figure 4. The groups differed in terms of the experimental
contexts of the twelve experiments:

• Group A: Cross-over design, common pH level. Group A encompasses three distinct
data sets, each containing permeability measurements for skin samples obtained from
six individuals. Three individuals contributed thigh samples, and three contributed
abdominal samples. These data sets adopted a cross-over experimental design, ex-
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posing each individual’s skin to both fentanyl and sufentanil. All skin samples were
tested using pH 7.4 vehicles.

• Group B: Cross-over design, varying pH levels. Group B encompasses three distinct
data sets, each containing permeability measurements for skin samples obtained from
six individuals. Three individuals contributed thigh samples, and three contributed
abdominal samples. These data sets adopted a cross-over experimental design, ex-
posing each individual’s skin to both fentanyl and sufentanil. In each data set, one
individual’s skin samples were tested using a pH 9.37 vehicle, while the samples from
the remaining five individuals were tested at pH 7.4.

• Group C: Cross-over design, single anatomical site per data set. Group C consisted
of two data sets, one of which used only abdominal skin samples from six individuals,
and the other only thigh skin samples from a different set of six individuals. The
latter data set included fentanyl and sufentanil experiments from a single individual
conducted using a pH 9.37 vehicle, with all remaining samples tested at pH 7.4.

• Group D: Single compound per data set. Group D consisted of two data sets. Each
data set consisted of measurements of skin permeability of only one compound, either
fentanyl or sufentanil, across skin samples from twelve individuals. Both data sets
included permeability measurements across thigh skin from one individual conducted
using a pH 9.37 vehicle, with all remaining samples tested at pH 7.4.

• Group E: Parallel design, varying anatomical site, varying pH levels. Group E con-
sisted of two data sets. The first data set comprised permeability measurements
conducted using six thigh samples from six individuals that were tested with fen-
tanyl, and six abdominal samples from another six individuals that were tested with
sufentanil. The second data set comprised the inverse combination: six thigh samples
were tested with sufentanil, and six abdominal samples were tested with fentanyl.
In both data sets, among the thigh samples, one donor sample was tested using a
pH 9.37 vehicle.
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4. Model Parameters and Notation

We classify the parameters of interest in the model as being specific to one of three
model components: the compound (kC), the anatomical site (kS), and the individual (kI).
Nominal values for these quantities are provided in the original models by Kasting et al. [12]
and Yu et al. [13], which are summarized in the model in Appendix A. We use the double
subscript notation kC f en , kCsu f to denote the nominal values of kC for fentanyl and sufentanil,
respectively. Similarly, kSabd , kSthi denote the literature-derived nominal values of kS for
abdominal and thigh skin.

We introduce into this model a set of uncertain parameters, θC, θS, θI , that scale the val-
ues of nominal parameters kC, kS, kI , respectively. We denote the model-generated estimate
of permeability Ptot/w across a dermal section by the function Ptot/w = f (θCkC, θSkS, θIkI).
Since θC, θS, θI are scaling parameters, f (kC, kS, kI) recovers the permeability for an average
individual based on the nominal parameter values in [12,13].

We denote by p(θC), p(θS), p(θI) the parameters’ respective literature-derived prior dis-
tributions.

5. Bayesian Learning of Inter-Individual and Inter-Site Variability

We next describe a Bayesian Markov Chain Monte Carlo (MCMC) learning procedure
to infer the joint probability distributions of the model scaling parameters θC, θS, θI given
the dermal permeability measurements taken from one of the data sets within Groups A–E
(Figure 4). Each data set is a unique collection of permeability measurements that vary
in terms of the permeating compound, the anatomical site from which the skin sample is
taken, the individual from whom the skin sample is sourced, and the vehicle pH. We denote
a single data set from among those in Groups A–E by dC,S,I . Here, the subscripts represent
compounds included within the data set (C), the anatomical sites (S) of the skin samples
tested with the data set, and the collection of individuals (I) from whom the skin samples
tested within the data set were sourced. We also assume, without a loss of generality, that
these experimental measurements are obtained through a common experimental protocol
that is subject to a common relative measurement error variance of ν2 that has a prior
distribution p

(
ν2).

We let p(θC, θS, θI) denote the joint distribution of the priors on θC, θS, θI . The posterior
distribution of these parameters given the observations dC,S,I is

p(θC, θS, θI , ν|dC,S,I) ∝ L(θC, θS, θI , ν|dC,S,I) · p(θC, θS, θI) · p
(

ν2
)

(1)

where

L(θC, θS, θI , ν|dC,S,I) = ∏
C,S,I

1√
2πν2

exp
−(log( f (θCkC, θSkS, θIkI))− log(dC,S,I))

2

2ν2 (2)

is the likelihood of the observations dC,S,I given θC, θS, θI , ν. The prior distributions for
scaling parameters θC, θS, θI are derived from the literature or otherwise assumed to be non-
informative. The measurement error variance is assumed to be log-uniformly distributed,
and, as such, we have p

(
ν2) ∝ 1/ν2.

A parallelizable, adaptive, block Metropolis–Hastings algorithm based on the proce-
dure in Hamadeh et al. [21] was developed in the ospsuite-R package (v11) and utilized to
obtain samples from the joint posterior distribution p(θC, θS, θI , ν|dC,S,I).

6. Selection of Model Parameters for Inference

To select the model parameters to be inferred based on experimental data, we first
conducted a literature review to identify the ranges of the uncertain model parameters.
Sensitivity analyses based on the Morris method [23] were then conducted to assess the
potential of the uncertain skin-specific model to affect the permeability of fentanyl and
sufentanil at vehicle pH levels 7.4 and 9.37, which correspond to the pH levels of the
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vehicles used in the experiments in the training data sets. The Morris method is a global
sensitivity method in which the impact of each parameter on the output of interest (the
permeability of fentanyl or sufentanil) is assessed at multiple points in the parameter space
while varying the remaining parameters. This allows for a more holistic quantification
of the sensitivity of the output to a given parameter than a local sensitivity analysis. The
results of the Morris method consist of an average sensitivity measure (µ*) and a standard
deviation of the sensitivity (σ). Whereas µ* indicates the direct impact of a parameter on
the model output, σ measures the degree to which the parameter’s impact depends on the
values of other uncertain parameters.

7. Internal Validation

Internal validations of the inferred posterior distributions were conducted as follows:
for each measurement in a given training data set dC,S,I , the dermal model was first updated
with nominal parameter values kC, kS, kI that reflect the experimental conditions from which
that measurement was taken. Subsequently, the model was simulated repeatedly using
parameter samples drawn from the inferred joint posterior distribution p(θC, θS, θI , ν|dC,S,I)
for the data set, and the corresponding permeability f (θCkC, θSkS, θIkI) was evaluated for
each sample. A visual predictive check was generated to compare the distribution of these
resulting estimates against their corresponding permeability measurements.

8. External Validation
8.1. External Validation 1

In this first external validation, predictions of skin permeability based on the inferred
posterior distribution p(θC, θS, θI |dC,S,I) for each data set dC,S,I were generated under each
of the following four scenarios: (1) fentanyl applied to abdominal skin, (2) fentanyl applied
to thigh skin, (3) sufentanil applied to abdominal skin, (4) sufentanil applied to thigh skin.
A pH 7.4 vehicle was assumed, representing the conditions of the experiments summarized
in Table 1. For each of the four combinations of compound and anatomical site, the
dermal model was first updated with the corresponding nominal parameter values kC
and kS as well as average values for individual-specific parameters kI from [12,13]. Under
each of the four scenarios, and for each data set dC,S,I in Groups A–E, the inferred joint
posterior distribution p(θC, θS, θI |dC,S,I) was sampled to obtained draws of the parameters
θC, θS, θI corresponding to the compound and anatomical site pair being simulated and
corresponding to each individual in the data set dC,S,I . Using these sampled parameter
values, the permeability f (θCkC, θSkS, θIkI) was predicted by the model for each individual
in the data set dC,S,I .

In Groups C and D, each data set contained measurements from only one specific
anatomical site or compound, respectively. However, the external validation under scenar-
ios 1–4 requires predicting permeability for anatomical sites or compounds both within and
outside the data sets in Groups C and D. Nevertheless, as shown in Hamadeh et al. [21]
(Supplementary Material), it is reasonable to assume that the correlations existing between
compound-specific and skin-specific parameters are similar across compounds. For this
reason, we substitute the inferred scaling parameters that are specific to one compound
or anatomical site when extrapolating the model to another compound or anatomical
site, respectively.

As an example, the posterior distribution inferred from data set D1 did not include any
sufentanil-specific parameters since the D1 data set experiments only measured fentanyl
permeability. However, we assume here that the correlations between scaling parameters
θC f en , θS, θI that were inferred from data set D1 approximate the correlations between
scaling parameters θCsu f , θS, θI . Therefore, to approximate the permeability of sufentanil

across thigh skin, we evaluate the permeability f
(

θC f en kCsu f , θSthi kSthi, θIk kI

)
using samples(

θC f en , θSthi , θI

)
drawn from the posterior distribution p

(
θC f en , θSthi , θIk

∣∣∣dC,S,I = D1
)

.



Pharmaceutics 2023, 15, 2667 9 of 27

8.2. External Validation 2

In the second external validation, predictions of permeability were generated based
on the inferred posterior distribution p(θC, θS, θI |dC,S,I) for each data set dC,S,I under the
conditions of the experiments in Table 2. These experiments involved the application of
fentanyl and sufentanil to thigh skin sourced from individual D12 and spanned a vehicle
pH range of 2.88 to 9.04. For each experiment, the model was updated with nominal
parameters kC, kS, and kI , as well as the corresponding vehicle pH. Subsequently, the model
was extrapolated to predict permeability by iteratively sampling parameters θC, θS, θI from
the posterior distribution and evaluating the permeability estimate f (θCkC, θSkS, θIkI).
These permeability estimates were then compared to the corresponding measurements
in Table 2. Here, parameters θI specific to individual D12 were used when validating
the posteriors inferred from data sets dC,S,I in Groups B–E since these groups included
permeability measurements for that donor at vehicle pH 9.37. Since data sets A1–A3 did
not include measurements for donor D12, parameters θI were instead sampled from all
donors in those respective data sets.

9. Analysis of Pathway-Specific Permeability

As discussed in [12,13] and in Appendix A, the aggregate permeability Ptot/w is com-
posed of contributions from an appendageal pathway, a non-polar transcellular pathway
via stratum corneum lipids, and a polar pathway via micropores present in the stratum
corneum lipid matrix.

Following the inference and validation steps above, the joint posterior distributions of
compound-, site-, and individual-specific parameters were iteratively sampled. These sam-
ples were subsequently employed to compute the permeabilities of both the appendageal
and non-polar transcellular pathways, yielding nonparametric distributions of the perme-
ability across each pathway.

10. Results
Literature Review of Parameter Uncertainties

The chemical properties of relevance for fentanyl and sufentanil are given in Table 3. As
previously reported in [21], uncertainty in compound-specific parameters resides primarily
in the trans-bilayer permeability (ktrans) and the partition coefficient between the SC lipid
phase and water (Klip/w). These parameters are QSPRs that are functions of the molecular
weight and of the lipophilicity values given in Table 3. Two more model parameters
that depend on compound-specific quantities are the partition coefficient of the permeant
in the infundibulum relative to water (Kin f /w) and the diffusivity of the permeant in
the infundibulum Din f . It is proposed in Yu et al. [13] that in the in vitro context, the
infundibulum is filled with a vehicle-like fluid, and therefore, the nominal values of these
parameters are equal to the nominal values of the partition and diffusion coefficients,
respectively, in the aqueous vehicle. The partition coefficient in the vehicle, and therefore
Kin f /w, has as a nominal value that is given by the inverse of the permeant’s non-ionized
fraction in water. On the other hand, Din f is given by the aqueous diffusivity formula in
Yu et al. [13]. An uncertainty of ±1 log10 unit is assumed for the infundibulum parameters.
The nominal values and the uncertainties for these compound-specific quantities are given
in Table 4.

Table 3. Fixed values for physical/chemical properties of permeants.

Quantity (Units) Fentanyl Sufentanil Reference

Molecular weight (MW) (g/mol) 336.5 386.5 [24]
pKa (basic) 8.99 8.56 [22]

log10 Ko/w (octanol/water) 2.86 3.45 [24]
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Table 4. Uncertainty ranges for QSPRs of compound-specific parameters of the skin permeation
model. See Nomenclature.

Parameter (Units) Description Value Reference

log10 ktrans (cm/s) Trans-lipid bilayer permeability in a
hydrated stratum corneum.

Nominal value : −0.725− 0.792MW
1
3

Uncertainty range: Nominal value ± 1.08
[19]

log10 Klip/w
Partition coefficient of permeant in SC
lipids with respect to water.

Nominal value : 0.81log10 Ko/w + log10 0.43
Uncertainty range: Nominal value ± 0.434 [25,26]

log10 Kin f /w

Partition coefficient of permeant in
infundibulum with respect to water,
assuming aqueous.

Nominal value:
log10

(
1

fnon/water

)
= log10

(
1 + 10pKa−pH)

Uncertainty range: Nominal value ± 1
[13]

log10 Din f (cm2/s)
Diffusion coefficient of permeant in
infundibulum with respect to water.

Nominal value (aqueous vehicles):
ADaq + BDaq MW, for constants ADaq , BDaq as
defined in equation T1_4, Supplementary
Material, ref. [13] for the aqueous diffusivity Daq.
Uncertainty range: Nominal value ± 1

[13]

Notation: MW : permeant molecular weight. Ko/w : permeant lipophilicity.

Values of fixed skin-specific quantities used in the dermal model are given in Table 5.
Table 6 presents literature-derived nominal values and, where available, the ranges, for
the uncertain skin-specific parameters of the dermal model detailed in Appendix A. The
justification for these parameters is as follows:

• Stratum corneum thickness: Table 6 in [27] shows inter-site and within-site variability.
The abdominal hSC varies between 6 and 13 µm for a partially hydrated SC. For a
fully hydrated SC, reference [10] proposes a stratum corneum thickness of 43 µm. To
capture the variability in Table 6 in [27], we applied a similar uncertainty to the fully
hydrated case.

• The range of the combined thickness my of the stratum corneum lipid bilayer envelope
and corneocyte thickness was calculated based on the number of cell layers in the
stratum corneum reported in [28].

• Reference [12] proposes a nominal follicle density N f of 24/cm2. However, refer-
ence [16] reports inter-region variability in follicle density that ranges between 10 and
36/cm2. The follicle density in the Kasting et al. 2019 [12] model is scaled down by a
dimensionless parameter fopen, which represents the proportion of open follicles. This
quantity has a nominal value of 0.015 in reference [12]. For the purposes of sensitivity
analysis, N f and fopen can be viewed as a single lumped parameter since they enter
the model together, as a product.

• The follicle orifice radius, r1, ranges between 4-fold and 6-fold the radius of the hair
shaft (r0) as per Otberg et al. [16], whereas the nominal value recommended in [13]
yields r1/r0 = 1.25. Given the large uncertainty, the range was taken to be 1–10.

• The transcellular pathway parameters r2 and Np are novel quantities that were intro-
duced in [12]. As such, the literature does not provide reliable uncertainty estimates
for these parameters. For this reason, they are assumed to vary within an order of
magnitude of their nominal proposed values in reference [12].

Table 5. Fixed values for skin-specific parameters of the skin permeation model. See Nomenclature.

Parameter Description Value Reference

hed Viable epidermis thickness 100 µm [29]

hde
Dermis thickness for heat-separated epidermis skin 0 µm

[22]
Dermis thickness for dermatomed skin 100 µm
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Table 6. Uncertainties in skin-specific parameters of the skin permeation model in Appendix A. See
Nomenclature.

Parameter Description Value Units Reference
Stratum corneum parameters

hSC
Stratum corneum thickness
(fully hydrated)

Nominal: 29 (thigh),
43.4 (abdomen)
Range: 13–65 (thigh),
19–97 (abdomen)

µm Table 6 in [27]

my
Lipid bilayer envelope + corneocyte
thickness (fully hydrated SC)

Nominal: 2.9
Range: 2.32–3.63 µm Nominal: [19]

Range: [28]
Follicle pathway parameters

r1/r0
Ratio of follicle orifice radius to hair
shaft radius

Nominal: 4.59 (thigh),
5.74 (abdomen)
Range: 1–10

[16]

N f Number of follicles per area
Nominal: 18 (thigh),
21 (abdomen)
Range: 12–36

cm−2 [16]

fopen Proportion of open follicles Nominal: 0.015
Range: Not reported Nominal: [13]

Transcellular porous pathway parameters

r2 Micropore radius Nominal: 1.6
Range: 0.16–16 nm Nominal: [12]

Range: Assumed

Np Number of micropores per area Nominal: 373,000
Range: 37,300–3,730,000 cm−2 Nominal: [12]

11. Sensitivity Analysis

Morris sensitivity screenings were conducted for fentanyl and sufentanil at vehicle pH
levels of 7.4 and 9.37 (Figure 5). Both compounds are bases that are significantly ionized
at pH 7.4 and largely non-ionized at pH 9.37. For this reason, the permeability across the
non-polar pathway, ktrans, has a much larger influence on aggregate permeability Ptot/w at
pH 9.37 than it does at pH 7.4. On the other hand, the micropore density and micropore
radius r2, which are descriptors of the polar pathway across the stratum corneum, have a
more influential role at pH 7.4 as they would more strongly contribute to the permeability
by admitting ionized solutes. However, highly influential parameters at both pH levels
were descriptors of the infundibular pathway, which provides a permeation pathway
that bypasses the stratum corneum entirely. Of all the parameters, the micropore pathway
parameters r2 and Np showed low influence on Ptot/w for both compounds and both vehicle
pH levels. As a result, this parameter was not included among the parameters to be inferred
from experimental data.
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12. Prior Distributions of Model Parameters to Be Inferred

Based on the sensitivity and uncertainty analysis, prior distributions were defined
for the parameters to be inferred from the experimental data in Groups A–E, and these
are summarized in Table 7. All parameters to be inferred were defined as dimensionless
scalings or additive perturbations to the nominal values of their “parent” parameters in
Tables 4 and 6. Parameters that are liable to vary between individuals and/or across
anatomical sites were defined as being either individual-specific, site-specific, or both.

Table 7. Prior distributions of model parameters to be inferred.

Parent Parameter Decomposition Inference Parameter Prior Distributions
hSC = hnom

SC × hsite
SC × hind

SC
Nominal value: hnom

SC from Table 6.
Site-specific scaling: hsite

SC
Individual-specific scaling: hind

SC

hsite
SC ~LogUniform(1/1.5, 1.5)

hind
SC ~LogUniform(1/1.5, 1.5)

log10 ktrans (cm/s) = log10 knom
trans + log10 kcmp

trans + log10 kind
trans

Nominal value: log10 knom
trans from Table 4.

Compound-specific additive perturbation: log10 kcmp
trans

Individual-specific additive perturbation: log10 kind
trans

log10 kcmp
trans~Uniform(−0.54, 0.54)

log10 kind
trans~Uniform(−0.54, 0.54)

log10 Klip/w = log10 Knom
lip/w +log10 Kcmp

lip/w
Nominal value: log10 Knom

lip/w from Table 4.

Compound-specific additive perturbation: log10 Kcmp
lip/w

log10 Kcmp
lip/w~Uniform(−0.43, 0.43)

log10 Kin f /w = log10 Knom
in f /w + log10 Kcmp

in f /w
Nominal value: log10 Knom

in f /w from Table 4.

Compound-specific additive perturbation: log10 Kcmp
in f /w

log10 Kcmp
in f /w~Uniform(−1, 1)

log10 Din f (cm2/s) = log10 Dnom
in f + log10 Dind

in f
Nominal value: log10 Dnom

in f from Table 6.

Individual-specific additive perturbation: log10 Dind
in f

log10 Dind
in f ~Uniform(−1, 1)

log10 fopen = log10 f nom
open + log10 f ind

open
Nominal value: log10 f nom

open from Table 6.
Individual-specific additive perturbation: log10 f ind

open

log10 f ind
open~Uniform(−1, 1)

N f = Nnom
f × Nsite

f
Nominal value: Nnom

f from Table 6.

Site-specific scaling: Nsite
f

Nsite
f ~LogUniform(1/1.25,1.25)
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Table 6 in [27] summarizes literature-sourced measurements of the adult stratum
corneum thickness hSC from multiple body regions. These measurements indicate a high
degree of variability in hSC between different body regions. For this reason, we decom-
posed hSC as hSC = hnom

SC × hsite
SC × hind

SC , where hnom
SC is the proposed nominal value for

hydrated skin in [10] and the parameters hsite
SC and hind

SC are dimensionless scaling factors
that quantify the intra-region variability and intra-individual variability, respectively, in
stratum corneum thickness. The nonparametric joint posterior distribution inferred by
the MCMC algorithm therefore includes two random variables hsite

SC , one for each of the
abdomen and the thigh regions. In addition, the joint distribution includes a random
variable hind

SC for each individual. The distributions of the scalings hsite
SC thus quantify the

deviations of the SC thickness from the nominal value hnom
SC for each body region, while

the scalings hind
SC will quantify the different individuals’ deviations in SC thickness from

the product hnom
SC × hsite

SC . Based on the sensitivity analysis, the total thickness of the stratum
corneum lipid bilayer envelope and the total corneocyte thickness my were shown to have
little effect on permeability, and were therefore not selected for inference.

The permeability across lipid bilayers log10 ktrans was assumed to have both a compound-
specific and individual-specific effect. The compound plays a role due to the correlation
with molecular weight highlighted in Wang et al. [19]. We assume an individual-level effect
to account for variability in the structure of stratum corneum lipids between individuals.

The influential partition coefficients Klip/w and Kin f /w were only assumed to have
a compound-specific effect that scales them with respect to their nominal values, which
depend on log10 Ko/w and pKa, respectively. On the other hand, the diffusivity within the
infundibulum was assumed to have an individual-specific effect.

Otberg et al. [16] reported that both the ratio of infundibular radii (r1/r0) and the
follicle density N f vary across anatomical sites. Within the model, these two quantities
modify the infundibular cross-sectional area. For this reason, we lump their effect into
N f and regard it as a parameter that varies between anatomical sites. On the other hand,
we regard the proportion of open follicles fopen to be an individual-specific parameter.
Finally, in agreement with the observations in [13], the sensitivity analysis showed that the
micropore route across stratum corneum lipids has little impact on permeability compared
to the follicular route. The micropore parameters r2 and Np were therefore not included
among the quantities to be inferred.

13. Internal Validation

Following the application of the MCMC algorithm, the goodness of fit of the model’s
permeability estimates to experimental data was evaluated based on the learned posterior
distribution. This evaluation was completed for each individual within each training
data set by repeatedly simulating the model using compound-specific, site-specific, and
individual-specific parameter samples from the joint posterior distribution inferred from
the permeability measurements. The results of the simulations provide the range of esti-
mations of fentanyl and sufentanil permeability based on the learned distributions. These
permeability ranges are shown in Figure 6 for Groups A–E. For comparison, these estimates
are shown alongside their corresponding experimental measurements. The figure demon-
strates that, for all data sets, the learned joint posterior distributions yield permeability
estimates that agree well with the experimentally observed permeability ranges.
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Figure 6. Visual predictive check for internal validation of observed vs. simulated permeability for
data sets in Groups A, B, E. Error bars represent the measured permeability range for each individual
in the training data set. The box plots in each panel represent the distributions of the estimated
permeability for each individual after training the model using the respective data set. FEN = fentanyl,
SUF = sufentanil, ABN = abdominal skin, THI = thigh skin.

14. External Validation

We next validate the inferred posterior distributions by comparing model estimates of
permeability with measurements that are outside the scope of the training data.

14.1. External Validation 1

The first external validation is performed using the permeability measurements in
Table 1, which summarizes the results of experiments conducted at vehicle pH 7.4. The
error bars in Figure 7 reflect the range of permeability values observed across all individuals
for a given compound and anatomical site in Table 1. Each set of box plots in Figure 7
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shows the distribution of the permeability estimated in model simulations. The estimates
in each panel are generated by simulating the model using samples from the joint posterior
distributions inferred from their respective data sets. These estimates are shown for fentanyl
and sufentanil, applied to abdominal and thigh skin, with individual-specific parameters
sampled from those inferred for the group of donors in each data set.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 16 of 30 
 

 

14. External Validation 
We next validate the inferred posterior distributions by comparing model estimates 

of permeability with measurements that are outside the scope of the training data. 

14.1. External Validation 1 
The first external validation is performed using the permeability measurements in 

Table 1, which summarizes the results of experiments conducted at vehicle pH 7.4. The 
error bars in Figure 7 reflect the range of permeability values observed across all individ-
uals for a given compound and anatomical site in Table 1. Each set of box plots in Figure 
7 shows the distribution of the permeability estimated in model simulations. The esti-
mates in each panel are generated by simulating the model using samples from the joint 
posterior distributions inferred from their respective data sets. These estimates are shown 
for fentanyl and sufentanil, applied to abdominal and thigh skin, with individual-specific 
parameters sampled from those inferred for the group of donors in each data set. 

   

   

   

   

Pharmaceutics 2023, 15, x FOR PEER REVIEW 17 of 30 
 

 

 

Figure 7. External validation of trained model against permeability measurements at vehicle pH 7.4. 
Error bars represent the range of observed permeabilities for each compound and anatomical site 
for all individuals in Table 1. Each box plot shows the distributions of estimated permeability based 
on individual-specific parameters inferred from the respective data set. FEN = fentanyl, SUF = sufen-
tanil, ABN = abdominal skin, THI = thigh skin. 

Good agreement between the extrapolated model estimates and observations can be 
seen in the cross-over design Groups A and B, with all the median permeability estimates 
falling within the observed range for Group B. 

The external validation of Group C data sets highlights that extrapolating across an-
atomical sites can lead to biased estimates of permeability. When the model was trained 
with data set C1, comprising exclusively abdominal skin samples, it exhibited an overpre-
diction of fentanyl and sufentanil permeability in thigh skin, while accurately predicting 
permeability in abdominal skin. Conversely, when the model was trained using permea-
bility data solely from thigh skin samples, it resulted in an underestimation of permeabil-
ity in abdominal skin but demonstrated accurate predictions for thigh skin measurements. 

Validation of the Group D data sets generally showed concordance between the sim-
ulated and observed permeability. The model trained with data set D1 generated perme-
ability estimates in agreement with the observed sufentanil permeability across both ab-
dominal and thigh skin. Additionally, the model trained with sufentanil permeability data 
(data set D2) demonstrated accurate predictions for fentanyl permeability across ab-
dominal skin, although it slightly overestimated fentanyl permeability in thigh skin. 

Group E simulations generally showed good concordance with observed permeabil-
ity estimates. However, there was some mild bias in the estimates of the model when ex-
trapolated to predict abdominal permeability of fentanyl by the model when trained with 
fentanyl applied to thigh skin and sufentanil applied to abdominal skin (data set E1). In 
all other Group E cases, the median estimate fell within the observed range. 

14.2. External Validation 2 
The second external validation compares the model-generated permeability esti-

mates against the experiments in Table 2 in which the vehicle pH was between 2.88 and 
9.04. The results are shown in Figure 8 for Group A data sets and Figure 9 for data sets in 
Groups B–E. Error bars in both figures, across all vehicle pH levels, represent measure-
ments of permeability across thigh skin sections taken from individual D12. 

Since Group A data sets did not include individual D12, the box plots in each panel 
in Figure 8 represent the range of permeability estimates for all individuals within each 
respective Group A data set. On the other hand, the box plots in Figure 9 show distribu-
tions of estimated permeability that are generated by the dermal model using inferred 
parameter samples specific to individual D12. For this reason, the permeability estimates 
for Group A show generally wider confidence intervals than for Groups B–E. 

When extending the model initially trained with abdominal skin permeability meas-
urements to predict permeability across thigh skin, wide confidence intervals in the esti-
mated permeability were obtained, as in the cases of data sets C1 and E2. 

Figure 7. External validation of trained model against permeability measurements at vehicle pH 7.4.
Error bars represent the range of observed permeabilities for each compound and anatomical site for
all individuals in Table 1. Each box plot shows the distributions of estimated permeability based on
individual-specific parameters inferred from the respective data set. FEN = fentanyl, SUF = sufentanil,
ABN = abdominal skin, THI = thigh skin.

Good agreement between the extrapolated model estimates and observations can be
seen in the cross-over design Groups A and B, with all the median permeability estimates
falling within the observed range for Group B.
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The external validation of Group C data sets highlights that extrapolating across
anatomical sites can lead to biased estimates of permeability. When the model was trained
with data set C1, comprising exclusively abdominal skin samples, it exhibited an overpre-
diction of fentanyl and sufentanil permeability in thigh skin, while accurately predicting
permeability in abdominal skin. Conversely, when the model was trained using permeabil-
ity data solely from thigh skin samples, it resulted in an underestimation of permeability in
abdominal skin but demonstrated accurate predictions for thigh skin measurements.

Validation of the Group D data sets generally showed concordance between the
simulated and observed permeability. The model trained with data set D1 generated
permeability estimates in agreement with the observed sufentanil permeability across both
abdominal and thigh skin. Additionally, the model trained with sufentanil permeability
data (data set D2) demonstrated accurate predictions for fentanyl permeability across
abdominal skin, although it slightly overestimated fentanyl permeability in thigh skin.

Group E simulations generally showed good concordance with observed permeability
estimates. However, there was some mild bias in the estimates of the model when ex-
trapolated to predict abdominal permeability of fentanyl by the model when trained with
fentanyl applied to thigh skin and sufentanil applied to abdominal skin (data set E1). In all
other Group E cases, the median estimate fell within the observed range.

14.2. External Validation 2

The second external validation compares the model-generated permeability estimates
against the experiments in Table 2 in which the vehicle pH was between 2.88 and 9.04. The
results are shown in Figure 8 for Group A data sets and Figure 9 for data sets in Groups
B–E. Error bars in both figures, across all vehicle pH levels, represent measurements of
permeability across thigh skin sections taken from individual D12.
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Figure 8. External validation of the trained model against permeability measurements at vehicle
pH 2.88–9.04. Error bars represent permeability measurements for individual D12 for all vehicle pH
levels (from Table 2). The box plots represent the estimated permeability given the variability inferred
from the entire donor population in the training data sets A1 (left), A2 (middle), and A3 (right).

Since Group A data sets did not include individual D12, the box plots in each panel
in Figure 8 represent the range of permeability estimates for all individuals within each
respective Group A data set. On the other hand, the box plots in Figure 9 show distributions
of estimated permeability that are generated by the dermal model using inferred parameter
samples specific to individual D12. For this reason, the permeability estimates for Group A
show generally wider confidence intervals than for Groups B–E.

When extending the model initially trained with abdominal skin permeability measure-
ments to predict permeability across thigh skin, wide confidence intervals in the estimated
permeability were obtained, as in the cases of data sets C1 and E2.
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Figure 9. External validation of trained model against permeability measurements at vehicle
pH 2.88–9.04 for individual D12. Error bars represent permeability measurements taken from a
single individual for all vehicle pH levels. These measurements are given in Table 2. The box plots
represent the estimated permeability given the variability inferred from the entire population in the
training data set. FEN = fentanyl, SUF = sufentanil, ABN = abdominal skin, THI = thigh skin.

15. Analysis of Pathway-Specific Permeability

Figure 10 shows the hierarchical dependence of the total permeability Ptot/w on the
trans-stratum corneum lipid bilayer pathway and the infundibular pathway. The figure
also shows the dependence of these pathway-specific permeabilities on underlying model
parameters that were inferred from data in this study.
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The sensitivity analysis results in Figure 5 show that the parameters underlying the
infundibular pathway permeability Pin f /w most influence the aggregate permeability Ptot/w
when the vehicle pH is 7.4. At this pH, fentanyl and sufentanil are strongly ionized. For
this reason, the infundibulum pathway constitutes a pathway for polar solutes.

The sensitivity analyses also show that the permeability across lipid bilayers, ktrans,
is highly influential with respect to both fentanyl and sufentanil permeability at high
pH, when the two compounds are highly non-ionized. The same figure shows that this
parameter plays a significantly less dominant role at near-neutral pH levels.

Partitioning of the permeant into stratum corneum lipids is denoted Klip/w. The
product of this quantity and ktrans gives the trans-lipid bilayer permeability relative to
water, which we denote by ktrans/w. This product is of significance in the following analysis
because, as discussed in Appendix A, it enters directly into the calculation of permeability
of the non-polar pathway Pnon

tot .
We have assumed that Klip/w is a compound-specific property and that ktrans includes

both a compound-specific and an individual-specific effect, the latter of which is to account
for potential individual-level variability in the stratum corneum lipid matrix structure. As
detailed in Table 7, compound-specific scalings of Klip/w and ktrans and individual-specific
scalings of ktrans were inferred from the experimental data.

By sampling these scalings from the inferred posterior distributions and evaluating the
product of each set of samples with the nominal values of Knom

lip/w and knom
trans, we generated

distributions of ktrans/w, as shown in Figure 11 (left panel), for both compounds and each
data set in Groups A, B, and E. The commonality between these groups is that their data
sets included experiments conducted using both fentanyl and sufentanil and skin samples
from both the thigh and abdomen. In a similar way, we constructed posterior distributions
of the infundibular pathway permeability Pin f /w by sampling its underlying parameters in
Figure 10 from the inferred joint distributions. These distributions are shown in Figure 11
(right panel).
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16. Discussion

The promise of model-informed decision making in formulation design and risk as-
sessment is the capability to safely bypass resource-intensive experimentation and clinical
trialing through a leveraging of prior observations and knowledge of the mechanisms
of dermal disposition. However, this process relies on confidence in modeled predic-
tions. The credibility of pharmacokinetic models is strengthened by “stressing” them to
simultaneously mechanistically explain diverse data sets that cut across different drugs,
populations, and application scenarios. In this way, important and reliable estimates of
the range, variability, and correlations between pharmacokinetic quantities can be learned
for use in future predictions. Thus, it has been the aim of this work to examine how the
choice of data sets used in model training impacts the ability of models to learn inter-site
and inter-individual variability and to generate accurate and precise yet non-conservative
extrapolations based on these inferences.

Central to this workflow is the dermal model. We have further developed the MoBi
mechanistic dermal model [11] to incorporate the follicular and trans-cellular polar path-
ways proposed in Kasting et al. [12] and Yu et al. [13]. With this update, we adapted the
MoBi model to simulate permeability across different body regions by adjusting site-specific
parameters such as follicle density (see Table 6). In addition, this update enables the adjust-
ment of permeability to account for the pH-dependent ionization state of the solute in the
vehicle, as described in Appendix A. Both fentanyl and sufentanil are lipophilic (Table 3)
and basic compounds with respective pKa values of 8.99 and 8.56, and are, therefore, par-
tially ionized in the pH 7.4 vehicles used in the experiments summarized in Table 1 and
largely non-ionized in the high pH experiments in Table 2. This work therefore provides a
case study in the training and application of the dermal model proposed by Yu et al. [13]
to estimate skin permeation by compounds that may be transported via both polar and
non-polar pathways. This is especially important in contexts where a topically applied
formulation may undergo metamorphosis due to, for example, the evaporation of compo-
nents such as water. In such cases, the ionization state, and thus the skin permeability, of
active pharmaceutical ingredients may change over time.

17. Model Extrapolation across Anatomical Sites and Compounds

The outputs of the learning algorithm employed in this study are encompassed in
nonparametric probability distributions that summarize the likely ranges and correlations
of quantities that scale compound-, site-, and individual-specific model parameters. The
extrapolations of model parameters inferred from the Group C and D data sets, shown in
Figures 7 and 9, provide an assessment of the feasibility and limitations of this approach.
The parameters learned from Group C data sets were extrapolated to contexts involving
skin from anatomical sites that differ from those used in the training data. Data set C1 only
included abdominal skin samples. Figure 7, panel C1, shows that when the model that was
trained on abdominal skin data was subsequently extrapolated to simulate permeability
in thigh skin, there was an overestimation of the range of permeability of both fentanyl
and sufentanil. The opposite effect is observed when the model trained on thigh skin is
extrapolated to estimate abdominal skin permeability—here, the permeability range is
underestimated for both compounds.

Panels D1 and D2 in Figures 7 and 9 show that the extrapolation of inferred parameters
across compounds yielded good fits to permeability measurements. This demonstrates that
samples of compound-specific scalings θc can be drawn from their inferred joint posterior
distribution and used in extrapolating the model from one compound to another. Since
they are drawn from a joint distribution, these scalings contribute informational value to
the extrapolation because they maintain the correlations that were identified during the
training phase. These findings underscore the feasibility of learning skin-specific properties
in one population using a single compound and subsequently applying this knowledge to
predict permeability for other compounds within the same population.
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18. Effect of Experiment Design on Parameter Calibration

Given the potential value of the inferred posterior distributions in risk assessment
and drug design, an examination of the robustness of these quantities is merited. The
posterior distributions corresponding to each data set enable us to examine how the various
experimental designs impact the inferred distributions of the mechanistic parameters of
the model.

18.1. Inclusion of High pH Vehicle Experiments Improves Calibration of Non-Polar
Pathway Permeability

Figure 11 (left panel) shows that the fentanyl and sufentanil estimates of ktrans/w
diverge in all three Group A data sets. This is contrary to what might be expected since
fentanyl and sufentanil have similar molecular weights, lipophilicities, and pKa values
and should therefore have similar permeabilities across a given medium. Here, it should
be noted that Group A only included experiments in which the vehicle pH level was
7.4, thus blinding the model, during the training phase, to measurements in which the
fentanyl or sufentanil was non-ionized. Essentially, this divergence indicates that ktrans/w
is mis-calibrated when the data sets only include experiments involving pH 7.4 since that
parameter does not strongly influence permeability when the solute is ionized. The diver-
gence also explains why, when extrapolating the model trained using pH 7.4 experiments
to high pH contexts, where ktrans/w is influential, we observe scenarios in which there is
an underestimation of fentanyl permeability and a simultaneous overestimation of sufen-
tanil permeability, as seen for set A1 in Figure 8. In contrast, Group B, which included a
pH 9.37 experiment in each data set, shows much closer agreement in ktrans/w between the
two compounds.

18.2. “Cross-Over” Design Mitigates Correlations between Polar and Non-Polar
Pathway Permeabilities

Figure 11 shows that the Group E estimates of both non-polar (left panel) and in-
fundibular (right panel) pathways show strong divergence between the fentanyl and
sufentanil estimates. Moreover, the Group E estimates suggest that fentanyl simultaneously
has a significantly larger infundibular permeability, and a significantly lower non-polar
pathway permeability, than sufentanil. As before, it is unlikely that such large differences
exist between the two compounds. Although the Group B estimates also show divergence
in permeabilities between the two compounds, it is to a relatively small extent.

Both the Group B and Group E training data sets include fentanyl and sufentanil
experiments, with vehicles at both pH 7.4 and pH 9.37, applied to both abdominal and
thigh skin, from multiple individuals. The difference between the two data sets lies in
the “cross-over” versus “parallel” designs of the training data sets in Groups B and E,
respectively. In Group B, both compounds are applied to skin from each individual within
the data set population, whereas in Group E, each compound is applied to skin from a
different set of individuals.

Permeabilities ktrans/w and Pin f /w are functions of individual-specific as well as
compound-specific quantities and together contribute to the aggregate permeability Ptot/w
for each compound. They are therefore correlated quantities in the model. The cross-over
design of Group B trains the model to estimate the aggregate permeability Ptot/w for the
two compounds across skin sourced from the same individual. This ensures that the
individual-specific contribution to permeabilities ktrans/w and Pin f /w for each compound is
the same. In this way, the Group B estimates exclude parameter combinations from their
posterior distributions in which ktrans/w is overestimated and Pin f /w is underestimated
for one compound but not the other. By excluding such parameter combinations from
the inferred distributions, Group B estimates avoid the divergences between fentanyl and
sufentanil estimates of ktrans/w and Pin f /w that are seen with Group E.
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19. Limitations
19.1. A Need for More Diverse Compounds for Model Evaluation

The external validation of the model trained under sets D1 and D2 tested the ability of
the proposed workflow to learn the distributions of individual-specific and site-specific
model parameters from experiments conducted using one compound, and to then leverage
this information to predict the skin permeability of another compound. However, this
validation test has limitations because the two compounds used in assessing the proposed
workflow, fentanyl and sufentanil, are similar in molecular weight, lipophilicity, and
ionizability. Consequently, the extrapolation from one compound to another is expected to
yield good fits to the validation data. Therefore, further evaluation of the workflow using a
variety of compounds with a diversity of molecular weights, lipophilicities, and degrees of
ionizability is needed.

19.2. Knowledge of Parameter Priors Is Limited

As the model used in this work is relatively recent, the variability in some of the
quantities that determine dermal permeability within the model has yet to be experimen-
tally measured. These include the parameters in Table 7, several of which have highly
uncertain prior distributions. This uncertainty can bias the inferred posterior distribu-
tions or otherwise limit them to incorrect ranges. Furthermore, prior knowledge of the
model parameters impacts the sensitivity analyses. Therefore, a mischaracterization of
the prior distributions can lead to the omission of important parameters from the model
training. However, the posterior distributions that were inferred for these parameters in
this study can serve as prior distributions in future work, thereby enhancing the predictive
performance of the model.

20. Future Applications to Chemical Risk Assessment

In future work, the methodology adopted in this study can also be used to learn
the distributions of skin descriptors for anatomical sites beyond the abdomen and thigh
regions. In addition, this approach can be used to learn the distribution of skin-specific
parameters in special populations such as the elderly or individuals with diseased or
compromised skin.

21. Conclusions

In this study, a learning and extrapolation workflow was employed to train and
evaluate a mechanistic dermal model using skin permeability measurements. The choice
of measurements utilized for model training was identified as a critical factor influencing
the model’s accuracy and precision in predicting skin permeability under novel contexts.
Notably, incorporating a diverse range of experimental scenarios and implementing a
cross-over study design within the training data set significantly enhanced the model’s
overall performance in these aspects.
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Nomenclature

Ksc/w Partition coefficient of permeant in stratum corneum relative to water.
Psc/w Permeability of permeant in stratum corneum.
Dsc Stratum corneum diffusion coefficient.
Ked/w Partition coefficient of permeant in viable epidermis relative to water.
Ped Permeability of permeant in epidermis.
Ded Viable epidermis diffusion coefficient.
Kde/w Partition coefficient of permeant in dermis relative to water.
Dde Dermis diffusion coefficient.
Kin f /w Partition coefficient of permeant in infundibulum relative to water.
Din f Infundibulum diffusion coefficient.
Ko/w Partition coefficient of permeant in octanol with respect to water.
Klip/w Partition coefficient of permeant in SC lipids with respect to water.
Kcor/w Partition coefficient of permeant in SC corneocyte phase with respect to water.
Dcor Diffusion coefficient of permeant in SC corneocyte phase.
PCpro/w Partition coefficient of permeant in corneocyte protein phase with respect to water.
Pors−sc Permeability of permeant in SC-like tissue surrounding follicle.
Pors−ed Permeability of permeant in epidermis-like tissue surrounding follicle.
Pors Aggregate permeability of permeant in tissue surrounding follicle.
ktrans Trans-lipid-bilayer permeability in stratum corneum.
r0 The radius of the follicle shaft.
r1 The radius of the follicle shaft.
L1 The length of the follicle.
N f The number of follicles per unit area of skin surface.
fopen Proportion of open follicles
hsc Stratum corneum thickness.
hed Epidermis thickness.
hde Dermis thickness.
my Lipid bilayer envelope + corneocyte thickness
λ3 Ratio of the permeant radius to the micropore radius.
fnon/veh Fraction of permeant amount in the vehicle that is non-ionized.
fnon/veh Fraction of permeant amount in water that is non-ionized.
fnon/sc Fraction of permeant amount in the stratum corneum that is non-ionized.

Appendix A. Mathematical Model

We have previously implemented the Dancik et al. [10] skin permeation model in
MoBi [11]. This model regards the dermal application area to be a uniform, three-layered
slab composed of the stratum corneum, the viable epidermis, and the dermis. The three
layers have respective thicknesses hsc, hed, hde. Partition coefficients of a given compound
with respect to the compound’s non-ionized form in water are denoted as Ksc/w, Ked/w,
Kde/w, and the diffusion coefficients corresponding to the respective layers are denoted as
Dsc, Ded, Dde.

For most compounds, the stratum corneum provides the most significant barrier of
the three layers. For this reason, the stratum corneum diffusivity, Dsc, is an important
metric of a compound’s permeability in this model [21]. A mechanistic decomposition of
this diffusivity was proposed in [19] and adopted into the model of Dancik et al. [10]. As
shown in [21], Dsc is strongly influenced by the active compound’s permeability (ktrans)
across the lipid bilayers that envelope the corneocytes of the stratum corneum. A further
component of Dsc is the permeant’s diffusivity through corneocytes, Dcor.

An additional parameter of importance is the partition coefficient into the stratum
corneum, Ksc/w. In [26], this aggregate quantity was decomposed mechanistically and

expressed as a function of the active compound’s partitioning into the SC lipids ( Klip/w

)
and into the SC corneocytes (Kcor/w).
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Appendix A.1. Pathway A—Follicular pathway of Yu et al., 2021 [13]

This modification provides a follicular route through which hydrophilic solutes may
bypass the stratum corneum directly into viable epidermis and dermis. A schematic
representation of the MoBi implementation of this pathway is shown in Figure A1. The
parallel, ladder-like structures represent segments of the skin and follicular pathways
through which the permeant may be transported. As shown in this figure, the permeant
may diffuse both downwards, deeper into the skin, and laterally, between the skin and the
infundibular region of the follicular pathway.

This pathway is parameterized by the following:

• the dimensions and density of the follicles and the infundibulum (Figure A2), including
the following:

o the radius of the follicle shaft, r0,
o the radius of the follicle orifice, r1,
o the length of the follicle, L1,
o the number of follicles per unit area of skin surface, N f , and
o the proportion of follicles that are open.

• the diffusivity of the permeant within the fluid that occupies the infundibulum, Din f .
Here, the fluid is assumed to be sebum in the in vivo context. Under in vitro conditions,
the fluid is assumed to be identical to the vehicle.

• the partition coefficient of the permeant in the infundibulum fluid with respect to
water, Kin f /w.

We define infundibular permeability as Pin f /w = fopenN f Kin f /wDin f /L1.
The lateral movement of the permeant between the follicle pathway and the skin is

governed by a mass transfer coefficient kors which depends primarily on an aggregate
permeability that is evaluated from the skin and infundibulum dimensions, the stratum
corneum permeability Psc/w, and the viable epidermis permeability Ped/w, as shown in
Figure A3. The reader is referred to [13] and its accompanying supplementary materials for
full mathematical details of the model.
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Appendix A.2. Pathway B—Transcellular pathway of Yu et al., 2021 [13]

Reference [12] adds a pathway through which hydrophilic solutes may penetrate
through micropores and deformities within the lipid bilayers of the SC. This modification
essentially modifies the resistance to permeant flow across the SC by adding a parallel
resistance to the lipid bilayers that is more admissible with respect to hydrophilic permeants
than are the SC lipids (Figure A4).

It is assumed in reference [12] that corneocytes are enveloped by seven lipid bilayers,
each of permeability ktrans, which, in turn, is a QSPR that is a function of molecular weight.
The combined resistance Rlip (the inverse of permeability) of the seven stacked bilayers
with respect to an adjacent water phase is given by

Rlip =
7

ktransKlip/w
.
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Since the permeating molecule may bypass the lipid bilayers via the porous route, 
the net resistance of the lipid bilayers can be approximated by the inverse of the sum of 
their permeabilities, . 

The lipid bilayers envelope corneocytes, which are assumed to have a thickness 𝑡, a 
diffusivity 𝐷 , and a partition coefficient with respect to water 𝐾 / . The resistance 
(inverse permeability) to permeant flow across a single corneocyte is given by 𝑅 = 𝑡𝐷 𝐾 / . 

The average pathway across the stratum corneum can be viewed as a series of corne-
ocytes of thickness 𝑡 interspersed by a series of (on average) seven lipid bilayers, each of 
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This gives a stratum corneum permeability of 1/𝑅 . 
If we define 𝛼 = 7𝛿/𝑚 , 𝑅  can be re-written as 

Figure A4. Parallel transcellular pathway through the SC via pores in the SC lipids.

The resistance (inverse permeability) via an aqueous micropore of a length that spans
seven lipid bilayers is given by

Rpor =
7δ

ε3H(λ3)Daq
.

Here, quantity Daq is the diffusivity of the permeant in the aqueous micropore, and
the dimensionless product ε3H(λ3) scales down the diffusivity. The factor, ε3 is a non-
dimensional scaling representing the degree of porosity of the lipid bilayers, λ3 is the ratio
of the permeant radius to the micropore radius, and H(λ3) quantifies the hindrance of the
pores with respect to the flow of the permeant as a function of the ratio λ3.

Since the permeating molecule may bypass the lipid bilayers via the porous route, the
net resistance of the lipid bilayers can be approximated by the inverse of the sum of their
permeabilities, 1

1
Rlip

+ 1
Rpor

.

The lipid bilayers envelope corneocytes, which are assumed to have a thickness t, a
diffusivity Dcor, and a partition coefficient with respect to water Kcor/w. The resistance
(inverse permeability) to permeant flow across a single corneocyte is given by

Rint =
t

DcorKcor/w
.

The average pathway across the stratum corneum can be viewed as a series of corneo-
cytes of thickness t interspersed by a series of (on average) seven lipid bilayers, each of
thickness δ. This pattern is therefore repeated hsc/my times, where my = t + 7δ. The net
resistance, Rsc, across the stratum corneum is given by the combined series resistance of
each unit of this repeating pattern:

Rsc =
hsc

my

Rint +
1

1
Rlip

+ 1
Rpor

 =
hsc

my

 t
DcorKcor/w

+
1

ktransKlip/w
7 +

ε3Daq H(λ3)
7δ


This gives a stratum corneum permeability of 1/Rsc.
If we define α = 7δ/my, Rsc can be re-written as

Rsc = hsc

(1− α)
1

DcorKcor/w
+ α

1
ktransδKlip/w

1

1 + ε3Daq H(λ3)
ktransδKlip/w


Here, ε3Daq H(λ2)

ktransδKlip/w
represents the ratio of permeability across the aqueous micropores

to the permeability across lipid bilayers. When this ratio is much larger than unity, the
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overall transcellular permeability is mostly determined by the permeability through the
micropores and takes on a value Pion, where

Pion =
1

hsc

(
(1− α)

1
DcorKcor/w

+ α
1

ε3DaqH(λ3)

)−1

Otherwise, the permeability is approximated by that across the lipid bilayers and is
denoted as Pnon

tot :

Pnon =
1

hsc

(
(1− α)

1
DcorKcor/w

+ α
1

ktransδKlip/w

)−1

Reference [12] then defines an aggregate permeability across the stratum corneum that
is obtained from a weighted sum of these two values, given by

Psc/w = Pnon +
1− fnon/sc

fnon/sc
Pion

Here, fnon/sc denotes the fraction of the permeant that is non-ionized in the stratum
corneum, which in turn depends on the stratum corneum pH and the permeant’s pKa,
according to the Henderson–Hasselbalch relation.

Approximation of aggregate permeability P(tot/w)

We denote by Atot the area of skin to which a topical formulation is applied and let
Atot = Askin + Ain f , where Ain f is the infundibular cross-sectional area. For simplicity, we
assume that the infundibulum runs parallel to the entire thickness of the skin membrane,
which holds true in the case of the dermatomed skin experiments considered in this study.
The aggregate permeability of the stratum corneum is given by

Psc
tot/w =

AskinDscKsc + Ain f Kin f /wDin f

hsc ·
(

Askin + Ain f

)
We similarly define the aggregate permeabilities across the epidermis and dermis,

respectively, as

Ped
tot/w =

AskinDedKed + Ain f Kin f /wDin f

hed ·
(

Askin + Ain f

)
and

Pde
tot/w =

AskinDdeKde + Ain f Kin f /wDin f

hde ·
(

Askin + Ain f

)
The aggregate permeability across the skin membrane is therefore given by

Ptot/w =

(
1

Psc
tot/w

+
1

Ped
tot/w

+
1

Pde
tot/w

)−1

.

It should be noted that this approximation does not account for the lateral permeability
between the infundibulum and skin.
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