

Supplementary Materials

Increased Carrier Peptide Stability Through pH Adjustment Improves Insulin and PTH(1-34) Delivery In Vitro And In Vivo Rather than by Enforced Penetratin-Cargo Complexation

Mie Kristensen¹, Ragna Guldsmed Diedrichsen^{1,2}, Valeria Vetri³, Vito Foderà^{1,2} and Hanne Mørck Nielsen^{1,2*}_

Figure S1. Representative size distributions by intensity of samples containing 720 μ M penetratin (**A**-**C**) or 180 μ M PTH and 720 μ M penetratin (1-34) (**D**-**E**) at pH 5, 6.5, or 7.4 determined by dynamic light scattering.

Figure S2. Circular dichroism spectra of 50 μ M insulin (**A**), PTH(1-34) (**B**), and 200 μ M penetratin (**C**) at pH 5, 6.5, or 7.4.

Figure S3. Confocal and two-photon excitation microscopy images of complexes obtained as a result of mixing 50 μ M insulin or PTH(1-34) with 200 μ M penetratin at pH 5, 6.5, or 7.4 in the presence of Thioflavin T (ThT) (green) and Nile Red (red). Scale bars: 50 μ m.

Figure S4. Thioflavin T (ThT) (**A**) and Nile Red (**B**) increase over ThT or Nile Red background fluorescence (**C**) of samples containing 50 μ M insulin or PTH(1-34) or 200 μ M penetratin alone or as insulin/PTH(1-34) + penetratin mixtures prepared at pH 5, 6.5, or 7.4. (N = 3, mean ± SD).

Figure S5. Stability of 5 μ M insulin (**A**), 5 μ M insulin in the presence of 20 μ M penetratin (**B**), 5 μ M PTH(1-34) (**C**), or 5 μ M PTH(1-34) in the presence of 20 μ M penetratin (**D**) during apical incubation on Caco-2 cell monolayers at pH 5, 6.5, or 7.4 over 4 hours. Data are presented as % of initial concentration (N = 3, mean ± SD).

Figure S6. Stability of 20 μ M penetratin (**A**), 20 μ M penetratin in the presence of 5 μ M insulin (**B**), or 20 μ M penetratin in the presence of 5 μ M PTH(1-34) (**C**) during apical incubation with Caco-2 cell monolayers at pH 5, 6.5, or 7.4 over 4 hours. Data are presented as % of initial concentration ± SD (N = 3, mean ± SD).

Figure S7. Blood glucose following intraintestinal administration of insulin (50 IU/kg) at pH 5, 6.5, or 7.4 or 720 μ M penetratin at pH 5. Data are presented as % of initial value (N = 6, mean ±SD).

Figure S8. Confocal and two-photon excitation microscopy images of complexes obtained as a result of mixing 50 μ M insulin with 200 μ M penetratin at pH 6.5 in the presence of POPC:POPG (80:20 molar ratio) liposomes with addition of Thioflavin T (ThT) (green) and Nile Red (red).

Figure S9. Visual inspection of pH 6.5 (**left**) and pH 7.4 (**right**) samples containing 180 μ M insulin in physical mixture with 720 μ M penetratin prior intraintestinal administration in rats.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).