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Abstract: Recombinant Adenoviral vectors represent one of the best gene transfer platforms 
due to their ability to efficiently transduce a wide range of quiescent and proliferating cell 
types from various tissues and species. The activation of an adaptive immune response 
against the transduced cells is one of the major drawbacks of first generation Adenovirus 
vectors and has been overcome by the latest generation of recombinant Adenovirus, the 
Helper-Dependent Adenoviral (HDAd) vectors. HDAds have innovative features including 
the complete absence of viral coding sequences and the ability to mediate high level 
transgene expression with negligible chronic toxicity. This review summarizes the many 
aspects of HDAd biology and structure with a major focus on in vivo gene therapy 
application and with an emphasis on the unsolved issues that these vectors still presents 
toward clinical application. 

Keywords: Helper Dependent Adenovirus; liver transduction; lung transduction; innate and 
adaptive immune response 

 

1. Introduction 

Adenovirus (Ad)-derived gene therapy vectors have been the focus of considerable interest for their 
potential application as a delivery vehicle for human gene therapy. Even though these vectors were 

OPEN ACCESS 



Viruses 2010, 2              
 

 

1887 

initially conceived for the treatment of genetic disorders, so far the majority of their clinical 
application has been for cancer treatment. Some of the most important aspects of Ad-derived vectors 
that have gained the attention of the gene therapy community include: 1) the ability to infect with high 
efficiency a variety of both quiescent and proliferating cell types, 2) Ad vectors can be easily grown to 
very high titer, allowing the experimenter to transduce a large number of cells and/or tissue target of 
large animals, and 3) the absence of vector genome integration thereby reduces the likelihood for 
germ-line transmission and insertional mutagenesis, which represents an important safety feature [1] 
for human clinical applications. First generation adenoviral (FGAd) vectors are rendered replication-
deficient by the deletion of the viral early region (E1). However, leaky expression of viral genes from 
the vector backbone is still present, leading to loss of transgene expression due to an adaptive cellular 
immune response against the transduced cells and chronic toxicity. Further deletion in the vector 
backbone (E2, E4) still allows for the low level expression of viral genes and does not preclude an 
immune reaction towards transduced tissues [2,3]. In contrast, helper-dependent adenoviral (HDAd) 
vectors are devoid of all viral coding sequences, and have shown tremendous potential for the 
treatment of genetic disease, allowing for persistent transgene expression for years in the apparent 
absence of any type of adaptive immune response and chronic toxicity [4]. HDAds can mediate high 
efficiency transduction, do not integrate in the host genome, and have a large cloning capacity of up to 
37 kb, which allows for the delivery of multiple trangenes or entire genomic loci, or large cis-acting 
elements to enhance or regulate tissue-specific transgene expression (for example, inclusion of the 
large control elements of the human cytokeratin 18 gene for specific expression in the epithelium [5] 
or inclusion of the human apolipoprotein E Hepatic Control Region for enhanced liver specific 
expression [6]). This review will focus on the general features of the HDAd vectors and the most 
recent advance in the clinical application of these vectors. 

2. Adenoviruses 

Adenoviruses (Ad) are non-enveloped double stranded DNA viruses of 60-110 nm in diameter. 
During natural infection, the main target is epithelial cells of the respiratory and gastrointestinal tract. 
Ad can cause relatively mild, self-limiting diseases of the upper respiratory tract, gastroenteritis, or 
conjunctivitis in some cases but most infections are asymptomatic in immunocompetent  
individuals [7-11]. Importantly, adenoviruses have not been associated with any neoplastic disease in 
humans [7]. Amongst the ~50 serotypes of human Ad, the most extensively characterized are serotypes 
2 (Ad2) and 5 (Ad5) belonging to subgroup C. The 36 kb genome of Ad 2 and Ad5 is flanked by  
cis-acting inverted terminal repeats (ITRs), which are required for viral DNA replication in cis. A  
cis-acting packaging signal (Ψ), required for the encapsidation of the Ad genome, is located near the 
left ITR (relative to the conventional map of Ad) (Figure 1). The Ad genome comprises two set of 
genes (Figure 1): the early region genes, E1A, E1B, E2, E3, and E4, are transcribed before DNA 
replication and the late region genes, L1 to L5, are transcribed and expressed at high levels after the 
initiation of DNA replication. The E1A transcription unit encodes two major E1A proteins that are 
involved in transcriptional regulation of the virus and stimulation of the host cell to enter an S phase-
like state. The two major E1B proteins are involved in stimulation of viral mRNA transport, blocking 
E1A-induced apoptosis and blocking host mRNA transport. The E2 region can be divided into two 
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sub-regions: E2a encodes the DNA-binding protein and E2b encodes the viral polymerase and terminal 
protein precursor. The E3 region encodes at least seven proteins, most of which have 
immunomodulatory functions and are specifically involved in host immune evasion. The E4 region 
encodes at least six proteins involved in DNA replication, enhancement of the late gene expression, 
and decrease host protein synthesis. Alternative splicing of a single transcript, referred to as late region 
genes, gives rise to all the mRNA encoding virion structural proteins. The expression of late region 
genes is regulated by a common major late promoter (MLP). 

Figure 1. Transcription map of human adenovirus serotype 5. The 100 map unit (~36 kb) 
genome is divided into four early region transcription units, E1–E4, and five families of 
late mRNA, L1–L5, which are alternative splice products of a common late transcript 
expressed from the major late promoter (MLP) located at 16 map units. Four smaller 
transcripts, pIX, IVa, and VA RNA’s I and II, are also produced. The 103 bp inverted 
terminal repeats (ITRs) are located at the termini of the genome and are involved in viral 
DNA replication, and the packaging signal (ψ) located from nucleotides 190 to 380 at the 
left end is involved in packaging of the genome into virion capsids. Other late transcripts 
include the RNA polymerase III. 

 
 
Infection of the host cell is a two stage process involving an initial binding of the Ad fiber protein 

with CAR (coxsackie-adenovirus receptors) on the cell surface [9-12]. Then a secondary interaction 
occurs between the arginine-glycine-aspartic acid (RGD) motif present on the virion penton base and 
αvβ3 and αvβ5 integrins on the host cells, which in turn initiates receptor-mediated endocytosis via 
clathrin-coated pits [12-15].The efficiency of infection, which is dependent on Ad binding and entry, is 
directly related to the level of primary and secondary receptors on the cell surface [12,14]. After Ad 
internalization, the virion escapes from the early endosome into the cytosol prior to lysosome 
formation [16,17]. During the translocation along the microtubule network toward the nucleus, the 
virion is disassembled and the DNA is released into the nucleus [18]. Once in the nucleus, viral DNA 
replication (beginning at 6-8 h postinfection) and assembly of progeny virion occur. The entire life 
cycle takes about 24-36 h and generates about 104 virions per infected cell. 
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3. Early-generation Adenoviral vectors 

The basic notion that permitted the construction of first generation of Ad vectors (FGAd) is based 
on the fact that up to 10% of Ad viral DNA molecules become circularized following infection of 
mammalian cells [19]. Therefore, the entire Ad genome can be manipulated as an infectious bacterial 
plasmid by using standard molecular biology techniques. Indeed, the Ad genomic plasmid could be 
easily and stably propagated in E. coli and was capable of generating infectious viruses following 
transfection into permissive mammalian cells. The earliest version of FGAd vectors were prepared by 
substituting E1 region of Ad5 with a transgene. This type of vector can deliver transgenes up to 5 kb 
and cannot replicate in transduced cells, because they lack the E1 region which controls the 
transactivation of genes involved in viral replication. An E1 deficient (ΔE1) vector must be propagated 
in a permissive cell line, engineered to provide the E1 functions in trans. While the deletion of E1 in 
FGAd results in a replication-defective vector, nonetheless E2, E3, and E4 promoters are still active 
and result in viral low level DNA replication and expression of viral genes, especially at high doses of 
infection [20,21]. This leaky expression of viral proteins precludes long-term transgene expression in 
vivo due to the strong cytotoxic immune reaction mounted against the transduced cells, resulting in the 
extinction of transgene expression within few weeks [22-24]. Therefore, in order to minimize the 
immune reaction toward the viral antigens, Ad vectors with further deletion of essential viral genes 
have been generated. Second generation or multiply-deleted Ad vectors carrying mutation or alteration 
in E2 or E4 regions in addition to E1 were constructed in parallel with the development of more 
complex producer cell lines capable of supporting their replication by trans-complementing the 
additional deletions [20]. However, viral coding sequences still remain and therefore so do the 
potential for their expression and related toxicity. The advantages of multiply-deleted Ad vectors over 
FGAd remain controversial as some studies show them to be superior in terms of toxicity and duration 
of transgene expression [25,26] while some others do not [22,27-29].  

4. HDAd 

The liver toxicity and the cellular immune response triggered by early generation Ad vectors 
constituted a great incentive for the construction of a new type of vector completely devoid of all 
adenoviral genes, referred to as Gutless Adenovirus or Helper-dependent Adenoviral (HDAd) vector. 
HDAds are constructed by removing all viral sequences from the vector genome except the packaging 
sequence and inverted terminal repeats, thereby eliminating the issue of residual viral gene expression 
associated with early generation Ad vectors. Currently, the most efficient method for generating HDAd 
is the Cre/loxP system; this method was the result of pioneering work by Frank Graham and co-
workers in 1996 [30]. In this system, the HDAd genome is constructed in a bacterial plasmid and 
contains the expression cassette of interest and ~500 bp of cis-acting Ad sequences necessary for 
vector DNA packaging (Ψ) and replication (ITRs). In order to obtain efficient packaging, the inclusion 
of stuffer DNA is required to maintain the size of the vector within appropriate limits. The size of 
HDAd vectors below ~27 kb undergo DNA rearrangement to increase the size of the genome to 27 to 
38 kb [31,32]. To convert or rescue the “plasmid form” of HDAd to the “viral form”, the plasmid is 
first digested with the appropriate restriction enzyme to liberate the HDAd genome from the bacterial 
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plasmid sequences. Then, 293 cells expressing Cre are transfected with the linearized HDAd genome 
and subsequently infected with a helper virus. The helper virus is a FGAd bearing a packaging signal 
flanked by loxP sites in its genome and trans-complement the replication and encapsidation of the 
HDAd genome. Following the infection of 293 Cre cells, the packaging signal is excised from the 
helper virus genome by Cre-mediated site-specific recombination between the two loxP sites, and this 
precludes the packaging of the helper virus (Figure 2). Further improvements to this system have been 
made, which has permitted large scale manufacture of high quality HDAd with extremely low levels of 
helper virus contamination [33] for large animal preclinical studies [34-39]. Indeed, using this 
improved system [33], cGMP grade HDAd has been manufactured to treat patients with anemia with 
very encouraging results [159]. In addition to the Cre/loxP system, the analogous FLP/frt systems have 
also been developed for the production of HDAds [40,41] although refinement of these systems have 
not progress as far. 

One of the most attractive features of HDAd vectors is the long term expression of the transgene, 
which will be discussed in detail below. In this regard, Jager et al. have recently shown that compared 
to plasmid non viral DNA, the HDAd genome, which exists predominantly as linear monomers in the 
nucleus of the cell, seems to be more stable [42,43]. Several potential mechanism that could explain 
the persistence of HDAd genome have been proposed by the authors: HDAd genomes 1) replicate 
episomally, 2) possess a nuclear retention signal, 3) circularize, 4) integrate or 6) associate with 
histones [43]. Further investigations are needed to fully elucidate this phenomenon to permit the 
manipulation of HDAd genome in order to render it even more stable and safe. Some other important 
considerations concerning HDAd construction and production are the vector genome size for 
encapsidation and the composition of the stuffer DNA. Vector genome size below 27Kb were 
inefficiently packaged and undergo DNA rearrangement to produce larger genome closer to the wild 
type Ad5 genome size (approximately 30Kb) [31]. Vector genome sizes above the maximum 
packaging capacity were not efficiently packaged [31]. Packaging of viral DNA that is too small 
results in destabilized virions, which would result in a growth disadvantage [44]. Since the minimal Ad 
cis-acting sequences and the transgene are usually below the minimal size required for efficient 
packaging, the inclusion of a DNA stuffer is needed. The choice of DNA stuffer influences the vector 
stability, replication efficiency and in vivo performance [32,45]. A recent report by Smith et al. showed 
that HDAd virion with a genome size of ~30 kb were 100-fold more sensitive to heat inactivation than 
viruses with larger genome sizes (>36 kb) and that increasing the genome size significantly improved 
heat stability, but these smaller genome vectors were equally stable at physiologic temperatures [46]. It 
has been shown HDAd with bacteriophage lambda DNA as stuffer resulted in a decrease in the level 
and duration of transgene expression secondary to a cytotoxic T lymphocyte (CTL) immune response 
directed against the peptides derived form the viral backbone [32]. Interestingly, substituting the 
lambda stuffer with eukaryotic DNA sequences such as human hypoxanthine-guanine 
phosphoribosyltransferase gene, resulted in significantly higher transgene expression in the absence of 
CTL immune response, demonstrating the influence of the stuffer composition on the immunological 
properties of HDAd [32].  
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Figure 2. The Cre/loxP system for generating HDAds. The HDAd contains only ~500 bp 
of cis-acting Ad sequences required for DNA replication (ITRs) and packaging (ψ); the 
remainder of the genome consists of the desired transgene and non-Ad stuffer sequences. 
The HDAd genome is constructed as a bacterial plasmid (pHDAd) and is liberated by 
restriction enzyme digestion (e.g., PmeI). To rescue the HDAd, the liberated genome is 
transfected into 293 cells expressing Cre and infected with a helper virus bearing a 
packaging signal (ψ) flanked by loxP sites. Cre-mediated excision of ψ renders the helper 
virus genome unpackageable, but still able to provide all of the necessary trans-acting 
factors for propagation of the HDAd. The titer of the HDAd is increased by serial 
coinfections of 293Cre cells with the HDAd and the helper virus. 

 
 

5. HDAd in vivo studies 

5.1. Liver directed gene therapy  

The liver is the key organ in many metabolic processes and is the affected organ in numerous 
inherited metabolic disorders. Gene therapy strategies aimed at targeting the liver offer several 
advantages: the fenestrated structure of its endothelium permits exposure of the parenchymal cells to 
systemically delivered vector, transduced hepatocytes permit the secretion of the vector encoded 
transgene product, making the liver a factory for production and secretion of therapeutic proteins. To 



Viruses 2010, 2              
 

 

1892 

date, numerous examples of in vivo liver-directed gene therapy for disease models using HDAd have 
been reported. In general, all of these studies have demonstrated the tremendous therapeutic potential 
of HDAd vectors.  

Atherosclerosis is a common and complex pathological process characterized by intimal foam cell 
accumulation and extracellular matrix deposition in medium and large-sized arteries. A practical model 
for this disease is the apolipoprotein E knockout (apoE-/-) mouse [47,48]. To evaluate the efficacy of 
HDAd versus FGAd, hypercholesterolemic apoE-/- mice were injected with HDAd or FGAd encoding 
the mouse apoE cDNA (HD-Ad5-cE or FG-Ad5-cE) or a HDAd bearing the mouse genomic apoE 
locus (HD-Ad5-gE) [47]. Intravenous injection of apoE deficient mice with FG-Ad-cE or HD-Ad-cE 
resulted in a rapid increase of ApoE protein in the serum with a concomitant fall in plasma cholesterol 
levels to within normal range. However, in sharp contrast to FG-Ad-cE, in which the cholesterol level 
returned to the pathological levels within about 14 weeks, normalization of cholesterolemia by  
HD-Ad-cE lasted about a year before gradually increasing. Intravenous injection of HD-Ad5-gE 
resulted in complete and immediate drop of plasma cholesterol to normal levels, staying within the 
normal range for the rest of the natural lifespan of the animal (about 2.5 years). Further analysis by 
quantitative morphometry of the aorta showed the absence of atherosclerotic plaques at two years after 
the HDAd injection. These results demonstrated the superiority of HDAd over FGAd and also that 
genomic based transgenes may be more effective than cDNA based transgenes.  

Simple re-administration of the vector when the transgene expression fades is precluded by 
neutralizing anti-Ad antibodies generated following the first administration. Indeed, mice previously 
injected with HD-Ad5-cE could not be successfully re-injected again. One potential solution is to use a 
different HDAd serotype for re-injection. In order to evaluate this strategy, Kim et al. generated a 
serotype 2 version of HD-Ad5-gE (HD-Ad2-gE) [47] and showed that it could be successfully 
administered to mice previously treated with the serotype 5 (HD-Ad5-gE) to re-gain the expression of 
ApoE protein and lower plasma cholesterol levels. In this study, the authors also assessed the toxicity 
associated with the vectors and found that the FG-Ad5-cE vector resulted in significant hepatotoxicity 
as indicated by significant elevation of AST/ALT (>10- to 20-fold), whereas no such evidence of 
toxicity was associated with any of the HDAd vectors, even after a second administration with the 
serotype 2 HDAd [47]. In conclusion, this study demonstrated that: 1) a single intravenous injection of 
HDAd results in life-long expression of the therapeutic transgene and permanent phenotypic correction 
of a genetic disease, 2) the large cloning capacity of the HDAd allows for the delivery of the 
transgenes in their native genomic context, which resulted in superior kinetics and duration of the 
expression, 3) negligible toxicity was associated with HDAd administration, 4) administration of an 
alternative serotype HDAd is effective at circumventing the humoral immune response generated by 
the initial treatment.  

Crigler-Najjar syndrome type I is a severe inborn error of bilirubin metabolism due to mutations in 
the uridinediphosphoglucuronate glucuronosyltransferase (UGT1A1) gene. Affected patients have 
increased serum bilirubin levels which may be life-threatening. Because of the risk of brain damage, 
patients are often treated with liver transplantation [49]. Toietta et al. [50] showed that a single 
systemic injection of HDAd expressing UGT1A1 in Crigler-Najjar rats resulted in life-long expression 
of UGT1A1 and permanent phenotypic correction of the hyperbilirubinemia.  
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HDAd liver-mediated gene transfer can be considered an important tool for numerous diseases 
beyond monogenic disorders. An interesting application of HDAd for the treatment of diabetes 
mellitus has also been reported. In this study, two HDAds, one expressing Neurod1 (a transcription 
factor expressed in developing and adult β-cells of the pancreas) and another expressing betacellulin  
(a growth factor specific for β-cells), were co-injected into diabetic mice [51]. The results showed a 
normalization of glucose levels for the duration of the experiment (at least 120 days). This study 
showed that the manipulation of pancreatic precursor present in the liver, through the expression of 
critical factors for their development/differentiation by HDAd-liver directed gene therapy, can 
efficiently revert the diabetic phenotype in an animal model.  

An application of HDAd liver-directed gene therapy aimed at silencing a target gene by using short 
hairpin RNA (shRNA) has been recently reported. In this study, HDAd expressing shRNA directed 
against a transcription factor (SREBP1), which is upregulated in obese mice, showed a reduction in 
body weight [52]. In another application, the authors demonstrated the ability of HDAd-shRNA to 
silence the expression of specific mouse genes by approximately 75-90% [53]. It is remarkable that in 
contrast with previous studies showing severe toxicity and lethality following administration of AAV 
encoding shRNA, the HDAd expressing shRNA was well tolerated and showed only mild or low 
hepatotoxicity [53]. One of the major issues encountered with AAV shRNA vectors is the saturation of 
the exportin-5 pathway, which shuttles cellular micro-RNA (mi-RNA) from the nucleus to the 
cytoplasm, and is thought to be involved in the observed toxicity with AAV [54]. In contrast, a similar 
mechanism was not seen with HDAd expressing shRNA [52]. These encouraging results with HDAd-
shRNA may pave the way to a variety of applications involving the silencing of dominant mutations 
causing genetic and acquired diseases.  

The impressive duration of transgene expression observed in rodents has been recapitulated in large 
animal models. In one study, two hemophilia B dogs injected 3 x 1012 vp/Kg of HDAd expressing the 
canine factor IX resulted in a sustained phenotypic improvement of the bleeding diathesis for the 
duration of the experiment of at least 604 and 446 days [35]. Another group reported the correction of 
hemophilia A in dogs for several months with a minimal observed liver toxicity [55]. Studies 
conducted in nonhuman primates convincingly demonstrated that HDAd was superior to FGAd with 
respect to duration of transgene expression and liver toxicity. In one of these studies, three baboons 
were intravenously injected with HDAd expressing hAAT (human α-1 anti-tripsin) [56]. hAAT 
expression persisted for more than one year in two of the three animals. It was significant that no 
abnormalities in blood cell counts and liver enzymes were observed in these three baboons. In contrast, 
FGAd expressing hAAT generated a cellular immune response directed against the transduced cells 
causing loss of transgene expression. It was demonstrated that viral protein expressed from the FGAd 
viral backbone contributed to this loss [56]. These and other studies provide compelling evidence for 
using HDAd to treat genetic disorders. 

5.1.1. Nonlinear dose-response to hepatocyte transduction  

In the aforementioned studies, relatively high vector doses were used to achieve efficient hepatic 
transduction. Indeed, there is a non linear dose-response to the vector with high doses required for 
efficient hepatocyte transduction. This results in widespread vector dissemination as well as dose-
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dependent activation of the innate immune response, resulting in acute toxicity with potentially severe 
and lethal consequences. This acute activation of the innate immune response is characterized by high 
levels of serum inflammatory cytokines and chemokines within a few hours post-injection. Kupffer 
cells (KC) in the liver play a major role in this non-linear dose-response by taking up the majority of 
the viral particles that reach the liver, precluding hepatocyte transduction. Furthermore, systemic 
administration of Ad vectors likely results in widespread transduction of a large number of 
extrahepatic tissues, which also contribute to inefficient hepatocytes transduction [57,58].  

Hepatocyte transduction in vivo doses not seem to be mediated by CAR receptor-and/or integrin but 
involve the interaction of Ad vector with bloodborne components such as coagulation factors and 
complement factors. Recent studies showed that pretreatment of mice with warfarin before Ad5 vector 
injection, abrogates liver transduction. Warfarin, which prevents the maturation and secretion of 
functional vitamin K–dependent coagulation factors, inactivates several proteins belonging to the 
coagulation cascade pathway (factors II, VII, IX and X, anticoagulant protein C) and presumably 
inhibits the interaction between these factors and Ad5 vectors. It has been proposed that coagulation 
proteins act as a bridge between hepatocytes and Ad5 vector [59-63]. Recently, the mechanism by 
which factor X interact with Ad5 and promote the transduction of hepatocytes has been unraveled [64]. 
Electron cryomicroscopy studies determined that factor X binds within cavities formed by trimeric 
hexon proteins and involves interaction with the Ad5 hexon hypervariable regions [64]. This 
interaction promotes the binding of the Ad5–factor X complex to cellular heparan sulfate 
proteoglycans (HSPGs) and consequently, utilization of HSPGs as receptors by the Ad5–factor X 
complex, and not CAR. This seems to be important for liver transduction by Ad5 after systemic 
administration in vivo. Notably, in contrast with the species C serotypes Ad5 and Ad2, which have 
been shown to transduce hepatocyte after systemic injection, species B Ad35 and species D Ad26 have 
a weak if not absent binding to factor X and do not transduce the liver [65]. However, it is now clear 
that despite the fact that factor X facilitates Ad5 entry into hepatocytes, it is not required for trapping 
of vectors in the liver. Several other mechanisms contribute to the adenovirus sequestration by the liver 
[57], including: a) trapping of the virus by liver Kupffer cells and sinusoidal cells [66-68], b) Ad5 
penton RGD motif-mediated interactions with liver endothelial cells and hepatocytes with consequent 
retention of the viral particle in the space of Disse [57], and platelets in blood may contribute 
significantly to sequestration in the liver reticulo-endothelial system [69]. Di Paolo et al. [57] showed 
that simultaneous treatment of mice with clodronate liposomes, which deplete Kupffer cells and 
warfarin results in only a minimal reduction in sequestration in the liver. In addition, antibodies both 
specific and non specific for Ad, may also play a significant role in the non linear dose-response. 
Studies have shown that the threshold effect to hepatic transduction by Ad is reduced in antibody 
deficient Rag-1 and µMT mice [66,70]. One possible interpretation is that opsonization of the virion by 
antibodies may enhance the efficiency of Fc-receptor mediated uptake by Kupffer cells.  

5.1.2. Immunobiology of HDAd and pathogenesis of the acute toxicity 

Adenoviruses, along with other microorganisms, following infection, are subject to the host 
immune response, which has evolved and adapted as a defense to fight off the pathogen invasion. 
Although early generation of Ad vectors are unable to replicate their genome, they still share several 
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features with the wt Ad counterpart. Therefore, systemic delivery of these vectors in animals or 
humans triggers an immune reaction, with potentially severe consequences for the host. Systemic 
delivery of FGAd vectors is known to induce a potent cellular adaptive immune response against the 
viral components and the transgene, and a non-specific but acute innate immune response. The 
immune reaction following FGAd administration in rodents or non human primates has been well 
characterized and comprises two phases. The first phase is mediated by the capsid and the second by 
expression of viral genes. After systemic injection of FGAd, the earliest phase occurs within minutes, 
is characterized by acute production of pro-inflammatory cytokines and chemokines such as 
Interleukin-6/12, RANTES (regulated upon activation, normal T cell expressed and secreted), 
macrophages chemoattractant protein-1 (MCP-1), interferons and others, and its severity is dose-
dependent [34,71] .The high level of serum inflammatory cytokines and chemokines results in 
systemic inflammatory response syndrome and multiple organ disfunction syndrome [4]. The second 
(e.g. chronic) phase lasts for days and occurs only with FGAd, and is associated with CTL mediated 
clearance of vector-transduced cells. It has been demonstrated that the first phase does not require 
transcription of viral genes but is initiated by the interaction of the viral capsid with the cells of the 
immune system [72]. Indeed, this acute toxicity is lethal in non human primates with both FGAd and 
HDAd at relatively high doses [34,71]. The innate immune response following intravascular 
administration of FGAd and HDAd vectors appears identical, and is complex and multifactorial.  

The important role of pattern recognition receptor (PRR), such as Toll-like receptors (TLR)-9 and 
TLR-2 in triggering the innate immune response has recently emerged [73]. TLR-2 is associated with 
the cellular membrane and is probably involved in the recognition of the capsid proteins [74,75]. 
However, the adenoviral ligand to TLR-2 has yet to be identified. TLR-9 is an endosomal receptor and 
recognizes the DNA component of the Ad vectors [76-78]. Ad vector interaction with these two 
sensor-receptors engages a complex intracellular pathways through the activation of myeloid 
differentiation primary response gene 88 (MyD88) that culminate in the massive production of 
cytokine and chemokines, interferon (IF)-α and β and triggers dendritic cells (DCs) maturation and 
development of T-cell and B-cell responses against the Ad vector components [79]. The type I-IFs  
(α and β) activate natural killer (NK) cells and have a predominant role in the subsequent regulation of 
the innate immune response machinery against the vector [80]. Subsequent activation of 
chemoattractant protein (MIP-2), Interleukin-1 and tumor necrosis factor contribute to leukocytes 
infiltration in the target tissue. NK cells activation releases several cytokines and promotes an adaptive 
immune response to the vector [81].  

Importantly, Ad vectors elicit the innate immune response either through MyD88/TLR or in an 
independent pathway depending on the cell type [73,82]. For example, DCs uses both MyD88 and 
TLR-9 for cytokine production, whereas activation of peritoneal macrophages and subsequent release 
of cytokines is independent of MyD88/TLRs system [73]. In the MyD88/TLR independent activation 
of innate immune response, double stranded viral DNA is recognized by a cytosolic molecular 
complex known as the inflammasome. The inflammasome consists of NALP3 and ASC adaptor 
protein complex, which induces maturation of pro-IL-1β in macrophages after the interaction with the 
viral DNA. This mechanism seems to be a key event in the innate immune response to Ad vectors and 
other DNA viruses. Another recent study by Di Paolo et al. identifies IL-1α-IL-1receptor-I (IL-1R-1) 
as a key pathway allowing for the activation of pro-inflammatory responses to the virus in 
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macrophages, independently of recognition of the virus-associated nucleic acid by intracellular PRR 
[83]. The authors showed that the IL-1α-mediated response requires a selective interaction of virus 
RGD motifs with macrophage β3 integrins in response to Ad vector, leading to production of 
inflammatory cytokines and chemokines [83].  

As already mentioned in the previous section, Ad vectors can also interact with various bloodborne 
components, which affects the efficiency of liver transduction and the tissue biodistribution. Moreover, 
blood factors including complement protein, coagulation system and both neutralizing and non-
neutralizing antibodies may contribute to the acute toxicity. Ad has been shown to bind and activate 
the complement components including C3 and C4BP in the classical and alternative complement 
pathways [84,85]. Complement and antibody interactions with Ad vectors result in an acute response 
with secretion of cytokines and chemokines [84]. These latter interactions promote the adhesion and 
migration of infiltrating leukocytes and platelet aggregation. Thrombocytopenia is caused by 
interaction between adenoviral particles and the coagulation system, resulting in formation of platelet-
leukocyte aggregates [81,86].  

It is worth mentioning that recombinant AAV (Adeno associated virus) vectors, like HDAds, are 
devoid of all viral gene sequences. In preclinical studies for liver-directed gene therapy, AAV vectors, 
similarly to HDAd, have shown to provide long-term transgene expression in mouse, dog and non 
human primates [87,87-91]. Despite these encouraging results, a human clinical trial for hemophilia B 
with AAV2 showed an unexpected outcome: subjects of the study developed transient elevation of 
liver enzymes and loss of FIX transgene expression after a few weeks secondary to a CTL immune 
response mediated by the re-activation of pre-existing AAV capsid-specific CD8+T memory cells [92]. 
This CTL response occurred in the absence of viral gene transcription and is due to a cross-
presentation of the AAV capsid input proteins through the major histocompatibility complex (MHC)-I 
[93]. Based on this experience with AAV, it will be important to determine whether a similar immune 
reaction will occur in humans following transduction by HDAd. Previous in vitro studies suggested 
that the induction of anti-Ad CTL is similar with either FGAd and HDAd [94] and that de novo 
expression of viral genes from Ad backbone is not a pre-requisite for elicitation of CTL immune 
response [95]. In addition, studies performed in naïve mice indicated that the key difference between 
FGAd and HDAd is that both initiate anti-Ad CTL against tranduced hepatocytes, but only FGAd-
transduced cells are cleared, probably due to the leaky expression of viral genes [3]. Finally, a recent 
study showed that pulmonary delivery of HDAd in mice results in eliciting CD8+ T cells that are able 
to trigger an adaptive immune response against the transduced cells even at low dose of vector [96,97]. 
However, comparative analysis between FGAd and HDAd are needed to address the role of the dose, 
species, and pre-immunization status of the host. Since the majority of the human have pre-existing 
immunity to Ad5, it may be necessary to develop strategies to prevent adaptive immune response 
against HDAd transduced cells before clinical translation. .  

5.1.3. Overcoming the threshold effect and the acute toxicity 

Strategies to overcome the hepatic threshold effects of transduction while reducing the systemic 
vector dissemination are highly desirable to improve the therapeutic index of HDAd for liver-directed 
gene therapy. Several approaches have been investigated and some are currently under investigation. 
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Because the severity of the acute response is dose-dependent, some of these approaches are aimed at 
preferential targeting of the vector to hepatocyte thereby allowing for the use of lower vector doses. 
For example, injection of HDAd directly in the surgically isolated liver of nonhuman primates was 
shown to achieve higher efficiency hepatic transduction with reduced systemic vector dissemination, 
and stable, multi-year transgene expression without chronic toxicity [11]. However, the invasiveness of 
this method makes it clinically unattractive. Several studies suggested that the liver microarchitecture 
plays a prominent role in the liver transduction efficiency by Ad vectors. The size of the sinusoidal 
endothelial fenestrae (SEF) of the liver, which is approximately 100 nm, plays a critical role in 
hepatocyte transduction by Ad since the Ad virion size is ≥100 nm. It has been shown that there is a 
direct correlation between the size of the SEF and the efficiency of hepatocyte transduction following 
systemic administration of Ad [98,99]. Therefore, physical or chemical methods to enlarge SEF 
diameter could have a positive impact on the therapeutic index of Ad vectors, by increasing hepatocyte 
transduction with lower vector doses thereby reducing the acute toxicity. The size of the SEF can be 
enlarged by means of drugs such as Na-decanoate or N-acetylcysteine [98], combined with transient 
liver ischemia or pretreatment with the neuropeptide vasoactive intestinal peptide (VIP) [100] among 
others. Another interesting approach to enlarge the SEF in rodents is increasing the intrahepatic 
pressure by hydrodynamic injection (h.i.), a technique which involves the rapid tail vein injection of 
large volumes [101-103]. In mice, h.i. of HDAd results in improved hepatocyte transduction with 
concomitant reduction of the systemic dissemination of the vector [102]. However, further studies are 
necessary to determine the real clinical potential of these SEF enlarging drugs, and h.i. as performed in 
rodents is not suitable for human application due to the requirement of rapid, large volume injection. 
Interestingly, h.i. studies suggested that high efficiency of hepatic transduction does not, at least alone, 
necessarily provoke a potent inflammatory response and that systemic dissemination of the vector may 
play a major role in the severity of the inflammatory response [102]. A clinically attractive method of 
delivering HDAd which mimics h.i. has been developed for large animals by using balloon occlusion 
catheters [37]. In this approach, referred as pseudo-hydrodynamic injection, hepatic venous outflow is 
occluded using two balloon occlusion catheters percutaneously placed in the inferior vena cava (IVC), 
above and below the hepatic veins (HV). An increase in intrahepatic pressure with this method is 
achieved because blood that enters the liver from the hepatic artery (HA) and portal vein (PV) remains 
unobstructed, thus mimics the high pressures achieved by systemic hydrodynamic injections in mice. 
this approach resulted in high efficient liver transduction with minimal toxicity and long-term gene 
expression [37]. More recently, an improved minimally invasive balloon occlusion method was 
reported to achieve high efficiency hepatocyte transduction using clinically relevant low HDAd doses 
(Figure 3). In this method, a single sausage shaped balloon was inflated in the inferior vena cava (IVC) 
to occlude the hepatic venous outflow and the HDAd was injected directly into the liver via the hepatic 
artery resulting in up to 80-fold higher levels of transgene expression compared to the systemic 
administration which persisted for more than 2.5 years [38]. Acute toxicity associated with this method 
of HDAd delivery was mild to moderate and transient. 

Alternative strategies to attenuate the innate immune response are currently under investigation. 
One potential approach to reduce the visibility of the Ad vector to the immune system is the alteration 
of the capsid surface by virion encapsidation with cationic liposome [104] which resulted in 70-80% 
decrease in serum cytokines compared to unencapsidated virions without compromising the hepatic 
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transduction efficiency. Another approach consists in the administration of PEGylated Ad vectors 
which resulted in a 50% to 70% decrease in serum cytokine compared to un-PEGylated Ad [105-107]. 
In a recent study the combination of methylprednisolone, an anti-inflammatory glucocorticoid, and 
PEGylated Ad potently inhibited IL-6 elevation [108]. Finally, it has been reported that a single 
administration of dexamethasone, another anti-inflammatory glucocorticoid, prior to Ad administration 
was able to significantly reduce both innate and adaptive immune response [109]. 

Figure 3. (A) A sausage-shaped balloon catheter is positioned in the inferior vena cava 
(IVC) under fluoroscopic guidance. Inflation of the balloon results in hepatic venous 
outflow occlusion from the hepatic veins (HV). The HDAd is administered by injection 
through a percutaneously positioned hepatic artery (HA) catheter. (B). Serum levels of the 
reporter baboon α-fetoprotein (bAFP) following administration of 3x10e10 vp/kg of a 
HDAd expressing bAFP into baboons using the balloon method described above (squares) 
or by simple peripheral intravenous injection (circles). The balloon method of vector 
delivery yielded up to 80-fold higher level of transgene expression compared to peripheral 
intravenous injection of vector, and transgene expression persisted at high levels for at least 
2.5 years. 

 
 

5.2. Gene therapy of Cystic Fibrosis lung disease 

Cystic fibrosis (CF) is the most common life-limiting autosomal recessive disease, and it is 
estimated that 1 in 2500 Caucasian newborns are affected with CF although higher frequencies have 
been found in inbred population groups such as the Hutterites in Alberta, Canada (incidence of 1 in 
313), Afrikaners in South Africa (1 in 355) and French Canadians (1 in 895) [110]. CF is a life-
threatening disease and is characterized by chronic lung infections and inflammation that results in a 
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life expectancy of 30-35 years [111]. The CF gene, termed CFTR (cystic fibrosis transmembrane 
conductance regulator), is a chloride channel expressed on the apical side of the airway epithelial cells. 
The lack of CFTR in CF patients causes a defect in water and ions exchange through the airway 
epithelium resulting in formation of thick mucus and subsequent lung inflammation and infection.  

Gene therapy strategies are highly desirable and attractive for CF because it is a monogenic disease 
with the main pathology in the lung, which is relatively easy to access for treatment. Theoretically, one 
single administration of a gene delivery vector expressing CFTR could be effective in restoring the 
protein activity and cure the disease.  

Several methods and strategies have been investigated and Ads are amongst the most utilized 
vectors. In fact, FGAds have been extensively pursued for the treatment of CF in animal models as 
well as in humans. Unfortunately, they have shown to be inadequate, having numerous disadvantages 
and serious shortcomings. The first obstacle encountered was the absence of the CAR receptors on the 
apical surface of the airway epithelial cells, which constitutes a barrier to adenovirus-mediated gene 
delivery in vivo. It was discovered that the CAR resides on the basolateral surface of the airway 
epithelial cells and that the tight junctions prevent the interaction between Ad and its receptor, 
precluding efficient transduction [112,113]. Another drawback that is associated with the use of FGAd 
is the adaptive immune response elicited by the residual viral gene expression from the vector 
backbone. Indeed, pulmonary delivery of FGAd in non human primates and human results in a dose-
dependent inflammation and pneumonia [114-117]. In order to overcome the barrier represented by the 
absence of apical receptors, several strategies have been pursued based on the transient disruption of 
tight junctions. It has been shown that pre-treatment with EGTA, EDTA, polycations and other agents 
[118-120] is able to relax the tight junction and improve the delivery of Ad vectors into airway 
epithelia. To overcome the cytotoxicity and the adaptive immune response against FGAds, multiple 
deleted Ads have also been used. These vectors were able to reduce but not eliminate the inflammation 
and pneumonia which is likely due to a leaky expression of the viral late genes [121,122]. In contrast 
to FGAds, HDAds have shown to be very promising for the treatment of CF. Toietta et al. showed that 
HDAd delivered to the airway of mice resulted in an absence of pulmonary inflammation and the 
duration of transgene expression persisted at least for 15 weeks [5]. The studies with HDAd vectors 
have also shown that the human cytokeratin 18 promoter (K18) is expressed, similarly to the mouse 
CFTR, in the epithelium of the large airways and bronchioles and in sub-mucosal glands with a little 
expression in alveoli. Specifically, one study with HDAd encoding CFTR under K18 control delivered 
to CFTR-/- mice lung, showed the correct localization of the CFTR protein in the appropriate target 
cell types and the protection of the lungs from opportunistic infections [123]. This latter feature 
suggests that HDAd has the potential to reduce the susceptibility to opportunistic pathogens in CF 
patients. However, to successfully deliver the vector to the correct cell types in the above experiments, 
Koehler et al. pretreated CFTR-/- mice with EGTA to open the tight junctions. Despite the 
encouraging results obtained in these experiments, the requirement for two separate administrations, 
one for EGTA and one, 30 minutes later, for the HDAd vector, is suboptimal in terms of safety and 
efficacy. Indeed, to fully take advantage of EGTA pre-treatment, both the vector and EGTA need to be 
delivered in the same location, which is not guarantee in the case of two independent administrations. 
This issue was addressed by Koehler et al. [124] in another study in which they demonstrated the 
superior efficacy of HDAd vector formulated with 0.1% L-α-lysophosphatidylcoline (LPC). This 



Viruses 2010, 2              
 

 

1900 

specific formulation of the vector permitted one single efficient administration of HDAd along with 
the tight junction opening agent. However the intranasal delivery of the vector as performed in mice 
(spontaneous liquid inhalation) is not clinical relevant for larger animal and humans. To overcome this 
obstacle, Koehler et al. [124] used an intracorporeal nebulizing catheter (Aeroprobe) to aerosolize the 
HDAd-LPC solution directly into the trachea and lungs of rabbits. They showed that the HDAd 
administered in this way was able to achieve high level of transgene expression in the proximal and 
distal airway epithelium, from the trachea to terminal bronchioles (Figure 4). This strategy of 
delivering HDAd to rabbits has recently been applied to non human primates with similar encouraging 
results [125]. 

Disruption of tight junctions is clearly effective for increasing transduction of the airway and this 
treatment is well tolerated in animal models. Indeed, repeated aerosolization of EDTA into CF patients 
resulted in no harmful effects [126]. However, it would be highly desirable if this intervention could be 
avoided. Thus, development of modified HDAd able to transduce the airway epithelium via the apical 
surface would be very attractive. It should be pointed out that the aforementioned studies were 
performed in animal models with healthy airways and that transduction will likely be reduced in the 
lungs affected by multiple bacterial colonizations and thick mucus such as the human CF lungs. Up to 
now, efficacy of gene therapy has been only addressed in animal models with unaffected airways such 
as the CFTR knock-out mice and the nonhuman primates. The recently developed pig model for CF 
could potentially provide a better model for assessing the efficacy of experimental treatments in the CF 
lung disease [127]. However, several strategies can be envisioned to address this obstacle in the 
clinical setting. For example, severely affected CF patients may undergo commonly employed 
regimens to clear their lungs before gene transfer. This could include inhaled antibiotics (such as 
Tobramycin) and systemic intravenous anti-pseudomonal antibiotics (such as aminoglycosides, beta 
lactams, fluoroquionoes), pulmonary treatment with mucolytic agents (such as Pulmozyme), along 
with mechanical airway clearance to reduce the amount of mucus. Conducting gene transfer in CF 
patients with less affected lungs may be an alternative option, including the enrollment of younger CF 
patients with little or no lung disease. While somewhat controversial, this is not without precedence. 
Indeed, in a recent clinical trial using AAV, CF patients as young as 12 years of age were enrolled 
[128]. .In summary, while the thickened mucus remains a barrier for all gene transfer vectors (viral or 
nonviral) as well as for small molecule therapeutics we do not believe it to be insurmountable, 
especially considering the low levels of gene transfer that may be required which has been estimated to 
be 5 to 10% [129]. 
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Figure 4. Pulmonary transduction in rabbits following intratracheal aerosolization of L-a 
lysophosphatidylcholine and HDAd expressing LacZ under the control of the K18 
promoter. X-gal stained (A) trachea, (B) right upper lobe, (C) left lower lobe, (D) right 
lower lobe and (E) bronchus and bronchioles. 

 
 

5.3. HDAd for muscle-directed gene therapy 

Duchenne Muscular Dystrophy (DMD) is an X-linked lethal disorder that affects 1 in 3500 male 
births and is caused by genetic mutation in the dystrophin gene. The protein dystrophin is an essential 
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structural component of the skeletal muscle cell membrane and its deficiency results in instability of 
the muscle cell and fiber degeneration. Since there is a lack of effective treatments, gene therapy 
strategies aimed at transferring normal copies of the dystrophin gene into the muscle fibers of patients, 
appears one of the most desirable options to cure this disease. The cDNA for full-length dystrophin is 
approximately 14 kb, far above the size of most of gene therapy vectors [130]. HDAd has opened the 
possibility to treat DMD animal models due to its large cloning capacity (up to 37 kb) which can 
accommodate up to two copies of the dystrophin gene [131,132]. HDAds expressing full-length 
dystrophin gene have been shown to restore the full dystrophin-glycoprotein complex in the skeletal 
muscle. In these studies, neonate skeletal muscles of mdx mice (a model for DMD) injected with 
HDAd were able to express dystrophin for the duration of the experiment (up to one year) resulting in 
the amelioration of the pathogenesis of the disease and in a reduced level of muscle degeneration with 
functional correction of muscle contractility [131]. However a significant inflammatory response was 
been observed which was accompanied by humoral response against the murine dystrophin protein 
expressed by transduced muscle. This immune response may also occur in humans, as many DMD 
patients have a large dystrophin gene deletion. Therefore the dystrophin encoded by gene transfer 
vectors may be seen as a foreign antigen with the consequent development of an adaptive immune 
response and loss of long-term phenotypic correction. One potential strategy to bypass the immunity 
against the protein is the co-delivery of immunomodulatory molecules able to blunt the innate and 
adaptive immune response. Jiang et al. demonstrated that blockade of the costimulatory interaction 
between naïve T cells and antigen-presenting cells by co-delivering CTLA4Ig alone or in combination 
with CD40Ig, diminishes innate and adaptive immunity induced by HDAd-dystrophin and prolong the 
transgene expression [4,133,134]. HDAd have also been explored for in utero gene therapy for DMD. 
The immaturity of the fetal immune system accompanied by the survival advantage of the muscle cells 
expressing dystrophin over the dystrophin-deficient fiber, makes this approach very attractive. The 
application of this strategy in vivo, showed that HDAd is less toxic compared to FGAd and capable of 
driving stable transgene expression and restoration of the sarcoglycan complex [135]. In order to be an 
effective treatment for this disease, dystrophin needs to be expressed by multiple muscles, including 
the diaphragm because respiratory dysfunction is a main cause of death among DMD patients  
[136-138]. Therefore, diaphragm-directed gene therapy has been investigated in mdx mice with HDAd 
which leads to reversal of functional abnormalities of dystrophic diaphragms for at least 30 days [138].  

The muscle is a very attractive target for gene transfer because, like the liver, it can be used as a cell 
factory for production and secretion of therapeutic proteins. In fact, skeletal myofibers constitute about 
40% of the total body mass, have a relatively long half-life and can be easily transduced in vivo 
because of easy access. High seroprevalence of pre-existing anti-Ad neutralizing antibody in the adult 
human population represents an obstacle for intravenous delivery, and it has been shown that this 
could be minimized by local delivery of the vector. Interestingly, when HDAd was injected 
intramuscularly (i.m) into previously immunized mice, stable transgene expression could be achieved; 
in contrast, the same mice injected i.m. with FGAd lost transgene expression after three week [139]. 
This study also showed that even though it is possible to administer HDAd into pre-immunized mice, a 
30- to 100 fold higher dose (compared to naïve mice) was required to achieve 87% and 100% 
transduction of the muscles. 

Finally, another hurdle that hampers muscle-directed gene therapy with Ad vectors is that mature 
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muscle is not transduced efficiently because of low level of CAR receptor expression on the surface of 
adult muscle cells. Bramson L. et al, showed that the incorporation of polylysine into the H-I loop of 
the adenoviral fiber protein can improve HDAd transduction of mature muscle cells, giving up to  
21- fold increase compared to the unmodified counterpart [140]. 

5.4. Gene therapy for brain and eye 

Because of their intrinsic ability to infect post-mitotic cells and to mediate long-term transgene 
expression, Ad vectors constitute a very promising gene-delivery platform for central nervous system 
(CNS) disorders [141]. The above features are critical in order to successfully treat disorders ranging 
from simple monogenic disorders (such as Lesh-Nyhan syndrome, leukodistrophies, lysosomal storage 
diseases, amyotrophic lateral sclerosis among others) to multifactorial diseases including Parkinson’s 
disease and Alzeimer’s disease.  

Following systemic administration of an FGAd vector, a rapid decline in transgene expression has 
been observed in peripheral organs whereas the same FGAd vector is able to stably transduce adult 
brain cells [142-144]. Indeed, intraparenchymal injection of FGAd vectors into the brain elicits a 
minimal, transient local inflammation which does not compromise the duration of transgene 
expression. One possible explanation for this phenomenon is the “immune-privileged” status of the 
brain, being relatively protected from the effect of the immune response. In fact, Ad injections into the 
brain result in an ineffective T cell response against brain-transduced cells in presence of viral protein 
expression from the backbone of FGAd vectors [145,146]. However, the immune system can respond 
to antigenic stimuli in the brain if the host organism has pre-existing immunity against that antigen, 
which would be the case for pre-immunization or re-administration with the same vector. In this case, 
loss of transgene expression and chronic inflammation are observed following FGAd injection into the 
brain [147]. In contrast, injection of HDAd into the brain of pre-immunized mice does not show these 
detrimental effects. Instead, HDAd was able to mediate significantly higher levels of transgene 
expression with substantially reduced immune response [147,148]. Recently, interesting results have 
been reported by delivering HDAd into the cerebrospinal fluid through a lumbar puncture in primates 
[149]. In this study, it was shown that injection of an HDAd vector by lumbar puncture into the 
cerebrospinal fluid (CSF) of non-human primates allows long-term (three months) transduction of 
neuroepithelial cells. This result was also observed in monkeys bearing a pre-existing anti-adenoviral 
immunity [149]. Another study from the same authors showed that by using the same route of 
administration in immune-competent mice, it was possible to deliver HDAd expressing anti-
inflammatory cytokines and achieve long term transgene expression without any signs of toxicity 
[150]. This latter strategy makes HDAd-CSF gene delivery a very attractive therapeutic approach for 
brain inflammatory condition such as multiple sclerosis.  

Encouraging results have been obtained in a study in which stereotactic injection of HDAd 
expressing a short hairpin RNA to silence the Huntington disease gene was able to inhibit Huntington 
protein aggregation [151,152]. However, the vector had limited brain distribution not extending 
beyond a few millimeters from the needle track, making this approach still far from optimal. The brain 
is a complex organ with intricate interconnections between various cell types and therefore it could be 
challenging to develop a targeting strategy with HDAd for the correction of diseases with diffuse 



Viruses 2010, 2              
 

 

1904 

involvement. Nevertheless, diseases requiring localized gene delivery to a discrete set of neurons such 
as Parkinson’s disease or brain tumors may be more suitable. 

HDAd vectors have recently emerged as an important therapeutic strategy for brain tumor 
treatment. In a preclinical study for the treatment of glioblastoma multiforme, intratumoral injection 
with HDAd encoding the conditionally cytotoxic herpes simplex type 1 thymidine kinase (TK) and the 
immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Flt3L) was associated with increased 
survival and development of antiglioma immunological memory without signs of neuropathology or 
systemic toxicity [153]. Given the high risk that FGAd treatment of glioblastoma multiforme can be 
compromised by prior exposure to natural Ad infection, HDAd vectors could offer a safer and more 
effective treatment for patients with this type as well other types of brain cancer.  

There have been a limited number of studies investigating HDAd vectors for ocular gene therapy. In 
one study, HDAd vector was able to transduce and rescue cells from the neurosensory retina in a 
mouse model of retinal degeneration [154]. Moreover, HDAd vectors showed a great potential in 
targeting the retinal pigment epithelium following subretinal injection, without evidence of adverse 
immune reactions [155]. 

5.5. Ex vivo gene therapy in human patients 

HDAd has recently been used in a clinical trial to treat anemic chronic kidney disease (CDK) 
patients [159]. In this Phase I-II study, a small number of autologous dermal fibroblasts were removed 
from under the skin of anemic CDK patients under local anesthesia and transduced ex vivo with an 
HDAd expressing erythropoietin (EPO). Following transduction, the amount of EPO produced by the 
transduced cells was measured so that the precise number of transduced cells could be reimplanted 
subcutaneously to achieve the requisite dose of EPO. No adverse events were reported in this trial and, 
importantly, elevated hemoglobin levels were sustained for up to one year after a single treatment with 
the HDAd transduced cells. Significantly, this study also clearly demonstrates that HDAd can be 
manufactured under cGMP. 

5.6. HDAd as genetic vaccines 

FGAds have been developed to express antigens and have proven to be valuable genetic vaccines. 
Recent studies have shown that HDAd may be superior than FGAd for this application. For example, 
Harui et al. [156] compared the ability of FGAd and HDAd expressing β-galactosidase to generate an 
immune response in mice and found that HDAd generated a stronger T cell and antibody response 
against β-galactosidase than FGAd. Weaver et al. [157] also found that HDAd-based vaccines 
generated stronger immune responses against the encoded antigen than FGAd-vaccines in mice. In 
addition, administration of HDAd–based vaccines resulted in lower tissue damage and anti-Ad T cell 
responses than FGAd. Weaver et al. [157] also demonstrated that HDAd induced anti-HIV immune 
response in rhesus macaques. In a subsequent study, Weaver et al. [158], demonstrated that rhesus 
macaques vaccinated with HDAd expressing HIV-1 envelope protected the animals from subsequent 
mucosal SHIV challenge. Because most humans are seropositive for adenovirus serotype 5, HDAd 
vaccines based on serotype 5 may be minimally, if at all, effective. To overcome this, Weaver et al. 
used HDAd vaccines based on serotypes 1, 2 and 6 and showed that the presence of pre-existing 
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immunity to adenovirus serotype 5 in both the mice and rhesus macaques did not prevent successful 
vaccination [157,158]. These studies demonstrate the potential utility of HDAd as a genetic vaccine. 

6. Concluding remarks and future perspectives 

HDAd possess many characteristics that make them attractive vectors for gene transfer of a wide 
variety of applications. However, a major concern regarding clinical application of HDAd is the host 
innate inflammatory response against the vector capsid that occurs shortly after administration. This 
concern is primarily problematic for intravascular delivery as it does not appear as severe for other 
routes of administration. This innate immune response is multifactorial and its mechanism(s) remains 
largely unknown although some of the components involved are being progressively identified. Given 
the complexity of this reaction, it will be challenging to design strategies to minimize or reduce the 
severity of this response. Moreover, the fundamental differences among species make it difficult to 
predict the outcome in humans based on the result of the preclinical animal testing. Regardless of the 
multiple mechanisms involved, strategies to improve the transduction efficiency using lower vector 
doses are clinically attractive because the innate response is dose-dependent. Another problem is that 
most humans have pre-existing immunity to serotype 5 adenovirus. Since most current HDAd are 
based on serotype 5, concerns regarding reduced efficacy and increased toxicity in the face of pre-
existing immunity must be considered. Possible solutions to this problem include PEGlyation of the 
vector or using HDAds derived from different, less common serotypes or even HDAd derived from 
non-human adenoviruses. We are optimistic that these barriers will be surmountable as research into 
their solutions is ongoing.  

References and Notes  

1.  Paielli, D.L.; Wing, M.S.; Rogulski, K.R.; Gilbert, J.D.; Kolozsvary, A.; Kim, J.H.; Hughes, J.; 
Schnell, M.; Thompson, T.; Freytag, S.O. Evaluation of the biodistribution, persistence, toxicity, 
and potential of germ-line transmission of a replication-competent human adenovirus following 
intraprostatic administration in the mouse. Mol. Ther. 2000, 1, 263-274. 

2.  Muruve, D.A.; Barnes, M.J.; Stillman, I.E.; Libermann, T.A. Adenoviral gene therapy leads to 
rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. 
Hum. Gene Ther. 1999, 10, 965-976. 

3.  Muruve, D.A.; Cotter, M.J.; Zaiss, A.K.; White, L.R.; Liu, Q.; Chan, T.; Clark, S.A.; Ross, P.J.; 
Meulenbroek, R.A.; Maelandsmo, G.M.; Parks, R.J. Helper-dependent adenovirus vectors elicit 
intact innate but attenuated adaptive host immune responses in vivo. J. Virol. 2004, 78,  
5966-5972. 

4.  Brunetti-Pierri, N.; Ng, P. Progress and prospects: gene therapy for genetic diseases with helper-
dependent adenoviral vectors. Gene Ther. 2008, 15, 553-560. 

5.  Toietta, G.; Koehler, D.R.; Finegold, M.J.; Lee, B.; Hu, J.; Beaudet, A.L. Reduced inflammation 
and improved airway expression using helper-dependent adenoviral vectors with a K18 promoter. 
Mol. Ther. 2003, 7, 649-658. 



Viruses 2010, 2              
 

 

1906 

6.  Simonet, W.S.; Bucay, N.; Lauer, S.J.; Taylor, J.M. A far-downstream hepatocyte-specific control 
region directs expression of the linked human apolipoprotein E and C-I genes in transgenic mice. 
J. Biol. Chem. 1993, 268, 8221-8229. 

7.  Benihoud, K.; Yeh, P.; Perricaudet, M. Adenovirus vectors for gene delivery. Curr. Opin. 
Biotechnol. 1999, 10, 440-447. 

8.  Jozkowicz, A.; Dulak, J. Helper-dependent adenoviral vectors in experimental gene therapy. Acta 
Biochim. Pol. 2005, 52, 589-599. 

9.  Hong, S.S.; Karayan, L.; Tournier, J.; Curiel, D.T.; Boulanger, P.A. Adenovirus type 5 fiber knob 
binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid 
cells. EMBO J. 1997, 16, 2294-2306. 

10.  Tomko, R.P.; Xu, R.; Philipson, L. HCAR and MCAR: the human and mouse cellular receptors 
for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. U. S. A. 1997, 
94, 3352-3356. 

11.  Tomko, R.P.; Johansson, C.B.; Totrov, M.; Abagyan, R.; Frisen, J.; Philipson, L. Expression of 
the adenovirus receptor and its interaction with the fiber knob. Exp. Cell Res. 2000, 255, 47-55. 

12.  Bergelson, J.M. Receptors mediating adenovirus attachment and internalization. Biochem. 
Pharmacol. 1999, 57, 975-979. 

13.  Wickham, T.J.; Mathias, P.; Cheresh, D.A.; Nemerow, G.R. Integrins alpha v beta 3 and alpha v 
beta 5 promote adenovirus internalization but not virus attachment. Cell 1993, 73, 309-319. 

14.  Wickham, T.J.; Carrion, M.E.; Kovesdi, I. Targeting of adenovirus penton base to new receptors 
through replacement of its RGD motif with other receptor-specific peptide motifs. Gene Ther. 
1995, 2, 750-756. 

15.  Wickham, T.J. Targeting adenovirus. Gene Ther. 2000, 7, 110-114. 
16.  Leopold, P.L.; Ferris, B.; Grinberg, I.; Worgall, S.; Hackett, N.R.; Crystal, R.G. Fluorescent 

virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum. 
Gene Ther. 1998, 9, 367-378. 

17.  Leopold, P.L.; Kreitzer, G.; Miyazawa, N.; Rempel, S.; Pfister, K.K.; Rodriguez-Boulan, E.; 
Crystal, R.G. Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs 
after endosomal lysis. Hum. Gene Ther. 2000, 11, 151-165. 

18.  Greber, U.F.; Willetts, M.; Webster, P.; Helenius, A. Stepwise dismantling of adenovirus 2 during 
entry into cells. Cell 1993, 75, 477-486. 

19.  Ruben, M.; Bacchetti, S.; Graham, F. Covalently closed circles of adenovirus 5 DNA. Nature 
1983, 301, 172-174. 

20.  Amalfitano, A.; Hauser, M.A.; Hu, H.; Serra, D.; Begy, C.R.; Chamberlain,J.S. Production and 
characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted. J. Virol. 
1998, 72, 926-933. 

21.  Imperiale, M.J.; Kao, H.T.; Feldman, L.T.; Nevins, J.R.; Strickland, S. Common control of the 
heat shock gene and early adenovirus genes: evidence for a cellular E1A-like activity. Mol. Cell 
Biol. 1984, 4, 867-874. 



Viruses 2010, 2              
 

 

1907 

22.  Reddy, P.S.; Sakhuja, K.; Ganesh, S.; Yang, L.; Kayda, D.; Brann, T.; Pattison, S.; Golightly, D.; 
Idamakanti, N.; Pinkstaff, A.; Kaloss, M.; Barjot, C.; Chamberlain, J.S.; Kaleko, M.; Connelly, S. 
Sustained human factor VIII expression in hemophilia A mice following systemic delivery of a 
gutless adenoviral vector. Mol. Ther. 2002, 5, 63-73. 

23.  Yang, Y.; Nunes, F.A.; Berencsi, K.; Gonczol, E.; Engelhardt, J.F.; Wilson, J.M. Inactivation of 
E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat. 
Genet. 1994, 7, 362-369. 

24.  Yang, Y.; Nunes, F.A.; Berencsi, K.; Furth, E.E.; Gonczol, E.; Wilson, J.M. Cellular immunity to 
viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. U. S. A. 
1994, 91, 4407-4411. 

25.  Engelhardt, J.F.; Ye, X.; Doranz, B.; Wilson, J.M. Ablation of E2A in recombinant adenoviruses 
improves transgene persistence and decreases inflammatory response in mouse liver. Proc. Natl. 
Acad. Sci. U. S. A. 1994, 91, 6196-6200. 

26.  Engelhardt, J.F.; Litzky, L.; Wilson, J.M. Prolonged transgene expression in cotton rat lung with 
recombinant adenoviruses defective in E2a. Hum. Gene Ther. 1994, 5, 1217-1229. 

27.  Fang, B.; Wang, H.; Gordon, G.; Bellinger, D.A.; Read, M.S.; Brinkhous, K.M.; Woo, S.L.; 
Eisensmith, R.C. Lack of persistence of E1- recombinant adenoviral vectors containing a 
temperature-sensitive E2A mutation in immunocompetent mice and hemophilia B dogs. Gene 
Ther. 1996, 3, 217-222. 

28.  Lusky, M.; Christ, M.; Rittner, K.; Dieterle, A.; Dreyer, D.; Mourot, B.; Schultz, H.; Stoeckel, F.; 
Pavirani, A.; Mehtali, M. In vitro and in vivo biology of recombinant adenovirus vectors with E1, 
E1/E2A, or E1/E4 deleted. J. Virol. 1998, 72, 2022-2032. 

29.  O'Neal, W.K.; Zhou, H.; Morral, N.; guilar-Cordova, E.; Pestaner, J.; Langston, C.; Mull, B.; 
Wang, Y.; Beaudet, A.L.; Lee, B. Toxicological comparison of E2a-deleted and first-generation 
adenoviral vectors expressing alpha1-antitrypsin after systemic delivery. Hum. Gene Ther. 1998, 
9, 1587-1598. 

30.  Parks, R.J.; Chen, L.; Anton, M.; Sankar, U.; Rudnicki, M.A.; Graham, F.L. A helper-dependent 
adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral 
packaging signal. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13565-13570. 

31.  Parks, R.J.; Graham, F.L. A helper-dependent system for adenovirus vector production helps 
define a lower limit for efficient DNA packaging. J. Virol. 1997, 71, 3293-3298. 

32.  Parks, R.J.; Bramson, J.L.; Wan, Y.; Addison, C.L.; Graham, F.L. Effects of stuffer DNA on 
transgene expression from helper-dependent adenovirus vectors. J. Virol. 1999, 73, 8027-8034. 

33.  Palmer, D.; Ng, P. Improved system for helper-dependent adenoviral vector production. Mol. 
Ther. 2003, 8, 846-852. 

34.  Brunetti-Pierri, N.; Palmer, D.J.; Beaudet, A.L.; Carey, K.D.; Finegold, M.; Ng, P. Acute toxicity 
after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman 
primates. Hum. Gene Ther. 2004, 15, 35-46. 

35.  Brunetti-Pierri, N.; Nichols, T.C.; McCorquodale, S.; Merricks, E.; Palmer, D.J.; Beaudet, A.L.; 
Ng, P. Sustained phenotypic correction of canine hemophilia B after systemic administration of 
helper-dependent adenoviral vector. Hum. Gene Ther. 2005, 16, 811-820. 



Viruses 2010, 2              
 

 

1908 

36.  Brunetti-Pierri, N.; Ng, T.; Iannitti, D.A.; Palmer, D.J.; Beaudet, A.L.; Finegold, M.J.; Carey, 
K.D.; Cioffi, W.G.; Ng, P. Improved hepatic transduction, reduced systemic vector dissemination, 
and long-term transgene expression by delivering helper-dependent adenoviral vectors into the 
surgically isolated liver of nonhuman primates. Hum. Gene Ther. 2006, 17, 391-404. 

37.  Brunetti-Pierri, N.; Stapleton, G.E.; Palmer, D.J.; Zuo, Y.; Mane, V.P.; Finegold, M.J.; Beaudet, 
A.L.; Leland, M.M.; Mullins, C.E.; Ng, P. Pseudo-hydrodynamic delivery of helper-dependent 
adenoviral vectors into non-human primates for liver-directed gene therapy. Mol. Ther. 2007, 15, 
732-740. 

38.  Brunetti-Pierri, N.; Stapleton, G.E.; Law, M.; Breinholt, J.; Palmer, D.J.; Zuo, Y.; Grove, N.C.; 
Finegold, M.J.; Rice, K.; Beaudet, A.L.; Mullins, C.E.; Ng, P. Efficient, long-term hepatic gene 
transfer using clinically relevant HDAd doses by balloon occlusion catheter delivery in nonhuman 
primates. Mol. Ther. 2009, 17, 327-333. 

39.  McCormack, W.M.,Jr.; Seiler, M.P.; Bertin, T.K.; Ubhayakar, K.; Palmer, D.J.; Ng, P.; Nichols, 
T.C.; Lee, B. Helper-dependent adenoviral gene therapy mediates long-term correction of the 
clotting defect in the canine hemophilia A model. J. Thromb. Haemost. 2006, 4, 1218-1225. 

40.  Ng, P.; Beauchamp, C.; Evelegh, C.; Parks, R.; Graham, F.L. Development of a FLP/frt system 
for generating helper-dependent adenoviral vectors. Mol. Ther. 2001, 3, 809-815. 

41.  Umana, P.; Gerdes, C.A.; Stone, D.; Davis, J.R.; Ward, D.; Castro, M.G.; Lowenstein, P.R. 
Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors 
with negligible helper-virus contamination. Nat. Biotechnol. 2001, 19, 582-585. 

42.  Ehrhardt, A.; Xu, H.; Kay, M.A. Episomal persistence of recombinant adenoviral vector genomes 
during the cell cycle in vivo. J. Virol. 2003, 77, 7689-7695. 

43.  Jager, L.; Ehrhardt, A. Persistence of high-capacity adenoviral vectors as replication-defective 
monomeric genomes in vitro and in murine liver. Hum. Gene Ther. 2009, 20, 883-896. 

44.  Kennedy, M.A.; Parks,R.J. Adenovirus virion stability and the viral genome: size matters. Mol. 
Ther. 2009, 17, 1664-1666. 

45.  Schiedner, G.; Hertel, S.; Johnston, M.; Biermann, V.; Dries, V.; Kochanek, S. Variables affecting 
in vivo performance of high-capacity adenovirus vectors. J. Virol. 2002, 76, 1600-1609. 

46.  Soifer, H.; Higo, C.; Kazazian, H.H., Jr.; Moran, J.V.; Mitani, K.; Kasahara, N. Stable integration 
of transgenes delivered by a retrotransposon-adenovirus hybrid vector. Hum. Gene Ther. 2001, 12, 
1417-1428. 

47.  Kim, I.H.; Jozkowicz, A.; Piedra, P.A.; Oka, K.; Chan, L. Lifetime correction of genetic 
deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc. Natl. Acad. 
Sci. U. S. A. 2001, 98, 13282-13287. 

48.  Palinski, W.; Ord, V.A.; Plump, A.S.; Breslow, J.L.; Steinberg, D.; Witztum, J.L. ApoE-deficient 
mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific 
epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. 
Arterioscler. Thromb. 1994, 14, 605-616. 

49.  Strauss, K.A.; Robinson, D.L.; Vreman, H.J.; Puffenberger, E.G.; Hart, G.; Morton, D.H. 
Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-
Najjar disease. Eur. J. Pediatr. 2006, 165, 306-319. 



Viruses 2010, 2              
 

 

1909 

50.  Toietta, G.; Mane, V.P.; Norona, W.S.; Finegold, M.J.; Ng, P.; McDonagh, A.F.; Beaudet, A.L.; 
Lee, B. Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of 
helper-dependent adenoviral vector. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 3930-3935. 

51.  Kojima, H.; Fujimiya, M.; Matsumura, K.; Younan, P.; Imaeda, H.; Maeda, M.; Chan, L. NeuroD-
betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat. 
Med. 2003, 9, 596-603. 

52.  Witting, S.R.; Brown, M.; Saxena, R.; Nabinger, S.; Morral, N. Helper-dependent adenovirus-
mediated short hairpin RNA expression in the liver activates the interferon response. J. Biol. 
Chem. 2008, 283, 2120-2128. 

53.  Ruiz, R.; Witting, S.R.; Saxena, R.; Morral, N. Robust hepatic gene silencing for functional 
studies using helper-dependent adenovirus vectors. Hum. Gene Ther. 2008. 

54.  Grimm, D.; Streetz, K.L.; Jopling, C.L.; Storm, T.A.; Pandey, K.; Davis, C.R.; Marion, P.; 
Salazar, F.; Kay, M.A. Fatality in mice due to oversaturation of cellular microRNA/short hairpin 
RNA pathways. Nature 2006, 441, 537-541. 

55.  Brown, B.D.; Shi, C.X.; Powell, S.; Hurlbut, D.; Graham, F.L.; Lillicrap, D. Helper-dependent 
adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal 
accompanying toxicity in a canine model of severe hemophilia A. Blood 2004, 103, 804-810. 

56.  Morral, N.; O'Neal, W.; Rice, K.; Leland, M.; Kaplan, J.; Piedra, P.A.; Zhou, H.; Parks, R.J.; 
Velji, R.; guilar-Cordova, E.; Wadsworth, S.; Graham, F.L.; Kochanek, S.; Carey, K.D.; Beaudet, 
A.L. Administration of helper-dependent adenoviral vectors and sequential delivery of different 
vector serotype for long-term liver-directed gene transfer in baboons. Proc. Natl. Acad. Sci.  
U. S. A. 1999, 96, 12816-12821. 

57.  Di Paolo, N.C.; Van, R.N.; Shayakhmetov, D.M. Redundant and synergistic mechanisms control 
the sequestration of blood-born adenovirus in the liver. Mol. Ther. 2009, 17, 675-684. 

58.  Xu, Z.; Tian, J.; Smith, J.S.; Byrnes, A.P. Clearance of adenovirus by Kupffer cells is mediated by 
scavenger receptors, natural antibodies, and complement. J. Virol. 2008, 82, 11705-11713. 

59.  Parker, A.L.; Waddington, S.N.; Nicol, C.G.; Shayakhmetov, D.M.; Buckley, S.M.; Denby, L.; 
Kemball-Cook, G.; Ni, S.; Lieber, A.; McVey, J.H.; Nicklin, S.A.; Baker, A.H. Multiple vitamin 
K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. 
Blood 2006, 108, 2554-2561. 

60.  Parker, A.L.; McVey, J.H.; Doctor, J.H.; Lopez-Franco, O.; Waddington, S.N.; Havenga, M.J.; 
Nicklin, S.A.; Baker, A.H. Influence of coagulation factor zymogens on the infectivity of 
adenoviruses pseudotyped with fibers from subgroup D. J. Virol. 2007, 81, 3627-3631. 

61.  Shayakhmetov, D.M.; Gaggar, A.; Ni, S.; Li, Z.Y.; Lieber, A. Adenovirus binding to blood factors 
results in liver cell infection and hepatotoxicity. J. Virol. 2005, 79, 7478-7491. 

62.  Waddington, S.N.; Parker, A.L.; Havenga, M.; Nicklin, S.A.; Buckley, S.M.; McVey, J.H.; Baker, 
A.H. Targeting of adenovirus serotype 5 (Ad5) and 5/47 pseudotyped vectors in vivo: fundamental 
involvement of coagulation factors and redundancy of CAR binding by Ad5.  
J. Virol. 2007, 81, 9568-9571. 



Viruses 2010, 2              
 

 

1910 

63.  Waddington, S.N.; McVey, J.H.; Bhella, D.; Parker, A.L.; Barker, K.; Atoda, H.; Pink, R.; 
Buckley, S.M.; Greig, J.A.; Denby, L.; Custers, J.; Morita, T.; Francischetti, I.M.; Monteiro, R.Q.; 
Barouch, D.H.; Van, R.N.; Napoli, C.; Havenga, M.J.; Nicklin, S.A.; Baker, A.H. Adenovirus 
serotype 5 hexon mediates liver gene transfer. Cell 2008, 132, 397-409. 

64.  Alba, R.; Bradshaw, A.C.; Parker, A.L.; Bhella, D.; Waddington, S.N.; Nicklin, S.A.; Van, R.N.; 
Custers, J.; Goudsmit, J.; Barouch, D.H.; McVey, J.H.; Baker, A.H. Identification of coagulation 
factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX 
interactions and gene transfer. Blood 2009, 114, 965-971. 

65.  Sakurai, F.; Mizuguchi, H.; Yamaguchi, T.; Hayakawa, T. Characterization of in vitro and in vivo 
gene transfer properties of adenovirus serotype 35 vector. Mol. Ther. 2003, 8, 813-821. 

66.  Tao, N.; Gao, G.P.; Parr, M.; Johnston, J.; Baradet, T.; Wilson, J.M.; Barsoum, J.; Fawell, S.E. 
Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of 
transduction in liver. Mol. Ther. 2001, 3, 28-35. 

67.  Yu, Q.; Que, L.G.; Rockey, D.C. Adenovirus-mediated gene transfer to nonparenchymal cells in 
normal and injured liver. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 282, G565-G572. 

68.  Tian, J.; Xu, Z.; Smith, J.S.; Hofherr, S.E.; Barry, M.A.; Byrnes, A.P. Adenovirus activates 
complement by distinctly different mechanisms in vitro and in vivo: indirect complement 
activation by virions in vivo. J. Virol. 2009, 83, 5648-5658. 

69.  Stone, D.; Liu, Y.; Shayakhmetov, D.; Li, Z.Y.; Ni, S.; Lieber, A. Adenovirus-platelet interaction 
in blood causes virus sequestration to the reticuloendothelial system of the liver. J. Virol. 2007, 
81, 4866-4871. 

70.  Schiedner, G.; Hertel, S.; Johnston, M.; Dries, V.; Van, R.N.; Kochanek, S. Selective depletion or 
blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using 
high-capacity adenoviral vectors. Mol. Ther. 2003, 7, 35-43. 

71.  Morral, N.; O'Neal, W.K.; Rice, K.; Leland, M.M.; Piedra, P.A.; guilar-Cordova, E.; Carey, K.D.; 
Beaudet, A.L.; Langston, C. Lethal toxicity, severe endothelial injury, and a threshold effect with 
high doses of an adenoviral vector in baboons. Hum. Gene Ther. 2002, 13, 143-154. 

72.  Bowen, G.P.; Borgland, S.L.; Lam, M.; Libermann, T.A.; Wong, N.C.; Muruve, D.A. Adenovirus 
vector-induced inflammation: capsid-dependent induction of the C-C chemokine RANTES 
requires NF-kappa B. Hum. Gene Ther. 2002, 13, 367-379. 

73.  Zhu, J.; Huang, X.; Yang, Y. Innate immune response to adenoviral vectors is mediated by both 
Toll-like receptor-dependent and -independent pathways. J. Virol. 2007, 81, 3170-3180. 

74.  Appledorn, D.M.; Patial, S.; McBride, A.; Godbehere, S.; Van, R.N.; Parameswaran, N.; 
Amalfitano, A. Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as 
well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo. J. Immunol. 
2008, 181, 2134-2144. 

75.  Appledorn, D.M.; Patial, S.; Godbehere, S.; Parameswaran, N.; Amalfitano, A. TRIF, and TRIF-
interacting TLRs differentially modulate several adenovirus vector-induced immune responses. J. 
Innate. Immun. 2009, 1, 376-388. 

76.  Cerullo, V.; Seiler, M.P.; Mane, V.; Brunetti-Pierri, N.; Clarke, C.; Bertin, T.K.; Rodgers, J.R.; 
Lee, B. Toll-like receptor 9 triggers an innate immune response to helper-dependent adenoviral 
vectors. Mol. Ther. 2007, 15, 378-385. 



Viruses 2010, 2              
 

 

1911 

77.  Hartman, Z.C.; Black, E.P.; Amalfitano, A. Adenoviral infection induces a multi-faceted innate 
cellular immune response that is mediated by the toll-like receptor pathway in A549 cells. 
Virology 2007, 358, 357-372. 

78.  Hartman, Z.C.; Kiang, A.; Everett, R.S.; Serra, D.; Yang, X.Y.; Clay, T.M.; Amalfitano, A. 
Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-
phase and adaptive immune responses in vivo. J. Virol. 2007, 81, 1796-1812. 

79.  Zhu, J.; Huang, X.; Yang, Y. Type I IFN signaling on both B and CD4 T cells is required for 
protective antibody response to adenovirus. J. Immunol. 2007, 178, 3505-3510. 

80.  Zhu, J.; Huang, X.; Yang, Y. A critical role for type I IFN-dependent NK cell activation in innate 
immune elimination of adenoviral vectors in vivo. Mol. Ther. 2008, 16, 1300-1307. 

81.  Nayak, S.; Herzog, R.W. Progress and prospects: immune responses to viral vectors. Gene Ther. 
2010, 17, 295-304. 

82.  Nociari, M.; Ocheretina, O.; Schoggins, J.W.; Falck-Pedersen, E. Sensing infection by 
adenovirus: Toll-like receptor-independent viral DNA recognition signals activation of the 
interferon regulatory factor 3 master regulator. J. Virol. 2007, 81, 4145-4157. 

83.  Di Paolo, N.C.; Miao, E.A.; Iwakura, Y.; Murali-Krishna, K.; Aderem, A.; Flavell, R.A.; 
Papayannopoulou, T.; Shayakhmetov, D.M. Virus binding to a plasma membrane receptor 
triggers interleukin-1 alpha-mediated proinflammatory macrophage response in vivo. Immunity 
2009, 31, 110-121. 

84.  Cichon, G.; Boeckh-Herwig, S.; Schmidt, H.H.; Wehnes, E.; Muller, T.; Pring-Akerblom, P.; 
Burger, R. Complement activation by recombinant adenoviruses. Gene Ther. 2001, 8, 1794-1800. 

85.  Kiang, A.; Hartman, Z.C.; Everett, R.S.; Serra, D.; Jiang, H.; Frank, M.M.; Amalfitano, A. 
Multiple innate inflammatory responses induced after systemic adenovirus vector delivery depend 
on a functional complement system. Mol. Ther. 2006, 14, 588-598. 

86.  Othman, M.; Labelle, A.; Mazzetti, I.; Elbatarny, H.S.; Lillicrap, D. Adenovirus-induced 
thrombocytopenia: the role of von Willebrand factor and P-selectin in mediating accelerated 
platelet clearance. Blood 2007, 109, 2832-2839. 

87.  Harding, T.C.; Koprivnikar, K.E.; Tu, G.H.; Zayek, N.; Lew, S.; Subramanian, A.; Sivakumaran, 
A.; Frey, D.; Ho, K.; VanRoey, M.J.; Nichols, T.C.; Bellinger, D.A.; Yendluri, S.; Waugh, J.; 
McArthur, J.; Veres, G.; Donahue, B.A. Intravenous administration of an AAV-2 vector for the 
expression of factor IX in mice and a dog model of hemophilia B. Gene Ther. 2004, 11, 204-213. 

88.  Chao, H.; Liu, Y.; Rabinowitz, J.; Li, C.; Samulski, R.J.; Walsh, C.E. Several log increase in 
therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol. Ther. 
2000, 2, 619-623. 

89.  Cordier, L.; Hack, A.A.; Scott, M.O.; Barton-Davis, E.R.; Gao, G.; Wilson, J.M.; McNally, E.M.; 
Sweeney, H.L. Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with adeno-
associated virus-mediated gene transfer. Mol. Ther. 2000, 1, 119-129. 

90.  Dinculescu, A.; Glushakova, L.; Min, S.H.; Hauswirth, W.W. Adeno-associated virus-vectored 
gene therapy for retinal disease. Hum. Gene Ther. 2005, 16, 649-663. 

91.  Zaiss, A.K.; Muruve, D.A. Immunity to adeno-associated virus vectors in animals and humans: a 
continued challenge. Gene Ther. 2008, 15, 808-816. 



Viruses 2010, 2              
 

 

1912 

92.  Mingozzi, F.; Maus, M.V.; Hui, D.J.; Sabatino, D.E.; Murphy, S.L.; Rasko, J.E.; Ragni, M.V.; 
Manno, C.S.; Sommer, J.; Jiang, H.; Pierce, G.F.; Ertl, H.C.; High, K.A. CD8(+) T-cell responses 
to adeno-associated virus capsid in humans. Nat. Med. 2007, 13, 419-422. 

93.  Pien, G.C.; Basner-Tschakarjan, E.; Hui, D.J.; Mentlik, A.N.; Finn, J.D.; Hasbrouck, N.C.; Zhou, 
S.; Murphy, S.L.; Maus, M.V.; Mingozzi, F.; Orange, J.S.; High, K.A. Capsid antigen 
presentation flags human hepatocytes for destruction after transduction by adeno-associated viral 
vectors. J. Clin. Invest 2009, 119, 1688-1695. 

94.  Roth, M.D.; Cheng, Q.; Harui, A.; Basak, S.K.; Mitani, K.; Low, T.A.; Kiertscher, S.M. Helper-
dependent adenoviral vectors efficiently express transgenes in human dendritic cells but still 
stimulate antiviral immune responses. J. Immunol. 2002, 169, 4651-4656. 

95.  Kafri, T.; Morgan, D.; Krahl, T.; Sarvetnick, N.; Sherman, L.; Verma, I. Cellular immune 
response to adenoviral vector infected cells does not require de novo viral gene expression: 
implications for gene therapy. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 11377-11382. 

96.  Kushwah, R.; Cao, H.; Hu, J. Potential of helper-dependent adenoviral vectors in modulating 
airway innate immunity. Cell Mol. Immunol. 2007, 4, 81-89. 

97.  Kushwah, R.; Cao, H.; Hu, J. Characterization of pulmonary T cell response to helper-dependent 
adenoviral vectors following intranasal delivery. J. Immunol. 2008, 180, 4098-4108. 

98.  Jacobs, F.; Feng, Y.; Van, C.E.; Lievens, J.; Snoeys, J.; De,G.B. Species differences in 
hepatocyte-directed gene transfer: implications for clinical translation. Curr. Gene Ther. 2009, 9, 
83-90. 

99.  Jacobs, F.; Wisse, E.; De, G.B. The role of liver sinusoidal cells in hepatocyte-directed gene 
transfer. Am. J. Pathol. 2010, 176, 14-21. 

100.  Vetrini, F.; Brunetti-Pierri, N.; Palmer, D.J.; Bertin, T.; Grove, N.C.; Finegold, M.J.; Ng, P. 
Vasoactive Intestinal Peptide Increases Hepatic Transduction and Reduces Innate Immune 
Response Following Administration of Helper-dependent Ad. Mol. Ther. 2010. 

101.  Ajuf'ev, B.N.; Dizhe, E.B.; Efremov, A.M.; Mogilenko, D.A.; Oleinikova, G.N.; Lapikov, I.A.; 
Zhdanova, O.I.; Kidgotko, O.V.; Orlov, S.V.; Perevozchikov, A.P. [Hydrodynamics-based 
transfer of human apolipoprotein A-I gene into mice: study of factors involving an efficacy and 
duration of the transferred gene expression in animals' liver]. Mol. Biol. (Mosk) 2004, 38, 1076-
1084. 

102.  Brunetti-Pierri, N.; Palmer, D.J.; Mane, V.; Finegold, M.; Beaudet, A.L.; Ng, P. Increased 
hepatic transduction with reduced systemic dissemination and proinflammatory cytokines 
following hydrodynamic injection of helper-dependent adenoviral vectors. Mol. Ther. 2005, 12, 
99-106. 

103.  Wolff, L.J.; Wolff, J.A.; Sebestyen, M.G. Effect of tissue-specific promoters and microRNA 
recognition elements on stability of transgene expression after hydrodynamic naked plasmid DNA 
delivery. Hum. Gene Ther. 2009, 20, 374-388. 

104.  Yotnda, P.; Chen, D.H.; Chiu, W.; Piedra, P.A.; Davis, A.; Templeton, N.S.; Brenner, M.K. 
Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses. 
Mol. Ther. 2002, 5, 233-241. 



Viruses 2010, 2              
 

 

1913 

105.  Croyle, M.A.; Chirmule, N.; Zhang, Y.; Wilson, J.M. PEGylation of E1-deleted adenovirus 
vectors allows significant gene expression on readministration to liver. Hum. Gene Ther. 2002, 
13, 1887-1900. 

106.  Hofherr, S.E.; Mok, H.; Gushiken, F.C.; Lopez, J.A.; Barry, M.A. Polyethylene glycol 
modification of adenovirus reduces platelet activation, endothelial cell activation, and 
thrombocytopenia. Hum. Gene Ther. 2007, 18, 837-848. 

107.  Mok, H.; Palmer, D.J.; Ng, P.; Barry, M.A. Evaluation of polyethylene glycol modification of 
first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol. 
Ther. 2005, 11, 66-79. 

108.  De, G.B.; Snoeys, J.; Van, L.S.; Lievens, J.; Collen, D. Elimination of innate immune responses 
and liver inflammation by PEGylation of adenoviral vectors and methylprednisolone. Hum. Gene 
Ther. 2005, 16, 1439-1451. 

109.  Seregin, S.S.; Appledorn, D.M.; McBride, A.J.; Schuldt, N.J.; Aldhamen, Y.A.; Voss, T.; Wei, J.; 
Bujold, M.; Nance, W.; Godbehere, S.; Amalfitano, A. Transient pretreatment with glucocorticoid 
ablates innate toxicity of systemically delivered adenoviral vectors without reducing efficacy. 
Mol. Ther. 2009, 17, 685-696. 

110.  Culling, B.; Ogle, R. Genetic counselling issues in cystic fibrosis. Paediatr. Respir. Rev. 2010, 
11, 75-79. 

111.  O'Riordan, S.M.; Dattani, M.T.; Hindmarsh, P.C. Cystic fibrosis-related diabetes in childhood. 
Horm. Res. Paediatr. 2010, 73, 15-24. 

112.  Pickles, R.J.; McCarty, D.; Matsui, H.; Hart, P.J.; Randell, S.H.; Boucher, R.C. Limited entry of 
adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene 
transfer. J. Virol. 1998, 72, 6014-6023. 

113.  Pickles, R.J.; Fahrner, J.A.; Petrella, J.M.; Boucher, R.C.; Bergelson, J.M. Retargeting the 
coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals 
the glycocalyx as a barrier to adenovirus-mediated gene transfer. J. Virol. 2000, 74, 6050-6057. 

114.  Engelhardt, J.F.; Simon, R.H.; Yang, Y.; Zepeda, M.; Weber-Pendleton, S.; Doranz, B.; 
Grossman, M.; Wilson, J.M. Adenovirus-mediated transfer of the CFTR gene to lung of 
nonhuman primates: biological efficacy study. Hum. Gene Ther. 1993, 4, 759-769. 

115.  Engelhardt, J.F.; Yang, Y.; Stratford-Perricaudet, L.D.; Allen, E.D.; Kozarsky, K.; Perricaudet, 
M.; Yankaskas, J.R.; Wilson, J.M. Direct gene transfer of human CFTR into human bronchial 
epithelia of xenografts with E1-deleted adenoviruses. Nat. Genet. 1993, 4, 27-34. 

116.  Simon, R.H.; Engelhardt, J.F.; Yang, Y.; Zepeda, M.; Weber-Pendleton, S.; Grossman, M.; 
Wilson, J.M. Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: 
toxicity study. Hum. Gene Ther. 1993, 4, 771-780. 

117.  Zuckerman, J.B.; Robinson, C.B.; McCoy, K.S.; Shell, R.; Sferra, T.J.; Chirmule, N.; Magosin, 
S.A.; Propert, K.J.; Brown-Parr, E.C.; Hughes, J.V.; Tazelaar, J.; Baker, C.; Goldman, M.J.; 
Wilson, J.M. A phase I study of adenovirus-mediated transfer of the human cystic fibrosis 
transmembrane conductance regulator gene to a lung segment of individuals with cystic fibrosis. 
Hum. Gene Ther. 1999, 10, 2973-2985. 



Viruses 2010, 2              
 

 

1914 

118.  Chu, Q.; St, G.J.; Lukason, M.; Cheng, S.H.; Scheule, R.K.; Eastman, S.J. EGTA enhancement 
of adenovirus-mediated gene transfer to mouse tracheal epithelium in vivo. Hum. Gene Ther. 
2001, 12, 455-467. 

119.  Kaplan, J.M.; Pennington, S.E.; St George, J.A.; Woodworth, L.A.; Fasbender, A.; Marshall, J.; 
Cheng, S.H.; Wadsworth, S.C.; Gregory, R.J.; Smith, A.E. Potentiation of gene transfer to the 
mouse lung by complexes of adenovirus vector and polycations improves therapeutic potential. 
Hum. Gene Ther. 1998, 9, 1469-1479. 

120.  Wang, G.; Zabner, J.; Deering, C.; Launspach, J.; Shao, J.; Bodner, M.; Jolly, D.J.; Davidson, 
B.L.; McCray, P.B., Jr. Increasing epithelial junction permeability enhances gene transfer to 
airway epithelia In vivo. Am. J. Respir. Cell Mol. Biol. 2000, 22, 129-138. 

121.  Chirmule, N.; Hughes, J.V.; Gao, G.P.; Raper, S.E.; Wilson,J.M. Role of E4 in eliciting CD4 T-
cell and B-cell responses to adenovirus vectors delivered to murine and nonhuman primate lungs. 
J. Virol. 1998, 72, 6138-6145. 

122.  Goldman, M.J.; Litzky, L.A.; Engelhardt, J.F.; Wilson, J.M. Transfer of the CFTR gene to the 
lung of nonhuman primates with E1-deleted, E2a-defective recombinant adenoviruses: a 
preclinical toxicology study. Hum. Gene Ther. 1995, 6, 839-851. 

123.  Koehler, D.R.; Sajjan, U.; Chow, Y.H.; Martin, B.; Kent, G.; Tanswell, A.K.; McKerlie, C.; 
Forstner, J.F.; Hu, J. Protection of Cftr knockout mice from acute lung infection by a helper-
dependent adenoviral vector expressing Cftr in airway epithelia. Proc. Natl. Acad. Sci. U. S. A. 
2003, 100, 15364-15369. 

124.  Koehler, D.R.; Frndova, H.; Leung, K.; Louca, E.; Palmer, D.; Ng, P.; McKerlie, C.; Cox, P.; 
Coates,A.L.; Hu,J. Aerosol delivery of an enhanced helper-dependent adenovirus formulation to 
rabbit lung using an intratracheal catheter. J. Gene Med. 2005, 7, 1409-1420. 

125.  Brunetti-Pierri, N.; Ng, P. Progress towards liver and lung-directed gene therapy with helper-
dependent adenoviral vectors. Curr. Gene Ther. 2009, 9, 329-340. 

126.  Brown, J.; Mellis, C.M.; Wood, R.E. Edetate sodium aerosol in Pseudomonas lung infection in 
cystic fibrosis. Am. J. Dis. Child 1985, 139, 836-839. 

127.  Rogers, C.S.; Stoltz, D.A.; Meyerholz, D.K.; Ostedgaard, L.S.; Rokhlina, T.; Taft, P.J.; Rogan, 
M.P.; Pezzulo, A.A.; Karp, P.H.; Itani, O.A.; Kabel, A.C.; Wohlford-Lenane, C.L.; Davis, G.J.; 
Hanfland, R.A.; Smith, T.L.; Samuel, M.; Wax, D.; Murphy, C.N.; Rieke, A.; Whitworth, K.; 
Uc,A.; Starner, T.D.; Brogden, K.A.; Shilyansky, J.; McCray, P.B., Jr.; Zabner, J.; Prather, R.S.; 
Welsh, M.J. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. 
Science 2008, 321, 1837-1841. 

128.  Moss, R.B.; Rodman, D.; Spencer, L.T.; Aitken, M.L.; Zeitlin, P.L.; Waltz, D.; Milla, C.; Brody, 
A.S.; Clancy, J.P.; Ramsey, B.; Hamblett, N.; Heald, A.E. Repeated adeno-associated virus 
serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of 
patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 2004, 
125, 509-521. 

129.  Johnson, L.G.; Olsen, J.C.; Sarkadi, B.; Moore, K.L.; Swanstrom, R.; Boucher, R.C. Efficiency 
of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat. Genet. 
1992, 2, 21-25. 



Viruses 2010, 2              
 

 

1915 

130.  Segura, M.M.; Alba, R.; Bosch, A.; Chillon, M. Advances in helper-dependent adenoviral vector 
research. Curr. Gene Ther. 2008, 8, 222-235. 

131.  Dudley, R.W.; Lu, Y.; Gilbert, R.; Matecki, S.; Nalbantoglu, J.; Petrof, B.J.; Karpati, G. 
Sustained improvement of muscle function one year after full-length dystrophin gene transfer into 
mdx mice by a gutted helper-dependent adenoviral vector. Hum. Gene Ther. 2004, 15, 145-156. 

132.  Gilbert, R.; Nalbantoglu, J.; Howell, J.M.; Davies, L.; Fletcher, S.; Amalfitano, A.; Petrof, B.J.; 
Kamen, A.; Massie, B.; Karpati, G. Dystrophin expression in muscle following gene transfer with 
a fully deleted ("gutted") adenovirus is markedly improved by trans-acting adenoviral gene 
products. Hum. Gene Ther. 2001, 12, 1741-1755. 

133.  Jiang,Z.; Feingold, E.; Kochanek, S.; Clemens, P.R. Systemic delivery of a high-capacity 
adenoviral vector expressing mouse CTLA4Ig improves skeletal muscle gene therapy. Mol. Ther. 
2002, 6, 369-376. 

134.  Jiang, Z.; Schiedner, G.; Van, R.N.; Liu, C.C.; Kochanek, S.; Clemens, P.R. Sustained muscle 
expression of dystrophin from a high-capacity adenoviral vector with systemic gene transfer of T 
cell costimulatory blockade. Mol. Ther. 2004, 10, 688-696. 

135.  Bilbao, R.; Reay, D.P.; Hughes, T.; Biermann, V.; Volpers, C.; Goldberg, L.; Bergelson, J.; 
Kochanek, S.; Clemens, P.R. Fetal muscle gene transfer is not enhanced by an RGD capsid 
modification to high-capacity adenoviral vectors. Gene Ther. 2003, 10, 1821-1829. 

136.  Smith, P.E.; Calverley, P.M.; Edwards, R.H.; Evans, G.A.; Campbell, E.J. Practical problems in 
the respiratory care of patients with muscular dystrophy. N. Engl. J. Med. 1987, 316, 1197-1205. 

137.  Smith, P.E.; Calverley, P.M.; Edwards, R.H. Hypoxemia during sleep in Duchenne muscular 
dystrophy. Am. Rev. Respir. Dis. 1988, 137, 884-888. 

138.  Matecki, S.; Dudley, R.W.; Divangahi, M.; Gilbert, R.; Nalbantoglu, J.; Karpati, G.; Petrof, B.J. 
Therapeutic gene transfer to dystrophic diaphragm by an adenoviral vector deleted of all viral 
genes. Am. J. Physiol Lung Cell Mol. Physiol 2004, 287, L569-L576. 

139.  Maione, D.; Della, R.C.; Giannetti, P.; D'Arrigo, R.; Liberatoscioli, L.; Franlin, L.L.; Sandig, V.; 
Ciliberto, G.; La, M.N.; Savino, R. An improved helper-dependent adenoviral vector allows 
persistent gene expression after intramuscular delivery and overcomes preexisting immunity to 
adenovirus. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 5986-5991. 

140.  Bramson, J.L.; Grinshtein, N.; Meulenbroek, R.A.; Lunde, J.; Kottachchi, D.; Lorimer, I.A.; 
Jasmin, B.J.; Parks, R.J. Helper-dependent adenoviral vectors containing modified fiber for 
improved transduction of developing and mature muscle cells. Hum. Gene Ther. 2004, 15, 179-
188. 

141.  Persson, A.; Fan, X.; Widegren, B.; Englund, E. Cell type- and region-dependent coxsackie 
adenovirus receptor expression in the central nervous system. J. Neurooncol. 2006, 78, 1-6. 

142.  Davidson, B.L.; Allen, E.D.; Kozarsky, K.F.; Wilson, J.M.; Roessler, B.J. A model system for in 
vivo gene transfer into the central nervous system using an adenoviral vector. Nat. Genet. 1993, 3, 
219-223. 

143.  Doran, S.E.; Roessler, B.J.; Hartman, J.W.; Hoff, J.T.; Shewach, D.S.; Davidson, B.L. 
Adenovirus-mediated in vivo gene transfer into the central nervous system of a nonhuman primate 
(resident award paper). Clin. Neurosurg. 1994, 41, 242-257. 



Viruses 2010, 2              
 

 

1916 

144.  Doran, S.E.; Ren, X.D.; Betz, A.L.; Pagel, M.A.; Neuwelt, E.A.; Roessler, B.J.; Davidson, B.L. 
Gene expression from recombinant viral vectors in the central nervous system after blood-brain 
barrier disruption. Neurosurgery 1995, 36, 965-970. 

145.  Byrnes, A.P.; Wood, M.J.; Charlton, H.M. Role of T cells in inflammation caused by adenovirus 
vectors in the brain. Gene Ther. 1996, 3, 644-651. 

146.  Byrnes, A.P.; MacLaren, R.E.; Charlton, H.M. Immunological instability of persistent adenovirus 
vectors in the brain: peripheral exposure to vector leads to renewed inflammation, reduced gene 
expression, and demyelination. J. Neurosci. 1996, 16, 3045-3055. 

147.  Thomas, C.E.; Schiedner, G.; Kochanek, S.; Castro, M.G.; Lowenstein, P.R. Peripheral infection 
with adenovirus causes unexpected long-term brain inflammation in animals injected 
intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward 
realistic long-term neurological gene therapy for chronic diseases. Proc. Natl. Acad. Sci. U. S. A. 
2000, 97, 7482-7487. 

148.  Zou, L.; Yuan, X.; Zhou, H.; Lu, H.; Yang, K. Helper-dependent adenoviral vector-mediated 
gene transfer in aged rat brain. Hum. Gene Ther. 2001, 12, 181-191. 

149.  Butti, E.; Bergami, A.; Recchia, A.; Brambilla, E.; Franciotta, D.; Cattalini, A.; Stornaiuolo, A.; 
Lachapelle, F.; Comi, G.; Mavilio, F.; Martino, G.; Furlan, R. Absence of an intrathecal immune 
reaction to a helper-dependent adenoviral vector delivered into the cerebrospinal fluid of non-
human primates. Gene Ther. 2008, 15, 233-238. 

150.  Butti, E.; Bergami, A.; Recchia, A.; Brambilla, E.; Del, C.U.; Amadio, S.; Cattalini, A.; Esposito, 
M.; Stornaiuolo, A.; Comi, G.; Pluchino, S.; Mavilio, F.; Martino, G.; Furlan, R. IL4 gene 
delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of 
multiple sclerosis. Gene Ther. 2008, 15, 504-515. 

151.  Huang, B.; Schiefer, J.; Sass, C.; Landwehrmeyer, G.B.; Kosinski, C.M.; Kochanek, S. High-
capacity adenoviral vector-mediated reduction of huntingtin aggregate load in vitro and in vivo. 
Hum. Gene Ther. 2007, 18, 303-311. 

152.  Huang, B.; Schiefer, J.; Sass, C.; Kosinski, C.M.; Kochanek, S. Inducing huntingtin inclusion 
formation in primary neuronal cell culture and in vivo by high-capacity adenoviral vectors 
expressing truncated and full-length huntingtin with polyglutamine expansion. J. Gene Med. 2008, 
10, 269-279. 

153.  Muhammad, A.K.; Puntel, M.; Candolfi, M.; Salem, A.; Yagiz, K.; Farrokhi, C.; Kroeger, K.M.; 
Xiong, W.; Curtin, J.F.; Liu, C.; Lawrence, K.; Bondale, N.S.; Lerner, J.; Baker, G.J.; Foulad, D.; 
Pechnick, R.N.; Palmer, D.; Ng, P.; Lowenstein, P.R.; Castro, M.G. Study of the Efficacy, 
Biodistribution, and Safety Profile of Therapeutic Gutless Adenovirus Vectors as a Prelude to a 
Phase I Clinical Trial for Glioblastoma. Clin. Pharmacol. Ther. 2010, 88, 204-13. 

154.  Kumar-Singh, R. Barriers for retinal gene therapy: separating fact from fiction. Vision Res. 2008, 
48, 1671-1680. 

155.  Kreppel, F.; Luther, T.T.; Semkova, I.; Schraermeyer, U.; Kochanek, S. Long-term transgene 
expression in the RPE after gene transfer with a high-capacity adenoviral vector. Invest 
Ophthalmol. Vis. Sci. 2002, 43, 1965-1970. 



Viruses 2010, 2              
 

 

1917 

156.  Harui, A.; Roth, M.D.; Kiertscher, S.M.; Mitani, K.; Basak, S.K. Vaccination with helper-
dependent adenovirus enhances the generation of transgene-specific CTL. Gene Ther. 2004, 11, 
1617-1626. 

157.  Weaver, E.A.; Nehete, P.N.; Buchl, S.S.; Senac, J.S.; Palmer, D.; Ng, P.; Sastry, K.J.; Barry, 
M.A. Comparison of replication-competent, first generation, and helper-dependent adenoviral 
vaccines. PLoS. One 2009, 4, 5059. 

158.  Weaver, E.A.; Nehete, P.N.; Nehete, B.P.; Buchl, S.J.; Palmer, D.; Montefiori, D.C.; Ng, P.; 
Sastry,K.J.; Barry,M.A. Protection against Mucosal SHIV Challenge by Peptide and Helper-
Dependent Adenovirus Vaccines. Viruses. 2009, 1, 920-938. 

159. Stern, BS.; Shoshani, W.; Pearlman, AL.; Ng, P. ; Nissenson, AR.; Galun, E.; Besarab, A.; 
Rimler, A.; Goltzmann, H.; Miari, R.O; kun, A.; Bookay, H.; Jibly, T.; Abrameto, JA; Elhalel, M. 
Erythropoeisis Sustained 1 Year by the EPODURE BioPump in Patients with Chronic Kideney 
Disease: Further Results of PhaseI/II Proof of Concept Trial. Mol. Ther. 2010,18, S239. 

 
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


