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Abstract: miRNAs circulating in whole serum and HBsAg-particles are differentially expressed in
chronic hepatitis B (CHB) and HBeAg-negative-HBV infection (ENI); their profiles are unknown in
chronic hepatitis D (CHD). Serum- and HBsAg-associated miRNAs were analyzed in 75 subjects of
3 well-characterized groups (CHB 25, CHD 25, ENI 25) using next-generation sequencing (NGS).
Overall miRNA profiles were consonant in serum and HBsAg-particles but significantly different
according to the presence of hepatitis independently of Hepatitis D Virus (HDV)-co-infection. Strin-
gent (Bonferroni Correction < 0.001) differential expression analysis showed 39 miRNAs upregulated
in CHB vs. ENI and 31 of them also in CHD vs. ENI. miRNA profiles were coincident in CHB and
CHD with only miR-200a-3p upregulated in CHB. Three miRNAs (miR-625-3p, miR-142-5p, and
miR-223-3p) involved in immune response were upregulated in ENI. All 3 hepatocellular miRNAs
of MiR-B-Index (miR-122-5p, miR-99a-5p, miR-192-5p) were overexpressed in both CHB and CHD
patients. In conclusion, CHD and CHB patients showed highly similar serum miRNA profiling
that was significantly different from that of individuals with HBeAg-negative infection and without
liver disease.

Keywords: MiR-B-Index; Hepatitis D Virus; Hepatitis B Virus; HDV-RNA; HBV-DNA

1. Introduction

Hepatitis D virus (HDV), the aetiologic agent of hepatitis D, is the progenitor of
Kolmioviridae, the only family of a newly proposed realm named Ribozyviria [1–4]. HDV
has unique biological properties: its virion consists of a 36–39 nm particle without nu-
cleocapsid structure, coated by the surface antigen of Hepatitis B Virus (HBsAg) [1–5].
Such a structure allows HDV to enter into the hepatocytes using the Hepatitis B Virus
(HBV) receptor, the sodium taurocholate co-transporting polypeptide (NTCP). The HDV
genome is a circular, single-stranded RNA with negative polarity of about 1700 nucleotides
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in length [5]. Within the infected cell nucleus, genomic HDV-RNA replicates via a rolling
circle mechanism that is common to circular RNA and plant viroids [6–9]. It generates an
antigenomic multimer that is self-cleaved by the intrinsic ribozyme properties of HDV-
RNA [10,11] and borrows nuclear RNA polymerase II for transcription [12]. Eight different
HDV genotypes have been identified so far, with up to 35% divergence and 81–89% ho-
mology in nucleotide sequences within the same genotype [13]. Since early studies, it has
become evident that hepatitis D occurs only in HBV carriers, and the outcome of liver
disease is influenced by the phase of chronic HBV infection [14,15]. In patients with chronic
hepatitis B, HDV accelerates the course of liver disease toward cirrhosis, particularly in
hepatitis B “e” antigen (HBeAg)-positive patients [14–17]. Several studies indicate that the
interplay between HBV and HDV is complex, suggesting that the replication of HBV and
its transcriptional activity play a major role in fostering HDV pathogenicity [16,18–20].

Upon replication mediated by human RNA polymerase II, HDV-RNA is released
from infected hepatocytes as ribonucleoprotein complex (RNP) together with delta antigen
(HDAg) assembled within the HBsAg envelope. In a similar fashion, HBsAg particles
carry hepatocellular microRNAs (miRNAs) generated by the same RNA polymerase II
and export them in RNPs in addition to cell-derived particulate forms, exosomes, and
micro-vesicles [21]. Consequently, the amount of circulating hepatocellular miRNAs is
significantly higher in HBsAg carriers than in normal individuals or patients with chronic
hepatitis C [22]. Thus, circulating miRNA profiles of HBsAg carriers are specifically
enriched by hepatocellular miRNA, and their study provides an indirect opportunity to
characterize and identify instant post-transcriptional regulatory networks associated with
specific pathophysiologic conditions of the liver. Accordingly, circulating miRNAs were
shown to be differentially expressed between HBeAg-negative CHB patients and HBV
carriers with HBeAg-negative infection, and a specific hepatocellular miRNA signature
was associated with both naturally-occurring and therapy-induced immune control of HBV
infection, distinguishing carriers of the HBeAg-negative infection from CHB patients [23].
The present study aimed to characterize and compare the circulating miRNA profiles
of CHD patients to those of patients with HBeAg-negative CHB and individuals with
HBeAg-negative infection.

2. Materials and Methods
2.1. Subjects

Serum samples were obtained from 75 (37 males, median age 44.0 years, 17.9/70.1 and
38 females, median age 46.4 years, 23.9/70.6) well-characterized HBsAg carriers and were
followed up at the Hepatology Unit of the University Hospital of Pisa. All the patients
were HBeAg-negative/Anti-HBe-positive; 96.8% were infected with HBV genotype D, and
all were without histological and/or imaging signs of cirrhosis.

The study was approved by the local Ethics Committee of the University Hospital
of Pisa (CEAVNO—n◦ 22971) and conducted according to the principles expressed in
both the Declarations of Helsinki and Istanbul. All patients provided informed written
consent. HBsAg carriers were classified according to the biochemical and viral profiles.
In case of low HBV-DNA levels (<20,000 IU/mL) and normal transaminases (ALT) at the
1st observation, the HBsAg carriers were monitored for at least 1 year with three monthly
blood tests for classification [24–26].

The study population included: (a) 25 individuals with HBeAg-negative/anti-HBe
positive HBV infection (ENI; serum HBV-DNA persistently <2000 IU/mL, normal ALT
and liver stiffness < 5 kPa by vibration controlled transient elastography (FibroScan®,
Echosens, Paris, France)); (b) 25 HBeAg-negative/anti-HBe-positive chronic hepatitis B
(CHB) patients (HBV-DNA > 2000 IU/mL, persistently or intermittently elevated ALT but
without signs of cirrhosis at histology and/or ultrasound and liver stiffness < 12 kPa);
(c) 25 HBeAg-negative/anti-HBe-positive/anti-HDV-positive/HDV-RNA-positive chronic
hepatitis D (CHD) patients without signs of cirrhosis at histology and/or ultrasound and



Viruses 2023, 15, 2257 3 of 16

liver stiffness < 12 kPa. Their demographic and clinic pathologic features are reported in
Table 1.

Table 1. Demographic, virological and biochemical characteristics according to patients’ classification.

ENI (25) CHB (25) CHD (25) p

Age years 49.4
(28.5/70.1)

44.8
(31.8/70.6)

38.0
(17.9/60.4)

ENI vs. CHB: p = 0.184
ENI vs. CHD: p < 0.003
CHB vs. CHD: p = 0.017
Overall: p = 0.004

Gender F
M

13 (52.0)
12 (48.0)

12 (48.0)
13 (52.0)

13 (52.0)
12 (48.0)

ENI vs. CHB: p = 1.000
ENI vs. CHD: p = 1.000
CHB vs. CHD: p = 1.000
Overall: p = 0.948

Nationality Italian
Non-Italian

20 (80)
5 (20)

21 (84)
4 (16)

5 (20)
20 (80)

ENI vs. CHB: p = 1.000
ENI vs. CHD: p < 0.001
CHB vs. CHD: p < 0.001
Overall: p < 0.001

ALT
(U/L)

Median
(range) 21 (9/33) 110

(40/695) 65 (19/176)

ENI vs. CHB: p < 0.001
ENI vs. CHD: p < 0.001
CHB vs. CHD: p = 0.001
Overall: p < 0.001

HBV
Genotype

D
Non-D

unknown

25 (100)
/
/

25 (100)
/
/

10 (83.3)
2 (16.7)

13

ENI vs. CHB: /
ENI vs. CHD: p = 0.035
CHB vs. CHD: p = 0.035
Overall: p = 0.012

HBsAg Log IU/mL 2.71
(1.75/3.10)

3.75
(3.05/4.22)

3.89
(3.09/4.59)

ENI vs. CHB: p < 0.001
ENI vs. CHD: p < 0.001
CHB vs. CHD: p = 0.273
Overall: p < 0.001

HBV
DNA Log IU/mL 2.27

(0.70/3.26)
6.23

(4.61/8.04)
1.0

(0.70/7.61)

ENI vs. CHB: p < 0.001
ENI vs. CHD: p < 0.001
CHB vs. CHD: p < 0.001
Overall: p < 0.001

Notes: Non-Italian natives were born: 13 (44.8%) in Albania; 3 (10.4%) in Moldova; 11 (37.9%) in Romania; and 2
(6.9%) in Ukraine. Significant (<0.05) p values in bold.

2.2. Assays

Serum ALT levels were tested using routine biochemistry at the Central Laboratory of
the Hospital using a Cobas Analyser, Roche. HBsAg, anti-HBs, anti-HBc, IgM anti-HBc,
HBeAg, anti-HBe, anti-HCV, anti-HDV, and anti-HIV were detected using commercially
available immunoassays (Architect, Abbott laboratories, N. Chicago, IL, USA).

Serum HBsAg was quantified using the Architect HBsAg assay (Abbott Laboratories,
dynamic range 0.05–250.0 IU/mL) after appropriate dilution when required. Serum
HBV-DNA was quantified using the HBV-monitor-2.0 test on Cobas Amplicor until 2005
and on Cobas TaqMan thereafter (Roche Diagnostic Systems Inc., Mannheim, Germany).
HBV genotype was characterized by direct sequencing of the small HBs region. Briefly,
after HBV DNA extraction using Qiagen QIAamp DNA Mini Kit (Qiagen-Inc., Hilden,
Germany), 5 µL of eluted DNA was amplified by PCR in 50 µL reaction volume. For
the amplification two overlapping PCRs were performed using the following primers:
P1-5′-TCACCATATTCTTGGGAACAAGA-3′/S1-2-5′-CGAACCACTGAACAAATGGC-
3′ for the Pre-S region and LamEs-5′-GGATGTGTCTGCGGCGTTT-3′/Pol4as-5′-
GGCATTAACGCAGGATAWCCACATTG-3′ for the small S. An internal primer was
used for emi-nested PCR when needed: PS4-5′-GGAACAAGAGCTACAGCTTG-3′ and
Pol181as-5′-GACCCACAATTCKTTGACATACTTTCC-3′ for the Pre-S and S regions,
respectively. Thermal profile amplification was: pre-heating 15 min at 94 ◦C, 35 cycles
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including denaturation 20 s at 94 ◦C, annealing 20 s at 60 ◦C, and extension 30 s at
72 ◦C followed by 5 min at 72 ◦C. PCR products were then purified using an ExoSAp
Purification System and directly sequenced through the chain termination method using
the BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystem, Waltham, MA,
USA). Sequences were analyzed and corrected using Chromas Lite software, version
2.6.6 (www.technelysium.com.au, accessed on 25 February 2022). Multiple alignments
were performed using NPS @ Multalin software version 5.4.1 (https://npsa-pbil.ibcp.fr).
Alignments and trees were generated, along with references to small HBsAg sequences of
the 8 HBV genotypes (A–H) obtained from GenBank, with the MEGA 3.1 software package
available at http://www.megasoftware.net/.

2.3. Isolation of Circulating HBsAg Particles

Circulating HBsAg particles were obtained via immunoprecipitation of 20 sera ob-
tained form 5 ENI, 5 CHB, 5 CHD, and 5 controls without HBV infection and liver disease
using anti-HBsAg-IgG conjugated with magnetic beads, as previously reported [23]. Briefly,
200 µL serum after appropriate dilution to 1000 IU/mL of HBsAg final, was incubated for
60 min at 37 ◦C with 67 µL of anti-HBsAg-IgG conjugated with beads (Dia.Pro). At the end
of the incubation, three washes were carried out with 10 mM Tris-HCl buffer containing
0.1% BSA, 0.15 M NaCl, 1 mM EDTA, 0.1% NaN3, and 0.025% Proclin 300 pH 7.5.Finally,the
HBsAg particles were resuspended in 200 µL PBS buffer.

2.4. miRNA NGS Reads Bioinformatical Analysis

Next-generation sequencing (NGS) was performed according to QIAGEN miRNA
Sequencing Genomic Services protocols. Total RNA was extracted from 200 µL serum
or 200 µL of HBsAg immunoprecipitated particles (HBsAg-IP) using an miRNeasy-kit
(Qiagen-Inc., Hilden, Germany). The library preparation was performed using the QIAseq
miRNA Library Kit. Briefly, to prepare miRNA NGS libraries, 5 µL of total RNA was ligated
with specifically designed adapters and then reverse transcribed to cDNA using a reverse
transcription (RT) primer with unique molecular identifiers (UMI). Library amplification
was performed via PCR (16 cycles) using a universal forward primer and indexing reverse
primers. Then, the miRNA library was purified using a magnetic-bead-based method and
quality controlled using capillary electrophoresis. Based on the quality of the inserts and
the concentration measurements the libraries were pooled in equimolar ratios. The library
pool(s) were quantified using qPCR and then sequenced on NextSeq instrument (Illumina
Inc., San Diego, CA, USA) according to the manufacturer’s instructions (1 × 75, 1 × 8).
Raw data were demultiplexed and FASTQ files for each sample were generated using the
bcl2fastq software version 2.20 (Illumina Inc., San Diego, CA, USA).

2.5. Read Mapping and Quantification of Gene Expression

All primary analysis was carried out using CLC Genomics Server 21.0.4. The workflow
“QIAseq miRNA Quantification” of CLC Genomics Server with standard parameters
was used to map the reads to miRBase version 22. Briefly, the reads were processed
by (1) trimming the common sequence, UMI, and adapters and (2) filtering reads with
lengths < 15 nt or >55 nt. They were then deduplicated using their UMI. Reads were
grouped into UMI groups when they (1) started at the same position based on the end
of the read to which the UMI was ligated (i.e., Read2 for paired data), (2) were from the
same strand, and (3) had identical UMIs. Groups that contained only one read (singletons)
were merged into non-singleton groups if the singleton’s UMI could be converted to a
UMI of a non-singleton group by introducing an SNP (the biggest group was chosen). All
reads that did not map to miRBase, neither with perfect matches nor as isomiRs (maximum
2 mismatches and/or alternative start/end position of 2 nt), were mapped to the human
genome GRCh38 with ENSEMBL GRCh38 version 97 annotation. This was carried out using
the “RNA-Seq Analysis” workflow of CLC Genomics Server with standard parameters.
The “Empirical analysis of DGE” algorithm of the CLC Genomics Workbench 21.0.4 was
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used for differential expression analysis with default settings. It is an implementation of
the “Exact Test” for two-group comparisons developed by Robinson and Smyth [27] and
incorporated in the EdgeR Bioconductor package [28]. For all unsupervised analysis, only
miRNAs were considered, with at least 10 counts summed over all samples. A variance
stabilizing transformation (VST) was performed on the raw count matrix using the R
package DESeq2 version 1.28.1, and 500 genes with the highest variance were used for the
principal component analysis. The variance was calculated agnostically to the pre-defined
groups (blind = TRUE), and 35 genes with the highest variance across samples were selected
for hierarchical clustering.

2.6. MiR-B-Index

A miRNA calculator (MiR-B-Index) was previously developed by using single RT-q-
PCR for the 3 hepatocellular miRNAs (miR-122-5p, miR-99a-5p, miR-192-5p) with the most
significant differential expression in ENI versus CHB and 3 additional miRNAs (miR-335-
5p, miR-126-3p, and miR-320a) as endogenous controls to account for RNA input variation
and/or other technical variations within the profiling platform [23]. In the current study
for the MiR-B-Index calculation, we used CPM (count per million mapped reads) obtained
from NGS instead of Cq values (obtained by RT-q-PCR).

3. Results
3.1. NGS and Quality Controls

For each sample, on average, ~17 million reads were sequenced, and the produced
data showed an excellent sequencing quality, with a Phred score > 30. The distribution of
read length had prominent peaks at ~21 nt and ~32 nt, suggesting that a large proportion
of the sequencing data was represented by miRNA. Following unique molecular identifier
(UMI) deduplication, an average UMI group size between 1.53–2.61 was observed across
all samples; the deduplicated reads were mapped to miRBase. The percentage of reads
that were successfully mapped ranged from 1.22–62.36% which is the level of mapping
typically given by good-quality serum specimens. All reads that did not map to miRBase
were mapped to the human genome. The mapping rate was between 64.94–78.0%, with the
largest proportion of these reads mapping to protein-coding genes.

3.2. miRNA Profiling of HBsAg Particles

The analysis of hierarchical clustering of the 20 immunoprecipitated samples showed
that miRNA profiling of CHB clusters with that of CHD, whereas ENI showed a sepa-
rate profile more similar to control (HBsAg negative) samples without hepatitis infection
(Figure 1). Thirty-five miRNAs (miR-16-5p, miR-221-3p, miR-142-3p, miR-126-3p, miR-223-
3p, miR-126-5p, miR-146a-5p, miR-199a-3p, miR-148b-3p, miR-93-5p, miR-432-5p, miR-23a-
3p, miR-185-5p, miR-7-5p, miR-486-5p, miR-150-5p, miR-122-5p, miR-27b-3p, miR-194-5p,
miR-192-5p, miR-148a-3p, miR-206, miR-184, miR-30a-5p, miR-146b-5p, miR-483-3p, miR-
483-5p, miR-23b-3p,miR-30c-5p, miR-99a-5p, miR-30a-3p, miR-1-3p, miR-190b-5p, let-7c-5p,
miR-125b-5p) showed a higher variability among the different groups. The 3 liver-related
miRNAs (miR-122-5p, miR-99a-5p, and miR-192-5p) were upregulated in CHB and CHD
samples but downregulated in ENI.

3.3. miRNA Profiling of Whole Serum

The overall differential expression of the miRNAs resulting from the hierarchical
clustering analysis performed on the 75 serum samples is reported in Figure 2. As for
miRNA profiling obtained from HBsAg immunoprecipitated particles, the 3 liver related
miRNAs were upregulated in CHB and CHD samples and downregulated in ENI.
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3.4. Differential miRNA Expression among Chronic Hepatitis D and B Patients and Individuals
with HBeAg Negative Infection

The total RNA counts successfully aligned in miRBase per subject groups were 1–3 log
higher in serum specimens as compared to HBsAg pellets, and the miRNAs that showed
the most variable expression among the three groups in the pellets were all present in the
whole serum specimens. Thus, for the overall analysis of differential miRNA expression
among the three groups, the results obtained from sera were used.

To plot the principal component analysis (PCA), a variance stabilizing transformation
was performed on the raw count matrix, and 500 genes with the highest variance were used.
The variance was calculated agnostically to the pre-defined groups. For each differential
gene expression analysis, the result of the statistical test for each gene’s fold-change was
plotted against its mean expression among all samples, and changes were defined and
considered as significant for a Bonferroni test <0.001. Comparing the overall miRNA
expression between males and females, only one miRNA, miR-7-5p, resulted differentially
expressed and upregulated in males with levels of significance (Bonferroni test, 0.006)
barely outside the cutoff of significance. Thus, all the following analyses were controlled
by gender.

In total, 42 miRNAs were differentially expressed between ENI vs. CHB patients—39
downregulated and 3 upregulated (miR-625-3p, miR-142-5p, and miR-223-3p) in ENI
(Table 2, Figure 3).

Table 2. Comparison of miRNA profiles in HBsAg carriers with HBeAg-negative infection (ENI)
vs. CHB patients: a total of 42 miRNAs showed significant differential expression after Bonferroni
correction (cut-off = 0.001).

Assay Max
Groupmean

Log2
Foldchange Foldchange p-Value FDR p-Value Bonferroni

hsa-miR-34a-5p 52.00 −3.54 −11.66 1.6 × 10−30 8.5 × 10−28 2.0 × 10−27

hsa-miR-885-3p 43.84 −3.76 −13.59 2.9 × 10−30 8.5 × 10−28 3.7 × 10−27

hsa-miR-192-5p 1121.40 −2.69 −6.44 8.2 × 10−30 1.6 × 10−20 1.0 × 10−19

hsa-miR-148-3p 1441.72 −1.78 −3.44 3.0 × 10−21 4.1 × 10−19 3.7 × 10−18

hsa-miR-27b-3p 227.80 −1.81 −3.51 3.5 × 10−21 4.1 × 10−19 4.5 × 10−18

hsa-miR-193b-5p 32.44 −2.88 −7.35 1.5 × 10−20 1.3 × 10−18 1.9 × 10−17

hsa-miR-194-5p 408.28 −2.30 −4.94 1.6 × 10−20 1.3 × 10−18 2.0 × 10−17

hsa-miR-885-5p 42.12 −2.70 −6.48 8.3 × 10−19 5.4 × 10−17 1.0 × 10−15

hsa-miR-100-5p 64.68 −2.48 −5.57 8.4 × 10−19 5.4 × 10−17 1.1 × 10−15

hsa-miR-30a-3p 30.60 −2.57 −5.94 2.3 × 10−18 1.3 × 10−16 2.9 × 10−15

hsa-miR-146b-5p 123.68 −2.30 −4.92 3.3 × 10−18 1.8 × 10−16 4.2 × 10−15

hsa-miR-122-5p 90,951.56 −2.51 −5.71 3.7 × 10−18 1.8 × 10−16 4.6 × 10−15

hsa-miR-30a-5p 257.48 −1.68 −3.20 7.8 × 10−18 3.5 × 10−16 9.8 × 10−15

hsa-miR-483-3p 173.36 −2.55 −5.87 4.8 × 10−17 2.0 × 10−15 6.0 × 10−14

hsa-miR-125b-5p 1516.76 −1.99 −3.97 4.6 × 10−16 1.8 × 10−14 5.8 × 10−13

hsa-miR-23b-3p 130.60 −2.01 −4.02 1.3 × 10−14 4.8 × 10−13 1.7 × 10−11

hsa-miR-146b-3p 10.36 −2.79 −6.93 3.0 × 10−14 1.0 × 10−12 3.7 × 10−11

hsa-miR-378a-3p 84.44 −1.48 −2.78 1.0 × 10−13 3.4 × 10−12 1.3 × 10−10

hsa-let-7c-5p 778.48 −2.12 −4.36 2.4 × 10−13 7.2 × 10−12 3.0 × 10−10

hsa-miR-193a-5p 117.48 −1.36 −2.56 2.6 × 10−13 7.4 × 10−12 3.2 × 10−10

hsa-miR-194-3p 4.84 −4.00 −16.02 5.7 × 10−13 1.6 × 10−11 7.2 × 10−10

hsa-miR-125b-2-3p 4.64 −3.52 −11.49 6.0 × 10−13 1.6 × 10−11 7.6 × 10−10

hsa-miR-200a-3p 14.20 −2.82 −7.05 1.2 × 10−12 3.1 × 10−11 1.6 × 10−9

hsa-miR-99a-5p 89.64 −1.87 −3.65 1.4 × 10−12 3.3 × 10−11 1.7 × 10−9

hsa-miR-122-3p 26.60 −2.67 −6.39 1.7 × 10−12 3.9 × 10−11 2.1 × 10−9

hsa-miR-30c-5p 65.96 −1.26 −2.40 5.6 × 10−12 1.3 × 10−10 7.1 × 10−9

hsa-miR-200b-3p 7.40 −2.88 −7.37 1.3 × 10−11 2.8 × 10−10 1.6 × 10−8

hsa-miR-365a-3p 10.24 −2.27 −4.84 1.6 × 10−11 3.4 × 10−10 2.1 × 10−8



Viruses 2023, 15, 2257 8 of 16

Table 2. Cont.

Assay Max
Groupmean

Log2
Foldchange Foldchange p-Value FDR p-Value Bonferroni

hsa-miR-455-3p 6.60 −2.97 −7.84 2.7 × 10−11 5.4 × 10−10 3.4 × 10−8

hsa-miR-574-3p 65.44 −1.74 −3.35 4.0 × 10−11 7.7 × 10−10 5.0 × 10−8

hsa-miR-378a-5p 4.76 −2.08 −4.23 1.2 × 10−8 2.2 × 10−7 1.5 × 10−6

hsa-miR-223-3p 3152.68 1.63 3.09 1.3 × 10−8 2.3 × 10−7 1.6 × 10−5

hsa-miR-455-3p 2.84 −2.75 −6.73 2.4 × 10−8 4.2 × 10−7 3.0 × 10−5

hsa-miR-203a-3p 10.84 −1.85 −3.59 3.4 × 10−8 5.8 × 10−7 4.3 × 10−5

hsa-miR-142-5p 156.32 1.29 2.45 4.8 × 10−8 8.0 × 10−7 6.1 × 10−5

hsa-miR-30e-3p 39.96 −1.46 −2.75 8.1 × 10−8 1.3 × 10−7 1.0 × 10−4

hsa-miR-28-3p 140.84 −0.86 −1.81 8.6 × 10−8 1.3 × 10−7 1.1 × 10−4

hsa-miR-1468-5p 2.40 −2.33 −5.02 1.7 × 10−7 2.6 × 10−7 2.2 × 10−4

hsa-miR-378i 4.44 −1.85 −3.60 1.9 × 10−7 2.8 × 10−7 2.4 × 10−4

hsa-miR-625-3p 86.60 1.37 2.58 3.7 × 10−7 5.3 × 10−7 4.7 × 10−4

hsa-miR-3065-5p 4.52 −1.96 −3.90 3.8 × 10−7 5.4 × 10−7 4.8 × 10−4

hsa-miR-874-3p 10.28 −1.51 −2.84 5.6 × 10−7 7.7 × 10−7 7.0 × 10−4
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When comparing ENI to CHD patients, there were 34 differentially expressed miRNAs;
all of them were downregulated in ENI (Table 3 and Figure 4).
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Table 3. Comparison of miRNA profiles in ENI vs. CHD patients: a total of 34 miRNAs showed
significant differential expression after Bonferroni correction (cut-off = 0.001).

Assay Max
Groupmean

log2
Foldchange Foldchange p-Value FDR p-Value Bonferroni

hsa-miR-885-3p 48.16 −3.37 −10.32 6.3 × 10−25 3.9 × 10−22 8.0 × 10−22

hsa-miR-885-5p 70.76 −2.71 −6.53 2.2 × 10−19 6.5 × 10−17 2.8 × 10−16

hsa-miR-193b-5p 46.92 −2.74 −6.68 3.2 × 10−19 6.5 × 10−17 4.0 × 10−16

hsa-miR-100-5p 116.84 −2.40 −5.28 5.2 × 10−18 7.6 × 10−16 6.5 × 10−15

hsa-miR-34a-5p 41.88 −2.65 −6.29 6.2 × 10−18 7.6 × 10−16 7.8 × 10−15

hsa-miR-192-5p 1675.12 −2.32 −5.00 1.8 × 10−17 1.9 × 10−15 2.3 × 10−14

hsa-miR-148a-3p 2186.08 −1.60 −3.02 2.3 × 10−17 2.0 × 10−15 2.8 × 10−14

hsa-miR-122-5p 140,835.00 −2.31 −4.96 1.4 × 10−15 1.0 × 10−13 1.7 × 10−12

hsa-miR-194-5p 600.92 −1.97 −3.93 1.6 × 10−15 1.1 × 10−13 2.0 × 10−12

hsa-miR-27b-3p 295.20 −1.47 −2.77 1.1 × 10−14 6.6 × 10−13 1.4 × 10−11

hsa-miR-365a-3p 21.28 −2.51 −5.70 1.7 × 10−14 9.4 × 10−13 2.1 × 10−11

hsa-miR-483-3p 253.28 −2.30 −4.93 3.1 × 10−14 1.6 × 10−12 3.9 × 10−11

hsa-miR-23b-3p 255.72 −1.96 −3.90 3.9 × 10−14 1.8 × 10−12 4.9 × 10−11

hsa-miR-125b-5p 2728.28 −1.84 −3.57 6.0 × 10−14 2.6 × 10−12 7.5 × 10−11

hsa-miR-30a-3p 45.40 −2.18 −4.54 6.3 × 10−14 2.6 × 10−12 8.0 × 10−11

hsa-miR-99a-5p 179.40 −1.93 −3.80 1.7 × 10−13 6.6 × 10−12 2.1 × 10−10

hsa-miR-146b-5p 175.20 −1.91 −3.75 4.3 × 10−13 1.6 × 10−11 5.5 × 10−10

hsa-miR-122-3p 54.72 −2.66 −6.33 1.3 × 10−12 4.4 × 10−11 1.6 × 10−9

hsa-miR-146b-3p 16.12 −2.54 −5.83 1.9 × 10−12 6.1 × 10−11 2.3 × 10−9

hsa-let-7c-5p 1429.64 −2.03 −4.09 2.3 × 10−12 7.1 × 10−11 2.9 × 10−9

hsa-miR-194-3p 8.08 −3.78 −13.76 4.8 × 10−12 1.4 × 10−10 6.1 × 10−9

hsa-miR-30c-5p 122.72 −1.24 −2.37 5.4 × 10−12 1.5 × 10−10 6.8 × 10−9

hsa-miR-574-3p 141.24 −1.80 −3.47 6.1 × 10−12 1.6 × 10−10 7.7 × 10−9

hsa-miR-125b-2-3p 6.44 −3.22 −9.29 2.3 × 10−11 5.9 × 10−10 2.9 × 10−8

hsa-miR-378a-5p 10.60 −2.33 −5.02 2.4 × 10−11 5.9 × 10−10 3.0 × 10−8

hsa-miR-30a-5p 335.88 −1.29 −2.45 2.9 × 10−11 7.0 × 10−10 3.7 × 10−8

hsa-miR-455-5p 10.16 −2.66 −6.31 1.4 × 10−9 3.2 × 10−8 1.8 × 10−6

hsa-miR-1468-5p 4.40 −2.44 −5.44 8.6 × 10−9 1.9 × 10−7 1.1 × 10−5

hsa-miR-193a-5p 133.12 −1.04 −2.06 1.3 × 10−8 2.7 × 10−7 1.6 × 10−5

hsa-miR-204-5p 12.04 −1.68 −3.20 6.8 × 10−8 1.4 × 10−6 8.6 × 10−5

hsa-miR-345-5p 25.48 −1.24 −2.36 8.5 × 10−8 1.7 × 10−6 1.1 × 10−4

hsa-miR-28-3p 244.56 −0.81 −1.75 3.3 × 10−7 6.4 × 10−6 4.1 × 10−4

hsa-miR-99a-3p 4.16 −2.49 −5.60 5.4 × 10−7 1.0 × 10−5 6.8 × 10−4

hsa-miR-455-3p 4.08 −2.40 −5.28 6.3 × 10−7 1.2 × 10−5 8.0 × 10−4

Interestingly, 31 of 34 miRNAs were also found to be downregulated when comparing
ENI with CHB patients, and these represented 73.8% of the circulating miRNAs with
statistically significant differential expression (Bonferroni test level < 0.001). The remaining
3 miRNAs (miR-204-5p, miR-345-5p, and miR-99a-3p) were also downregulated when
comparing ENI with CHB, however without achieving statistical significance (Table 4 and
Figure 5).

Table 4. miRNAs with significant differential expression between ENI and CHD but not between
ENI and CHB.

ENI vs. CHD ENI vs. CHB

Assay Fold Change Bonferroni Fold Change Bonferroni

hsa-miR-204-5p −3.20 8.60 × 10−05 −2.89 3.16 × 10−03

hsa-miR-345-5p −2.36 1.08 × 10−04 −2.21 2.84 × 10−03

hsa-miR-99a-3p −5.60 6.75 × 10−04 −4.89 1.37 × 10−02
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Figure 5. miRNAs were differentially expressed in individuals with HBeAg-negative infection (ENI),
chronic hepatitis B (CHB), and chronic hepatitis D (CHD) patients; 31 miRNAs were downregulated
in ENI when compared to both CHB and CHD. An additional 8 miRNAs were downregulated and
3 were upregulated when comparing ENI to CHB, and 3 were downregulated in the comparison
between ENI and CHD.

Eight of the 39 miRNAs that were downregulated in ENI vs. CHB did not show
significant differential expression when comparing ENI with CHD patients (Table 5 and
Figure 5).

Table 5. miRNAs with significant differential expressions between ENI and CHB but not between
ENI and CHD.

ENI vs. CHB ENI vs. CHD

Assay Fold Change Bonferroni Fold Change Bonferroni

hsa-miR-378a-3p −2.78 1.32 × 10−10 −1.90 3.18 × 10−03

hsa-miR-200a-3p −7.05 1.56 × 10−09 −2.04 1.00
hsa-miR-200b-3p −7.37 1.64 × 10−08 −2.90 4.34 × 10−01

hsa-miR-203a-3p −3.59 4.31 × 10−05 −3.02 1.44 × 10−03

hsa-miR-30e-3p −2.75 1.03 × 10−04 −2.46 1.67 × 10−03

hsa-miR-378i −3.60 2.37 × 10−04 −3.00 4.52 × 10−03

hsa-miR-3065-5p −3.90 4.82 × 10−04 −2.40 1.00
hsa-miR-874-3p −2.84 7.03 × 10−04 −2.19 1.39 × 10−01

Interestingly, the three miRNAs (miR-625-3p, miR-142-5p, and miR-223-3p) that were
upregulated in ENI when compared to CHB showed the same trend toward upregulation in
comparison with CHD but did not achieve statistical significance (Supplementary Table S1).
Between the two groups of patients with CHB and CHD, only miR-200a-3p resulted highly
differentially expressed and upregulated in CHB (Bonferroni test 9.20 × 10−4). The second-
and third- most differentially expressed miRNAs were miR-206 and miR-1246, which were
upregulated in CHB without achieving a statistical significance (Bonferroni test, 0.056
and 0.080).

In individuals with HBeAg-negative infection, miRNA expression was analysed ac-
cording to serum HBV-DNA levels (<100 IU/mL vs. 100–2000 IU/mL) and only miR-206
(Bonferroni test, 3.31 × 10−5) was downregulated in ENI with lower viremia. The same
miRNA was significantly downregulated in CHB and CHD patients with ALT levels below
100 U/L (Bonferroni test, 0.0014). The second- most differentially expressed miRNA ac-
cording to ALT levels was miR-1246, but this was found at a much lower level of stringency
(Bonferroni test, 0.011).
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3.5. MiR-B-Index

The expression levels of six miRNAs, three hepatocellular miRNAs (miR-122-5p, miR-
99a-5p, miR-192-5p), and three control miRNAs (miR-126-3p, miR-335-5p, and miR-320a)
were used to calculate the MiR-B-Index, as previously reported [23]. The mean MiR-B-Index
value for ENI was 1.67× 105, that for CHB was 1.06× 106, and that for CHD was 9.10× 105

(Kruskal–Wallis, p < 0.001). MiR-B-Index values were comparable between CHB and CHD
patients (Mann–Whitney, p = 0.256), whereas they were significantly different between CHB
and ENI (Mann–Whitney, p < 0.001) and between CHD and ENI (Mann–Whitney, p < 0.001).
The distribution of MiR-B-Index values in the three groups is reported in Figure 6.
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4. Discussion

The analysis of the circulating miRNA profiles in 3 well-characterized groups of
HBsAg positive/HBeAg-negative carriers showed significantly different patterns according
to the presence or absence of liver disease independently of the co-infection with HDV
(Figures 3 and 4). Furthermore, as in previous reports, HBsAg-positive individuals showed
significantly higher levels of miRNAs than controls (HBsAg-negative subjects), because
of the miRNAs carried by HBsAg particles [21–23]. Nevertheless, the circulating miRNAs
profiles in whole sera were consonant with those of immunoprecipitated HBsAg-particles,
fostering the characterization of miRNA profile of the whole serum [22,23].

The stringent analysis of the differences between HBeAg-negative infection (ENI) and
patients with chronic hepatitis B (CHB) revealed that 39 miRNAs were downregulated and
3 were upregulated in the former. Very interestingly, 31 of the 39 miRNAs downregulated
between ENI and CHB were also downregulated at the same level of stringency in the
comparison with CHD. Finally, the overall miRNA profiles of CHB and CHD patients were
surprisingly coincident, as only one miRNA, miR-200a-3p, was found to be differentially
expressed and upregulated in CHB patients.

The miRNA profile depicts the instant representation of the coincident expression of
miRNAs that have reciprocal and interconnected actions influencing post-transcriptional
gene expression and the epigenetic regulation of many differential pathways and feed-
back loops associated with an ongoing pathophysiologic process [29]. Particularly hepatic
miRNA profiles had been shown to be involved in the regulation of liver metabolism, liver
damage, progression of fibrosis, and oncogenesis [30]. Therefore, in HBsAg carriers, in
which a specific enrichment in hepatocellular miRNAs is provided by circulating HBsAg
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particles, serum miRNAs may portray an indirect picture of the post-transcriptional epi-
genetic dysregulations linked with the ongoing infection and hepatocellular injury. As
a consequence, the finding of consonant miRNA profiles in patients with CHB or CHD
suggests that their virus-induced liver damage has similar pathogenetic pathways.

Actually, HDV replication is independent of HBV: HDV was shown to cause latent in-
trahepatic infection without liver damage following orthotopic liver transplantation [31–34].
More recently, both in vitro and in vivo studies demonstrated that HDV may persist dur-
ing liver regeneration by transmission of HDV-RNA through cell division in absence of
HBV [35,36]. Furthermore, in cell culture, the release and assembly of genomic HDV-RNA
can be supported by the envelope proteins of vesicular stomatitis virus (VSV), hepatitis C
virus (HCV), and Dengue virus [37,38]. However, so far, no clinical evidence supports the
presence of HDV liver damage in absence of HBV infection [2]. Our findings support the
hypothesis of shared pathogenic mechanisms of the underlying liver damage in both CHB
and CHD patients.

Notwithstanding that to link differential expression of single serum miRNAs to spe-
cific pathophysiologic conditions is highly speculative and hazardous, it is interesting to
note that the three miRNAs (miR-625-3p, miR-142-5p, and miR-223-3p) that were signif-
icantly upregulated in ENI vs. CHB appear to be involved in the regulation of immune
response. Accordingly, it has been hypothesized that the secreted miRNAs could contribute
to the crosstalk between hepatocytes and other cells [30]. Furthermore, a recent study
demonstrated that miR-625-3p is upregulated in CD8+ T cells in vitro upon TCR-mediated
activation, and its overexpression is tightly linked to the level of CD8+ T cell prolifera-
tion [39]. Furthermore, the high expression of miR-625-3p at an early time point during
CD8+ T cell expansion after allogeneic stem cell transplantation suggested that miR-625-3p
might be applicable as an intracellular biomarker for effective immune reconstitution [39].
miR-142-5p overexpression is linked with hyperimmune conditions [40], andmiR-223 was
shown to play a central role in myeloid cells, especially neutrophil and macrophage differ-
entiation, and in regulation of innate immunity [41]. These actions of the three miRNAs
upregulated in HBeAg-negative infection are indeed consistent with the currently accepted
theory that this phase of chronic HBV infection relies upon an effective immune control of
HBV that instead is missing in CHB patients [23,42]. The three miRNAs (miR-345, miR-204,
and miR-99a) significantly downregulated in ENI vs. CHD were also downregulated in
ENI vs. CHB but at much lower levels of significance (namely Bonf.Cor. > 0.001 with
p-values of 3.16 × 10−03, 2.84 × 10−03, and 1.37 × 10−02, respectively) (Table 4). Given
the evidence that miR-204 is involved in the suppression of HBV replication, its highly
significant upregulation in CHD raises the question of its possible contribution in the HDV
induced inhibition of HBV replication [43,44].

The miRNA (miR-200a-3p) most differentially overexpressed in CHB vs. CHD patients
was shown to be upregulated in HBV associated hepatocellular carcinoma (HCC) and
negatively correlated with the expression of HBV-X oncogenic protein [45,46]. Interestingly,
also the other two miRNAs (miR-206 and miR-1246) upregulated in CHB vs. CHD had
been associated with HCC [47,48]. Age is usually a factor associated with an increased HCC
risk [49], whether the older age of CHB patients (44.8 vs. 38.0 years, p = 0.017) may have a
role in such a finding remains to be clarified; nevertheless, the high oncogenic potential
of HBV infection is well known [50]. Finally, miR-206 was found to be downregulated
in chronic hepatitis patients with ALT < 100 U/L, in accordance with previous findings
in a different clinical setting [51]. Interestingly, miR-206 also showed a trend toward
downregulation when comparing CHD vs. CHB patients; this could be explained by the
lower ALT levels observed in the former (65 vs. 110 U/L, p = 0.001).

A highly significant overexpression of miR-122-5p, miR-99a-5p, and miR-192-5p was
observed in the 50 patients with chronic hepatitis; the three miRNAs are the first-, second-,
and sixth-most represented miRNAs of the human liver. miR-122 is considered to be a
hepatocyte specific miRNA given that it represents more than 50% of hepatic miRNAs
and that its expression in other tissues is negligible. Changes in its expression have been
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described in different pathological conditions: downregulation in HCC [52] and steatotic
liver disease [53]. In the setting of viral infection, miR-122 appears to have opposite actions,
as it promotes Hepatitis C Virus (HCV) replication by binding the region at the 5′-UTR of
the HCV RNA genome, whereas it inhibits HBV replication through cyclin-G1-modulated
p53 activity [54] and NDRG3 (a member of the N-myc downstream-regulated gene) [55]
or directly by binding to HBV pregenomic RNA [56]. Accordingly, Wang et al. found that
miR-122 levels are decreased in the liver of chronic HBV patients [54], oppositely to those
observed in CHB sera samples [23,57–59]. This discrepancy highlights the complexity of the
regulation of miR-122 liver expression and its release into circulation. Thus, further studies
are requested to better address this issue. At variance for miR-99a-5p,positive regulation of
HBV replication has been reported [60]. In addition, both miR-99a-5p and miR-192-5p have
been identified as potential early biomarkers for hepatocellular carcinoma (HCC) [61,62].
Based on their overexpression, we previously included miR-122-5p, miR-99a-5p, and miR-
192-5p in a score (MiR-B-Index) that we showed to be associated with both natural and
therapy-induced immune control of HBV infection [23]. In the present study, we assessed
the MiR-B-Index and found highly comparable values in CHB and CHD patients, whereas
they were significantly different in individuals with HBeAg-negative infection without
virus-induced liver disease (Figure 6). This finding further supports common pathogenetic
mechanisms in liver injury of CHB and CHD patients.

The HBsAg positive carriers enrolled in the present study were well-characterized,
pedigreed patients. However, the sample size was small. Therefore, further studies on
larger cohorts of patients are required to confirm our findings and validate the use of
MiR-B-Index in the management of HBsAg carriers.

5. Conclusions

In conclusion, the characterization of the differential profiles of circulating miRNAs
reveals a highly similar pattern of miRNA expression (68.9% identical) in patients with
chronic viral hepatitis B and D. On the contrary, the serum miRNA profile of carriers of
HBeAg-negative infection differ significantly from both types of chronic viral hepatitis,
showing a downregulation of 31 miRNA in ENI as compared to CHB and CHD and an
upregulation of 3 miRNA involved in the modulation of immuneresponse.
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