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Abstract: Viruses that are transmitted by arthropods, or arboviruses, have evolved to successfully
navigate both the invertebrate and vertebrate hosts, including their immune systems. Biting midges
transmit several arboviruses including vesicular stomatitis virus (VSV). To study the interaction
between VSV and midges, we characterized the transcriptomic responses of VSV-infected and mock-
infected Culicoides sonorensis cells at 1, 8, 24, and 96 h post inoculation (HPI). The transcriptomic
response of VSV-infected cells at 1 HPI was significant, but by 8 HPI there were no detectable
differences between the transcriptome profiles of VSV-infected and mock-infected cells. Several genes
involved in immunity were upregulated (ATG2B and TRAF4) or downregulated (SMAD6 and TOLL7)
in VSV-treated cells at 1 HPI. These results indicate that VSV infection in midge cells produces an
early immune response that quickly wanes, giving insight into in vivo C. sonorensis VSV tolerance
that may underlie their permissiveness as vectors for this virus.

Keywords: vesicular stomatitis virus; VSV; VSNJV; negative-sense RNA virus; arbovirus; Culicoides;
biting midge; transcriptome; immune response; zoonotic

1. Introduction

Vesicular stomatitis (VS) is a zoonotic disease caused by vesicular stomatitis virus
(VSV, Rhabdoviridae, vesiculovirus), a single-stranded, negative-sense RNA virus that is
transmitted by hematophagous insects like biting midges, black flies, and sand flies [1,2].
There are two serotypes of VSV, New Jersey (VSNJV) and Indiana (VSIV) [3,4]. VS primarily
affects horses, but other livestock such as cattle, swine, sheep, goats, llamas, and alpacas
can also become infected [3,4]. Clinical symptoms of VS include vesicular lesions on the
mouth, naso-oral mucosa, teats, or coronary bands, loss of appetite, weight loss, and
lameness [3–5]. These symptoms can be mistaken for those of foot-and-mouth disease
(FMD). Once detected, VSV-positive premises can be placed under quarantine, which can
have a major economic impact [6–8].

In the United States, Culicoides sonorensis biting midges (Diptera, Ceratopogonidae) are
a known vector of VSV, showing non-lytic infection in all tissue types following ingestion of
an infectious blood meal [9], and are able to transmit the virus efficiently to animals [10,11]
and to other midges [12]. Female midges require bloodmeals for oviposition and are capable
of three to four feeding/gonotrophic cycles during their lifetime [13]. Midges and other
hematophagous vectors possess an innate immune system that responds to some arboviral
infections. The primary immune signaling pathways in insects are the Janus kinase signal
transducer and activator of transcription (JAK/STAT), Toll, immune deficiency (IMD), and
RNA interference (RNAi) pathways [14–17]. Unlike other disease-transmitting arthropods,
such as mosquitoes [18] and ticks [19], the molecular relationships between the C. sonorensis
immune system and the pathogens it vectors are largely unknown. However, one prior
study of epizootic hemorrhagic disease virus (EHDV) infection in midges demonstrated
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that antimicrobial peptide genes were upregulated at 36 h post ingestion of the virus in
a blood meal, although it was not determined whether these effectors were aimed at the
virus [20].

This study characterized the transcriptomes of VSV-infected C. sonorensis W8 cells in
culture at multiple time points and hypothesized that VSV infection would suppress the
midge innate immune response. Transcriptomes of VSNJV-infected and mock-infected
C. sonorensis cells were deeply sequenced and differentially expressed unigenes (DEGs) were
identified early in infection only, at 1 h post inoculation (HPI), while, interestingly, no DEGs
were identified at or after 8 HPI. Several immune-related unigenes were downregulated
(SMAD6 and TOLL7) or upregulated (ATG2B and TRAF4) with VSNJV infection. These data
indicate that VSNJV infection in midge cells elicits an immune response early in infection
that quickly wanes even with continued robust viral replication.

2. Materials and Methods
2.1. Cells and Virus

Culicoides sonorensis W8 cells, generated from 1-day-old embryonated eggs (USDA,
ARS, Arthropod-Borne Disease Research Unit, Manhattan, KS, USA) [21], were grown at
27 ◦C in Schneider’s insect media (MilliporeSigma, St. Louis, MO, USA) supplemented with
0.4 g/L of sodium bicarbonate, 0.0585 g/L of L-glutamine, 0.006 g/L of reduced glutathione,
0.03 g/L of L-asparagine, 18 µL of 10 mg/L bovine insulin, and 5% fetal bovine serum
(FBS) [21,22], hereafter referred to as complete media. Vero MARU cells (Middle America
Research Unit, Panama) were grown at 37 ◦C with 5% CO2 in 199E media supplemented
with 2% FBS, 100U of penicillin/streptomycin sulfate, and 0.25 µg/mL of amphotericin
B. The New Jersey serotype of VSV (bovine field isolate from 1982, USDA-APHIS, Ames,
IA, USA) was grown at 37 ◦C with 5% CO2 in porcine epithelial cells (AG08113, Coriell
Institute, Camden, NJ, USA) with Eagles MEM with Earle’s salts media (Sigma, St. Louis,
MO, USA) supplemented with 2% FBS and 100U of penicillin/streptomycin sulfate.

2.2. Time Course Infection of W8 Cells with VSNJV

W8 cells were seeded onto 6-well plates at 2 × 107 cells per well, two plates per time
point (1, 8, 24, 48, 72, 96, and 120 HPI). The broad time points were selected to capture the
full breadth of viral replication kinetics. For each time point, one plate was infected with
VSNJV diluted in complete media for a multiplicity of infection (MOI) of 5 while the other
plate was mock-infected with complete media alone. A total of six replicates were included
per time point. Once the inoculum was added, the cells were incubated at 27 ◦C for 1 h
with a gently rocking motion every 15 min. After which the inoculum was removed and
the cells were washed twice with 2 mL of complete media before 2 mL of complete media
were added to the wells. At each time point, the supernatant was collected, clarified by
centrifugation (1500× g, 10 min, 4 ◦C), and stored at −80 ◦C. For the initial time point, the
second wash was collected at 1 HPI and frozen at −80 ◦C.

2.3. VSNJV Quantification

Infectious VSV was quantified via plaque assay. Vero cells were seeded in 12-well
plates at 2 × 106 cells per well one day prior to infection. Clarified supernatants were
serially diluted 1:10 in 199E media before inoculation onto the Vero cells. After incubation at
37 ◦C for 1 h with occasional rocking motion, the inoculum was aspirated and replaced with
an overlay of 0.6% methylcellulose in 199E media. The plates were incubated for 3 days at
37 ◦C then fixed with a formaldehyde and crystal violet stain. After 1 h of incubation at
room temperature, the stain was removed, wells were washed with water, and the plaques
were counted. Viral titer was calculated as the number of plaque-forming units (PFU)
per mL.
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2.4. W8 RNA Extraction, Sequencing, and QC

After the supernatants were removed, the cells were lysed with Xml Trizol and RNA
was collected per the manufacturer’s instructions (Direct-zol RNA Miniprep Plus Kit;
R2070). RNA was stored at −20 ◦C. RNA quantity and quality were assessed via Qubit-
Flex™ (Thermo Scientific, Waltham, MA, USA) and NanoDrop 8000™ (Thermo Scientific).
Messenger RNA from the extracted RNA of samples for 1, 8, 24, and 96 HPI was purified us-
ing poly-T oligo attached magnetic beads. Purified mRNA was fragmented, and first-strand
cDNA was synthesized via a random hexamer and completed using second-strand synthe-
sis. A one-step end-repair and dA-tailing method was used to create 5′-phosphorylated
and 3′-dAtailed cDNA fragments enabling direct ligation of Illumina sequencing adapters.
cDNA was then size-selected and amplified by polymerase chain reaction (PCR). Multi-
plex libraries were sequenced on the Illumina Hiseq2500 platform with at least 40 million
paired-end 150BP reads per sample. Low-quality sequences were removed by trimming
with fastp v0.23.2 [23] (Q = 25) and sequence quality was validated with FastQC v0.11.9
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 2 May 2023).

2.5. De Novo Assembly, Reduction, and Annotation from W8 Cells

Trimmed reads from each sample were concatenated and normalized to 50× k-mer
(k = 25) coverage using Trinity’s in silico read normalization. Normalized reads were then
assembled using the default Trinity pipeline v2.14.0 [24]. The resulting transcriptome was
reduced using the default EvidentialGene tr2aacds v2018.06.18 [25] pipeline to filter out
biologically irrelevant or redundant transcripts. Kraken2 v2.1.3 [26] was used with the
NCBI nucleotide database (2 May 2023) to filter out human transcripts and separate out
candidate VSV transcripts using Kraken Tools v1.2 [27]. This final transcriptome assembly
was annotated using the default Trinotate pipeline v3.2.2 [28], combining evidence from
Pfam-a HMM [29], Swiss-Prot [30], and UniProt [31] (Accessed June 2023). Gene Ontology
(GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were extracted
from the best Swiss-Prot and Pfam hits.

2.6. Differential Expression from W8 Cells

Trimmed reads were pseudo-aligned to the final reference transcriptome coding do-
mains of the VSNJV genome (NCBI accession MK613994) using Salmon v 1.10.1 [32] and
then unigene counts were generated for each sample. Unigene-level abundance, counts,
and length were imported to R 4.1.3 [33] using the tximport [34] package. Samples were
grouped into a single factor based on the combination of treatment and time, represented
in metadata. A negative binomial model (~Trt_Time) was fit and dispersion was visualized
using Deseq2 [35] (Figure S1). Wald hypothesis testing contrasted infected vs. uninfected
at each time point, with a test of adjusted p-value > 0.05 [36] and Log2(Fold-Change) > 0.58.

2.7. Statistical Analysis

Differences in log-transformed viral titers over time were detected using repeated
measures ANOVAs with Tukey’s multiple comparisons tests. Differences in viral unigenes
per million by gene were detected with two-way ANOVAs with Fisher’s multiple compar-
isons tests. Correlations between viral gene order and unigenes per million were detected
with Pearson correlation coefficients. Statistics were conducted using GraphPad Prism v
10.0.2 (GraphPad Software, Boston, MA, USA). The principal component analysis, heatmap,
model dispersion plot, and volcano plots were all produced in R [33] with packages GGplot,
pheatmap, DESeq2, DEGreport, and Enhanced Volcano.

3. Results
3.1. VSNJV Rapidly Produces Infectious Virus W8 Cells

To evaluate the transcriptional response of W8 C. sonorensis cells to VSNJV infection
at multiple time points, we infected or mock-infected six replicates each of W8 cells and
collected cell supernatant and cell lysates at 1, 8, 24, 48, 72, 96, and 120 HPI. As seen

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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in Figure 1, the infectious virus rapidly increased and peaked between 8 and 24 HPI
(5.32 Log10 PFU/mL (0.22 SE) and 5.68 Log10 PFU/mL (0.11 SE), respectively) and then
remained high until the conclusion of the experiment at 120 HPI (5.67 Log10 PFU/mL,
0.09 SE). As expected, the average viral titer at 1 HPI was significantly lower than that of
all other time points (Tukey’s multiple comparisons adjusted p-value < 0.0001).
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Figure 1. (A) One-step growth curve of VSNJV in W8 cells (n = 6 replicates per time point, repeated
measures ANOVA F (6,41) = 361.7, p < 0.0001). The dotted line indicates the limit of detection. Groups
that do not share a letter are significantly different via Tukey pairwise comparison (p < 0.05).

3.2. W8 Transcriptome Response to VSNJV Infection

Transcriptome analyses were conducted on RNA extracted from W8 cells infected
with VSNJV or mock-infected at 1, 8, 24, and 96 HPI (six replicates per condition per time
point). Gene ontology (GO) annotation analyses for all unigenes and time points identified
the most numerous unigenes as components of the cytoplasm (18%), nucleus (16%), cytosol
(13%), plasma membrane (11%), and membrane (10%) (Figure S2A). The primary molecular
functions were ATP binding (17%), metal ion binding (15%), and protein binding (10%)
(Figure S2B), while the primary biological processes were proteolysis (12%) and regulation
of transcription by RNA polymerase II (9%) (Figure S2C).

Unigene expression profiles from 8, 24, and 96 HPI showed no differences in clus-
tering between VSNJV-infected and mock-infected cells (Figure 2). However, differences
in unigene expression at 1 HPI between VSNJV-infected and mock-infected cells were
detected by principal component analyses (PCA) (Figures 2 and S3). PCA1 and PCA2
(Figure 2A) demonstrate that the samples cluster primarily by time post inoculation mean-
ing the majority of the variance is explained by time. But two distinct clusters form with
PCA1 and PCA3 (Figure 2B) by infection status at 1 HPI indicating that the unigene profiles
differ by infection status only at 1 HPI. The pattern was also found using a correlation ma-
trix (Figure 3) that demonstrates that the mock-infected and VSNJV-infected profiles from
8, 24, and 96 HPI were highly correlated by time point. The correlation of mock-infected
and VSNJV-infected profiles at 1 HPI was present, but weaker compared with the later
time points.
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data clustered by correlation distance. Color intensity indicates the strength of pairwise Pearson
correlation coefficients between all samples, with red indicating a higher positive correlation and
blue indicating a lower correlation. Samples are labeled with V for VSNJV-infected cells or C for
mock-infected controls followed by the collection time point (HPI) and letter (A–F) to indicate the
replicate (n = 6 replicates per time point and condition).
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Using a cutoff of Log2FC = 0.58, or about a 1.5-fold change, 102 differentially ex-
pressed unigenes (DEGs) were identified at 1 HPI with 54 upregulated and 48 downreg-
ulated unigenes (Table S1). No DEGs were identified at 8, 24, or 96 HPI. Half (51.0%)
of the downregulated unigenes were suppressed between −1.0 and −2.0 log2FC in the
VSNJV-infected cells. Of the remaining unigenes, 40.8% were downregulated between
−0.58 and −1.0 log2FC and only 8.2% had log2FC values less than −2. The majority of
the downregulated unigenes (73.5%) were able to be assigned putative annotations via
homology to entries in the Swiss-Prot database. Similar to the downregulated unigenes,
half (49.1%) of the upregulated unigenes were upregulated between −1.0 and −2.0 log2FC
in the VSNJV-infected cells. The remaining upregulated unigenes were 2.0 log2FC or more
upregulated in 35.8% of the unigenes and between 0.58 and 1.0 log2FC in 15.1%. Half
(49.1%) of the upregulated unigenes had homologous hits in the Swiss-Prot database.

At 1 HPI, several unigenes with documented or putative immune functions were
differentially expressed with VSNJV infection (Table 1, Figure 4). Specifically, SMAD6,
TOLL7, SAM11, and KEN1 were all downregulated −2.3 and −0.8 Log2FC or −4.8 to
−1.8-fold change with VSNJV infection. Proviral unigene KI26L was also downregu-
lated an average of −0.84 Log2FC between two unigenes. Several non-immune unigenes
were downregulated with VSNJV infection, such as the circadian rhythm regulator REG5
(−2.4 LogFC) [37,38] and age regulator LIPT (average −1.35 Log2FC) [39]. Multiple im-
mune unigenes were upregulated in response to VSNJV infection at 1 HPI, including
TRAF4, PPAF3, CHIT1, FAT, and ABCA3 with Log2FC values ranging from 0.8 to 2.4
(Table 1). ATG2B, which has possible immune functions and proviral functions, was
upregulated 0.83 Log2FC.

Table 1. Select differentially expressed unigenes with Log2 FC > 0.8 or −0.8.

Functional
Annotation Name Log2 FC FDR p-Value Possible Immune or Proviral

Function

REG5 Rhythmically expressed gene 5 −2.41 4.72 × 10−65 Unknown
SMAD6 Mothers against decapentaplegic homolog 6 −2.27 5.23 × 10−266 Immune [40]

DSX Protein doublesex −1.77 4.88 × 10−8 Unknown
CUD2 Endocuticle structural glycoprotein −1.55 1.23 × 10−48 Unknown

LIPT Lipoyltransferae 1 *
−1.35,
−1.36,
−1.35

1.15 × 10−15,
0.007,

8.35 × 10−24
Unknown

TOLL7 Toll-like receptor 7 * −1.02,
−0.95

1.64 × 10−17,
5.17 × 10−7 Immune [41]

SAM11 Sterile alpha motif domain-containing
protein 11 −0.93 2.54 × 10−4 Immune [42]

KI26L Kinesin-like protein * −0.82,
−0.85

3.00 × 10−13,
5.10 × 10−5 Proviral [43,44]

KEN1 Transcription factor Ken1 −0.81 0.02 Immune [45,46]
ATG2B Autophagy-related protein 2 homolog B 0.83 7.75 × 10−13 Immune, proviral [47,48]
TRAF4 TNF receptor-associated factor 4 0.84 6.59 × 10−4 Immune [49]

NAAT1 Sodium-dependent nutrient amino acid
transporter 1 1.03 2.53 × 10−20 Unknown

PPAF3 Phenoloxidase-activating factor 3 1.30 1.73 × 10−7 Immune [50]
CHIT1 Chitotriosidase 1 1.55 3.03 × 10−8 Immune [51,52]

FAT Cadherin-related tumor suppressor/FAT
tumor suppressor homolog 1 1.78 6.51 × 10−6 Immune [53,54]

CP4CU Cytochrome P450 4c21 1.93 0.005 Unknown

SCX Basic helix-loop-helix transcription
factor scleraxis 1.97 0.009 Unknown

ABCA3 Phospholipid-transporting ATPase ABCA3 2.44,
1.43

0.02,
3.72 × 10−6 Immune [55]

GGT Gamma-glutamytranspeptidase 1 2.47 0.02 Immune [56]

* Multiple unigenes.
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Figure 4. Enhanced volcano plot of differential unigene expression between VSNJV-infected and
mock-infected C. sonorensis W8 cells 1 HPI. The volcano plot shows the relationship between fold
change (x-axis) and statistical significance (y-axis) in determining differentially expressed genes
between virus-treated and control cells at time point 1 HPI. Each dot represents a unigene, with pink
dots indicating unigenes meeting the significance threshold of adjusted p-value < 0.05 and biological
relevance cutoff of log2 (fold change) > 0.58 (1.5-fold change). Differential expression analysis was
performed using DESeq2 on RNA sequencing data, with statistical testing adjusted for a single factor
using the Wald hypothesis test.

3.3. VSNJV Transcriptome from W8 Cells

Transcription of VSV proteins occurs sequentially starting with the N gene [57,58].
Furthermore, transcription is discontinuous and pauses at the regions between genes
(Figure 5A), possibly as the RNA polymerase complex stutters or falls off [59]. At 1 HPI,
the number of unigenes by viral gene followed the expected linear decrease across the
genome with N being the most numerous unigene and L the least numerous (Figure 5B,
Table S2). Indeed, gene order was negatively correlated with unigenes per million at 1 HPI
(r (28) = −0.93, p = 0.02) but not at any time point after. Across all time points, the number
of P unigenes per million remained steady, while after 1 HPI N decreased and G, M, and L
all increased (Figure 5B). Overall, the least frequent viral unigene was L, the last and largest
gene. The biggest difference in unigene amount, for all genes except P, occurred between 1
and 8 HPI.
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Figure 5. VSNJV unigenes from W8 infection. (A) Diagram of VSNJV genome. (B) Mean Log10

VSNJV unigenes per million at each sequenced time point (n = 6 replicates per time point, two-way
ANOVA F (12,75) = 903.6, p < 0.0001). Colors indicate viral genes (black: N, pink: P, teal: M, dark
purple: G, and light purple: L). Within each gene, time points that do not share a letter are significantly
different via Tukey pairwise comparisons (p < 0.05). Full pairwise comparisons can be found in
Table S3.

4. Discussion

The transcriptomic profiles of C. sonorensis W8 cells in response to VSNJV infection
at multiple time points indicated that unigenes in the W8 cells only were differentially
expressed at 1 HPI but not at 8, 24, or 96 HPI. The activity of the VSNJV matrix protein could
contribute to the time-dependent differences in C. sonorensis transcriptomic response. The
matrix protein is integral for VSV replication, virion packaging, virus budding, and evasion
of the host antiviral response [60]. The latter is accomplished when the matrix suppresses
the transcription of host innate immune genes and blocks host mRNA transport out of the
nucleus [60–68]. In the current study, the number of matrix unigenes is lowest at 1 HPI
compared with the later time points, suggesting that transcription of the matrix specifically
may suppress host transcriptomic response. In such a scenario, the lack of response to
the virus during robust replication may reveal our first insights into mechanisms of viral
tolerance, and therefore permissiveness and competence in C. sonorensis that warrant
further exploration via in vivo studies. Additionally, the lack of differential expression
at the later time points in Culicoides cells could be related to VSV’s lysogenic replication
strategy in Culicoides cells that does not cause apoptosis [9].

Several of the differentially expressed W8 unigenes have known immune functions
or are thought to be components of immune system pathways. The upregulation and
downregulation of immune genes during viral infection have been documented with other
arthropod-borne viruses, such as dengue virus [15], Zika virus [69], and epizootic hem-
orrhagic disease virus (EHDV) [20], illustrating how complex the relationship is between
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vector and virus. In the current study, TOLL-7, a receptor involved with VSV binding
and transduction of antiviral immune signaling and autophagy in Drosophila [41], was
downregulated almost two-fold with VSNJV infection. While VSNJV infection appears to
possibly suppress autophagy via the downregulation of TOLL-7, the virus also upregulated
ATG2B, a protein required for autophagy [70], at almost the same levels that TOLL-7 was
suppressed. Simultaneous up- and downregulation of autophagy in arbovirus-infected
insect cells has been previously reported [48]. Interestingly, SMAD6 and KEN1, negative
regulators of the transforming growth factors (TGF)-β [71] and the JAK/STAT pathway [46],
respectively, were both suppressed following VSNJV infection in W8 cells. By suppressing
these genes during infection, W8 cells appear to be increasing their inflammatory pathways
1 HPI, but not after. TRAF4 inhibits activation of both Toll-like receptor-mediated NK-κβ
and interferon, making TRAF4 the only member of the TRAF family to negatively regulate
immune signaling [72–74]. The current data suggest that in W8 cells, VSNJV infection
upregulates TRAF4 1.7-fold, which would further suppress the immune response in the
infected cells. Kinesin-1 is a motor protein that viruses utilize for intracellular movement
and disruption of the viral capsid during entry [43,44,75]. Das et al. [76] postulated that
the VSV nucleocapsid interacts with kinesin-1 to move along microtubule tracks within
the cell. The data imply that W8 cells suppress kinesein-1-mediated viral movement as the
expression of KI26L decreased 1.8-fold compared with the control cells.

ABCA3 is a member of the ABC transporter gene family, which could be involved in
the mosquito immune response to viral infection [55]. However, while many of the ABC
genes were found to be differentially expressed in mosquitoes following dengue, yellow
fever, and West Nile virus infection, ABCA3 specifically was not identified so its potential
antiviral role is unknown. Expression of ABCA3 in VSNJV-infected W8 cells ranged from
2.7- to 5.4-fold higher than control cells, suggesting that unigene plays a role in VSNJV
infection. Future studies on the ABC transporter gene in the context of VSV infection
are warranted. In Drosophila, FAT is a receptor of the Hippo tumor-suppressor pathway
that controls cellular growth, migration, and survival [53]. In the current study, VSNJV
infection increased the expression of FAT 3.4-fold higher than the uninfected cells. The
Hippo pathways are also known to have antibacterial functions [53], but to the best of our
knowledge have not been studied in the context of viral infection. Two other unigenes,
PPAF3 and GGT, were upregulated with VSNJV infection in W8 cells, and both are thought
to play a role in the activation of the innate immune response [50,56]. Additionally, we
identified several unigenes that have no known immune or antiviral functions that require
further study for their putative role in midge–virus interactions.

The midge transcriptomic response to arboviral infection has been tested previously
in vivo in female C. sonorensis who were fed EHDV and examined 36 h post ingestion [20].
There are clear caveats to be considered when comparing the results of that study to the one
presented here due to the differences in the viruses and the hosts within which responses
were analyzed (here, in vitro embryonic cells vs. in vivo whole midges). Nonetheless,
such comparisons could provide insight into the molecular underpinnings of vector–virus
interactions in the midge. Of the 49 unigenes that were downregulated 1 h after infection
with VSV in this study, 36 (~74%) were also downregulated in whole midges at 36 h post
ingestion/infection with EHDV. One unigene, REG5, an ortholog to dreg-5 (Drosophila rhyth-
mically expressed gene 5) in D. melanogaster [38] was downregulated about four-fold after
virus infection in both studies. This gene is controlled by, and in phase with, the circadian
timekeeper gene period, and is putatively involved with a yet-defined circadian process in
insects [37,38]. Interestingly, the major response to EHDV infection in whole midges at 36 h
was downregulation of >1400 unigenes (~60% of total differentially expressed unigenes)
and 122 were associated with neuro-sensory behaviors, including not only REG5 but also
the circadian rhythm regulators clock, cycle, and numerous target genes [20]. Another
intriguing finding from the current study was a lack of any detectable upregulation of
antiviral defense pathways or effectors in midge cells after VSV infection. In EHDV-infected
female midges, unigenes coding for antiviral defense signaling, such as two dome and four
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toll paralogs, were all downregulated [20]. Interestingly, in both studies, unigenes for
TOLL-7 were downregulated with virus infection. In the current study, of the 53 unigenes
upregulated during VSV infection at 1 h, 24 had no corresponding unigene in the EHDV
reference transcriptome. Of the remaining 29 upregulated unigenes, 5 were significantly
upregulated and 5 significantly downregulated in the EHDV study. We can infer that
these results indicate that the positive transcriptional response to the two viruses (VSV vs.
EHDV) in the two systems tested (cell line vs. whole midge) is where biological variability
exists. Reciprocal studies of the transcriptome response of midge cell lines to EHDV and of
whole midges to VSV certainly warrant further investigation in the future.

This study provides the first insights into the molecular–genetic interactions between
VSV and cells of one of its arthropod vectors, C. sonorensis. On a transcriptional level, midge
cells only showed a response to virus infection at 1 h post infection. Extrapolating these
findings to understand what may occur between midges and VSV in vivo is challenging.
However, this study is a first step toward understanding the Culicoides transcriptomic
response to VSV infection, or potential lack thereof, that may underlie their permissiveness
as vectors for this important zoonotic virus. A further understanding of the molecular
interactions between VSV and midges, including protein-level expression, should be incor-
porated into future studies to fully elucidate the complex relationship between VSV and
Culicoides biting midges.
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Full pairwise comparisons from two-way ANOVA.
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