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Abstract: The global deforestation rate continues to worsen each year, and will eventually lead
to various negative consequences for humans and the environment. It is essential to develop an
effective forest monitoring system to detect any changes in forest areas, in particular, by monitoring
the progress of forest conservation efforts. In general, changes in forest status are difficult to annotate
manually, whereby the boundaries can be small in size or hard to discern, especially in areas that are
bordering residential areas. The previously implemented forest monitoring systems were ineffective
due to their use of low-resolution satellite images and the inefficiency of drone-based data that offer a
limited field of view. Most government agencies also still rely on manual annotation, which makes
the monitoring process time-consuming, tedious, and expensive. Therefore, the goal of this study
is to overcome these issues by developing a forest monitoring system that relies on a robust deep
semantic segmentation network that is capable of discerning forest boundaries automatically, so that
any changes over the years can be tracked. The backbone of this system is based on satellite imaging
supplied to a modified U-Net deep architecture to incorporate multi-scale modules to deliver the
semantic segmentation output. A dataset of 6048 Landsat-8 satellite sub-images that were taken from
eight land parcels of forest areas was collected and annotated, and then further divided into training
and testing datasets. The novelty of this system is the optimal integration of the spatial pyramid
pooling (SPP) mechanism into the base model, which allows the model to effectively segment forest
areas regardless of their varying sizes, patterns, and colors. To investigate the impact of SPP on
the forest segmentation system, a set of experiments was conducted by integrating several variants
of SPP ranging from two to four parallel paths with different combinations of pooling kernel size,
placed at the bottleneck layer of the U-Net model. The results demonstrated the effectiveness of the
SPP module in improving the performance of the forest segmentation system by 2.57%, 6.74%, and
7.75% in accuracy (acc), intersection over union (IoU), and F1-score (F1score), respectively. The best
SPP variant consists of four parallel paths with a combination of pooling kernel sizes of 2× 2, 4× 4,
6× 6, and 8× 8 pixels that produced the highest acc, IoU, and F1score of 86.71%, 75.59%, and 82.88%,
respectively. As a result, the multi-scale module improved the proposed forest segmentation system,
making it a highly useful system for government and private agencies in tracking any changes in
forest areas.

Keywords: automated forest monitoring; machine learning; deep learning; convolutional neural
network; semantic segmentation

1. Introduction

Forests are vital natural resources for sustaining life on Earth, even though they cover
only 38% of the land surface [1]. Generally, forests serve as water catchment areas that
reduce the likelihood of natural disasters, such as floods, landslides, and droughts. Forests
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absorb carbon dioxide from the atmosphere, which lessens the greenhouse effect, and
they also supply oxygen through an effective process of photosynthesis. To ensure the
sustainability of forests, various government and non-government organizations have
implemented a variety of strategic actions to preserve and conserve them. However, the
reduction rate of forests continues to be a worrying issue, mainly due to uncontrollable
global deforestation. In 2020 alone, 11,088 km2 of forest was cut down in Brazil [2]. Further-
more, the average global deforestation rate for primary forests from 2016 to 2020 reached
4.55 mega hectares, implying that a forest area the size of Switzerland is being destroyed
each year [3].

Wildfires, forestry exploitation, and illegal deforestation are the three major contribu-
tors to deforestation. Normally, wildfires are considered unavoidable disasters, especially
during summer and drought seasons. The exploitation of forests, on the other hand, is
usually undertaken for agriculture, logging, mining, and infrastructure construction, such
as power plants, dams, and roads [4]. Although deforestation activities appear to be carried
out for the benefit of mankind, especially for urbanization and economic development, they
have a direct negative impact on the environment. These activities also destroy vast natural
habitats, contribute to the extinction of some animal species, and disrupt the ecosystem bal-
ance. The loss of the forest canopy on the Earth’s surface will also raise global temperatures
and cause soil erosion during rainy seasons [5]. Generally, roots from the plants and trees
in the forest will trap the soil; without them, precipitation absorption will be less efficient
during hydrological cycles.

However, controlled deforestation activities, including sustainable forest management
that has been implemented in Sweden, have proven to alleviate this problem through an
efficient reforestation policy, whereby every harvested tree must be replaced by two or
more trees [6]. If deforestation activities, especially the illegal ones, are left without any
restorative efforts, forest areas will surely continue to shrink. According to Koh et al. [7],
6.3 million hectares of Malaysia’s forest has been legally and illegally exploited since 1957.
Generally, the suspects were accused of illegally removing logs from the forest and selling
them for a quick profit, which clearly shows the ineffectiveness of the deployed forest
monitoring system in tracking illegal deforestation activities.

In order to address this issue, a high-accuracy and reliable monitoring system for
detecting changes in forest areas must be developed. Over the last few decades, this topic
has prompted numerous studies in the field of forest mapping that have focused on the
use of automated detection to classify forest and non-forest areas. Drones and satellite
imagery are two commonly used modalities in the development of the monitoring systems,
but both have limitations [8]. The use of drones involves relatively higher operating costs
with a limited field of view, which makes data acquisition a more time-consuming process
compared to satellite imagery [9]. On the other hand, the resolution of satellite images
and their view angles are more limited compared to drone imaging. According to the
“garbage in, garbage out” (GIGO) theory of Kilkenny and Robinson [10], low-resolution and
cloud-induced satellite images make monitoring less effective. For this study, we propose
to develop our own datasets of forest segmentation tasks by using a high-resolution format
of Landsat-8 satellite images for fixed periodical years. Some of the forest areas being
considered have different color patterns and scales, making the task of automated forest
segmentation more difficult. As a result, this study aims to develop a multi-scale embedded
deep-learning-based forest segmentation system that automatically maps forest areas over
the years. The main novelty of this study is the optimal design of a multi-scale module
by using the spatial pyramid pooling approach, embedded into the U-Net model. This
study aims to identify the best network configurations that include multi-scale module
placement, number of parallel paths, and the best multi-scale kernel set.

In this work, U-Net is chosen to be the base architecture because of its ability to perform
well in semantic segmentation tasks, even without embedding any multi-scale module.
Therefore, this work aims to embed the multi-scale capability to the base network by adding
a spatial pyramid pooling (SPP) module, placed at the bottleneck layer of the U-Net [11]. A
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set of experiments are conducted to observe the impact of several SPP variants by using a
different combination of pooling kernels and the total number of parallel paths. The overall
network will also be configured to produce the optimal forest segmentation system. Then,
the periodical changes in forest areas will be analyzed using the time series output of the
segmented maps. Hence, governments can utilize these segmented forest maps to keep
track of all the reductions in forest sizes automatically. Crucially, this information can be
used to detect possible illegal logging activities when the forest areas shrink even though
those particular areas are gazetted as reserved forest areas. Besides that, the government
can also keep track of the conservation effort by periodically mapping the targeted forest
areas to measure progress. This paper is organized into five main sections. The following
section discusses the related works, followed by detailed explanations of the modified
U-Net with a spatial pyramid pooling mechanism. The results and discussion are explained
in Section 4, while the conclusion is given in the final section.

2. Related Works
2.1. Satellite Technology in Forest Monitoring Systems

Landsat-8, Terra, and Sentinel-2 are the three satellites that are commonly used to
develop datasets for forest monitoring systems, as used in Krasovskii et al. [12], Wyniawskyj
et al. [13], and Torres et al. [14]. The spatial resolutions of these satellites are listed in
Table 1, in which they have been successfully used for various other applications, including
forest monitoring systems.

With respect to the equiangular grid standard, the spatial resolution of a satellite refers
to the maximum land distance represented by a single pixel [15,16]. According to the infor-
mation given in Table 1, the Terra dataset is unsuitable for use in forest monitoring systems
due to the low spatial resolution of the moderate resolution imaging spectroradiometer
(MODIS) sensor (250m), which makes it incapable of detecting small-scale changes that
are important for forest deterioration because of illegal logging [17]. On the other hand,
Mutanga and Kumar [18] revealed that the satellite images from Sentinel-2 performed rela-
tively well, but the quality of the dataset was deemed to be inefficient for model training.
Therefore, Singhal and Goel [19] are credited with the inspiration for using Landsat-8 to
develop the forest segmentation dataset. They accessed the satellite images through the
Google Earth Pro application, which produces satisfactory image quality and resolution.

Table 1. Spatial resolution of the satellite used for automatic forest monitoring systems.

Satellite Spatial Resolution (m) Source

Landsat-8 30 NASA, 2021 [20]
Sentinel-2 10 ESA, 2021 [21]
Terra 250 TERRA, 2021 [22]

2.2. Review of Forest Monitoring Systems

There are two approaches that have been employed to develop automated forest
monitoring systems: conventional machine learning (ML) and deep learning (DL). An
intact forest landscape (IFL) is one of the conventional machine learning methods that is
used to identify forest and non-forest areas. It uses a binary scale based on two criteria: rate
of change caused by human activities and anthropogenic segmentation [23]. This IFL-based
system requires a short processing time, but it is only suitable for analyzing areas that are
larger than 50,000 hectares and requires a geographic information system (GIS) application
to detect significant changes in forest areas [24]. Since this system relies on a binary scale
system, not much fine-detail information can be extracted from the satellite images alone,
and hence, it needs to be supported by the GIS to further enrich the decision-making
module of the monitoring system.

Souza et al. [25], Schultz et al. [26], Telkenaroglu et al. [27], and Othman et al. [28] de-
veloped their forest monitoring systems using a combination of remote sensing technology
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and vegetation index (VI), calculated according to the wavelength reflected from the Earth’s
surface to the satellite. Therefore, different surfaces of the Earth will absorb and reflect
light at different rates, and thus, they can be distinguished by adjusting the VI threshold
value. There are a few types of VIs that have shown promising performance in detecting
and classifying the Earth’s surface into various classes, including the normalized difference
vegetation index (NDVI), normalized difference moisture index (NDMI), normalized differ-
ence flow index (NDFI), and normalized burn ratio (NBR). The NDFI metric outperforms
the other indexes in terms of sensitivity in detecting forest canopy cover by analyzing
the members of green vegetation, non-photosynthetic vegetation, and land. Although
these approaches were meant for multi-class detection, they are unreliable because of the
manually selected VI thresholds for each class without performing systematic analysis.

On the other hand, deep-learning-based technology has driven the study of automated
forest monitoring to achieve better performance measures. The convolutional neural
network (CNN) is widely used in forest monitoring studies due to its effectiveness in image
recognition and processing, especially in distinguishing objects of various classes [29]. The
forest monitoring system proposed by Wyniawskyj et al. [13] demonstrated the efficacy
of a conventional CNN in forest area segmentation with satisfactory accuracy, but its
performance is inferior when compared to other popular models such as SegNet and U-
Net [30]. Nonetheless, Lee et al. [31] compared the performance of SegNet and U-Net in
landscape segmentation, and found that U-Net produced higher accuracy than SegNet. The
study conducted by Pashaei et al. [32] also supports Lee et al.’s findings [31] by confirming
that U-Net outperformed SegNet in semantic segmentation, mainly because of SegNet’s
expected information loss during pooling layers, coupled with the simplified pooling index
being transferred to an expansion path.

In fact, U-Net moved the entire feature map from a contraction to an expansion path,
potentially improving the segmentation performance of forest and non-forest areas [29].
As a result, U-Net is popularly implemented as the base architecture for forest monitoring
systems. However, there is still ample room for improvement when it comes to the
development of forest monitoring systems using the U-Net architecture. Maretto et al. [33]
focused on improving U-Net using the early and late fusion methods through spatio-
temporal analysis. This study shows that U-Net has a high potential to produce better
average accuracy but such improvements require significant modifications to deep learning
model architecture.

The improvement of U-Net proposed by Abdani et al. [34] demonstrated that segmen-
tation accuracy increment can be achieved by applying the spatial pyramid pooling (SPP)
mechanism to oil palm plantation segmentation. To improve the multi-scale capability
of the system, the researchers designed a minor modification by adding an SPP module
just before the bottleneck layer of the U-Net model. Liu et al. [35] also showed that U-
Net with a SPP mechanism (USPP) produces excellent detection accuracy performance.
They revealed that the added SPP module manages to produce better performance for
automated forest monitoring systems using the Landsat-8 OLI dataset. Table 2 shows the
summary of the review and investigation of the forest monitoring systems developed in
the previous studies.
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Table 2. Summary on automatic forest monitoring systems.

No. Source Dataset Development
Approaches

Strengths Weaknesses

1 Margono et al. [23] Landsat-5,
Landsat-7

Intact Forest
Landscape

Fast development Unable to detect forest area
less than 50,000 hectares

2 Othman et al. [28] MODIS Vegetation Index
(VI)

Able to detect multi-class
surface on Earth

Unreliable handcrafted feature
with low-spatial-resolution re-
mote sensor

3 Maretto et al. [33] Landsat-8 U-Net Simple network architec-
ture improved with early
and late fusion

Requires larger set of param-
eters but accuracy improve-
ment is too small

4 Lee et al. [31] KOMPSAT-3 SegNet Transferring only pool-
ing indices to expansion
path requires less mem-
ory space

Significant information loss
during pooling layers

5 Syrris et al. [30] Sentinel-2 Conventional
CNN

Short training and predic-
tion time

Moderate accuracy in segmen-
tation due to its inability to
capture spatially invariant fea-
tures of the input images

6 Pashaei et al. [32] UAS imagery U-Net Skip connection con-
tributes to faster training
and high accuracy

No improvements made to de-
tect multi-scale forest areas

3. Methodology

The automated forest segmentation system in this study was developed in five steps:
dataset development, image pre-processing, deep learning model training, system perfor-
mance evaluation, and image post-processing, as shown in Figure 1. Since the deep learning
model requires a set of moderate-resolution satellite images for training and testing, this
system collected and annotated a dataset based on Landsat-8 satellite images acquired from
the Google Earth Pro application. From the Operational Land Imager sensor of Landsat-8,
only red, green, and blue (RGB) channels were utilized in this study because of the three
input channels requirement of the pre-trained U-Net model. Furthermore, the chosen RGB
bands allow multi-scale complex feature extraction of unique patterns that represented the
forest areas compared to the other bands, which are more homogenous in patterns. The
downloaded satellite images were then manually annotated by two annotators to produce
ground truth maps. These annotated maps were then sliced into smaller land parcels before
being fed into the deep learning model after performing the pre-processing steps. Only two
class problems are considered for this study, a pixel is either labeled as forest or non-forest.
The forest class encompasses various types of forests with different canopy appearances
from the South-East Asia region. Therefore, this study aims to address this challenge by
introducing the multi-scale capability to the deep semantic segmentation network.

Our work also employs the CNN as the base building block to automatically segment
forest and non-forest areas. Generally, the CNN is a network composed of an input layer,
hidden layers, and an output layer coupled with normalization and activation functions,
which are trained recursively to produce the trained network. Therefore, U-Net, which
is one of the CNN architectures designed specifically for semantic segmentation, was
used as the base model in this study to build the forest segmentation system. To improve
segmentation accuracy, multi-scale capability through an SPP mechanism was embedded at
the bottleneck layer of the U-Net model. This experiment was built and trained on Google
Colab platform with the help of TensorFlow and Keras libraries as used in [36].
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Figure 1. Workflow of the proposed automatic forest monitoring system development.

3.1. Basic Network Architecture

In view of the success of U-Net as a deep learning model in semantic segmentation,
this study utilizes U-Net [37] as the base network in forest monitoring systems. Figure 2
illustrates the U-Net architecture with the SPP module integrated at its bottleneck. U-
Net consists of two main network paths, namely contraction (encoder) and expansion
(decoder) paths, each consisting of four down-sampling and up-sampling blocks. It is a
symmetric encoder–decoder network connected via a bottleneck layer that contributes
to the “U-shaped” network. The blue blocks in Figure 3 are the feature maps, with its
dimension represented by W × H × D, where W, H, and D stand for width, height, and
depth, respectively. In this study, the numerical values indicated above the blue blocks
denote the depth of feature maps. The satellite input images that were fed into U-Net have
a dimension of 224× 224× 3 pixels in RGB format.
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Figure 2. U-Net with a multi-scale module embedded at the bottleneck layer.

The U-Net architecture starts with the encoder with down-sampling blocks, consisting
of two convolutional layers, followed by a rectified linear unit (ReLU) and a maximum
pooling layer to capture the context and extract the image features for segmentation. The
two-dimensional convolution uses a 3 × 3 convolutional kernel with a stride size of 2
to minimize the loss of spatial information. In addition, since the output feature map
is usually smaller than the input feature map after the convolution, the zero-padding
technique is used to ensure that the output feature map is the same size as the input
feature map. The homogenous kernel is also used in pooling layers with the same height
and width for the pooling kernel (2× 2) to optimize the processing speed for Tensorflow.
An up-sampling block in the decoder path is used to perform the precise localization by
merging contextual information from the encoder path through skip connection, which
allows U-Net to perform well in image segmentation. The predicted output image will
have a dimension of 224× 224× 2 at the end of the up-sampling process, whereby the RGB
input image is segmented into a binary image, which is in black and white colors.

3.2. The Spatial Pyramid Pooling Mechanism

The SPP mechanism is well known for its excellent performance in multi-size feature
extraction, as it effectively preserves the spatial information of an image. Figure 3 depicts
an example of the architecture of an SPP mechanism with three parallel paths with pooling
kernel sizes of 2× 2, 4× 4, and 6× 6 pixels. The SPP operation started by feeding a 14× 14
pixels feature map into each average pooling layer (parallel path), which was then followed
by a convolution operator, a batch normalization function, and a ReLU activation function
to extract the multi-scale features of forest areas of various color intensities. The output
feature maps from these three paths were resized back to their original size of 14 × 14 pixels
before being concatenated with the input feature map (feed-forward path) and fed back into
the U-Net model for further processing of the decoder side. The spatial information was
preserved by carrying out the feature extraction three times on the same input feature map,
thereby extracting the features at different scales. As an SPP module is always composed
of multiple paths, it will produce a larger model and is suited to be placed at the bottleneck



Forests 2023, 14, 405 8 of 20

layer of the U-Net model. This is because the smallest feature map size at the bottleneck
layer uses the lowest memory space compared to the module placement at other layers.

Figure 3. Network architecture of a spatial pyramid pooling mechanism.

To study the impact of optimum SPP on the forest monitoring system, an experiment
was conducted using six variants of the SPP modules with the basic settings shown in
Table 3. The number of parallel paths and the combination of pooling kernel sizes was
adjusted so that the resultant total number of filters remained at 1536. This is because a
conventional SPP is made up of three parallel paths, with each path composed of 512 filters,
or 1536 filters in total. Due to the adoption of equal division methodology, this study only
tested SPP modules with two, three, and four parallel paths (the minimum number of paths
for an SPP module is two). The SPP network with five parallel paths was not preferred
in this study because of the feature map size limitation at the bottleneck layer, whereby it
becomes zero if a larger pooling kernel is used, resulting in too much information loss.

Table 3. SPP module variants.

No. Number of Parallel Paths Pooling Kernel Sizes

1 2 2× 2, 4× 4
2 3× 3, 6× 6
3 4× 4, 8× 8
4 3 2× 2, 4× 4, 6× 6
5 3× 3, 6× 6, 9× 9
6 4 2× 2, 4× 4, 6× 6, 8× 8

The theory of homogeneous pooling kernel was also applied to the SPP module,
leading to more coherent feature maps, especially when dealing with the multi-scale issue.
The output feature map from the average pooling layers must also be greater than 3× 3
pixels, as the applied convolution operator right after the pooling layer has a kernel size of
3× 3 pixels. Hence, the pooling kernel sizes used in this study only ranged from 2× 2 to
9× 9 pixels, with the kernel size selection being a multiple of each other. A pooling kernel
size of 1× 1 pixel is not feasible, as it carries minimal impact, while a pooling operation
with a kernel size of 10× 10 pixels is inappropriate because the resultant output feature
map will be 5× 5 pixels, which is too small to extract any meaningful features.
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4. Results and Discussion
4.1. Landsat-8 Satellite Image Dataset

The evolution of satellite technology with the deep learning approach has led to a
higher level of accuracy in forest mapping studies. While the Landsat-9 satellite is equipped
with the best sensor specifications in the Landsat series, it is not suitable for time series
studies, as it was only launched in September 2021, and lacks temporal data from previous
years. In contrast, Landsat-8 is the most suitable satellite for this study, as it has the best
radiometric resolution (12 bits) with sufficient temporal data over more than 10 years. The
satellite imaging dataset used in this study was saved from Landsat-8 using the Google
Earth Pro application. Google Earth Pro is a relatively similar application to Google Earth
Engine, but it is better suited for use in this study, primarily because it is free of charge.

The selection of study locations is the first step in dataset development, and its quality
has a direct impact on segmentation accuracy. The forest areas of South-East Asia were the
best choice for this research because they offer a clear distinction between forest and non-
forest areas. The dataset was extracted from the Landsat-8 satellite, whereby the size for
each land parcel is 4800× 2782 pixels, with a resolution of 1.34 m per pixel. This selection
was made so that the satellite images had the widest field of view without any disturbances,
such as cloud cover and mosaic-like images that degrade the system’s performance. To
track the changes in forest status, this study focused on developing the dataset with time
series Landsat-8 satellite images taken from 2016, 2018, and 2020, and sampled at eight
different locations throughout the South-East Asia region. Initially, this study focused on
changes in forest status for every two years to ensure that small changes could still be
clearly detected. If a one-year sampling period is chosen, the changes in the forest status
are not too obvious, which is not informative for reporting purposes. Therefore, two years
are chosen so that the changes in the forest status are clearly visible to support the intended
applications. Please note that Landsat-8 was introduced in 2013, and so the early imaging
quality is relatively low as a result of using the Google Earth Pro application. As a result,
the sampling process starts from the year 2016 until 2020. For each sampling location, three
land parcel samples were extracted, which resulted in a total of 24 Landsat-8 satellite images
being extracted and annotated. The acquired satellite images for a particular location must
also have the same angle, scale, and resolutions to ensure data consistency.

The ground truth satellite images were manually annotated using the Adobe Photo-
shop application. Since the performance of the system is heavily dependent on labeled
data, the manual annotation of forest and non-forest areas must be performed meticulously
and consistently. Thus, forest areas were annotated as the foreground with a white color
RGB code of (255, 255, 255), while non-forest areas were annotated as the background
with a black color RGB code of (0, 0, 0). Then, the pre-processing phase was completed by
slicing the RGB images and their ground truth maps from 4800× 2782 pixels to subsets of
224× 224 pixels, which was the input format for U-Net. The satellite image of a selected
land parcel was sliced into 252 images, which resulted in 6,048 smaller samples, taken
from the original satellite images of 24 land parcels. The dataset was then divided into two
subsets of 2268 training data and 756 testing data. Table 4 summarizes the study locations
for both annotated datasets.

Table 4. Landsat-8 satellite images dataset information.

Dataset Location Latitude Longitude Type of Data

Moderate level of difficulty A 5°38′31.56′′ N 117°6′45.39′′ E Training data
B 3°10′26.10′′ N 101°58′7.99′′ E Training data
C 1°25′32.01′′ N 117°12′46.65′′ E Training data
D 3°5′38.77′′ N 98°4′11.72′′ E Testing data

High level of difficulty E 2°7′49.52′′ N 117°17’0.27′′ E Training data
F 0°47′49.27′′ S 115°48′43.03′′ E Training data
G 2°38′28.69′′ N 103°2′6.68′′ E Training data
H 3°54′34.15′′ N 102°52′5.11′′ E Testing data
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To analyze the system’s capability to segment the forest area at different difficulty
levels, the satellite images were further divided into two sets of data based on their difficulty
level to distinguish the forest and non-forest areas, as shown in Figure 4. The dataset
with a moderate level of difficulty has a clear distinction between forest and non-forest
areas, as well as fewer rivers, lakes, and vegetation areas. In contrast, the dataset with a
high-difficulty level consists of satellite images with similar features between forest and
non-forest areas, and with more rivers, lakes, and vegetation areas.

Figure 4. Satellite images from dataset of (a,b).

4.2. Performance Evaluation of the Forest Monitoring System

The performance of the forest segmentation system was measured using three metrics:
average accuracy (acc), Intersection over Union (IoU), and F1-Score (F1score). acc is used to
validate system performance by calculating the correct prediction for both classes based
on the confusion metrics shown in Table 5. F1score is a performance metric similar to acc,
but with advantages for real-world classification, especially when there is an imbalanced
class distribution [38]. Finally, IoU is the most commonly used metric in evaluating a
segmentation model that focuses on the overlapping areas between predicated maps and
ground truth maps. It represents the ratio of the area of intersection over the total area of
the ground truth and predicted segmentation maps.

Table 5. Terminology of the confusion matrix.

Terminology Description

True positive (TP) Detect correctly forest areas as forest areas
True negative (TN) Detect correctly non-forest areas as non-forest areas
False positive (FP) Detect non-forest areas as forest areas
False negative (FN) Detect forest areas as non-forest areas
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acc =
TP + TN

TP + TN + FP + FN
(1)

F1score =
TP

TP + 0.5(FP + FN)
(2)

IoU =
TP + TN

TP + FP + FN
(3)

The first step in building an optimal base U-Net model using semantic segmentation
methodology is finding the optimized set of hyperparameters. A set of experiments was
conducted using different sets of hyperparameters to observe their respective training
accuracy and loss, as well as to evaluate the segmentation accuracy of the trained model
on the test data. The optimal hyperparameter configurations used in this study are listed
in Table 6. The selected optimizer was stochastic gradient descent (SGD). The number
of epochs required for training convergence is different for each SPP module variant,
and it is also dependent on the difficulty level of the dataset and the spatial relationship
between features in the satellite images. Therefore, the optimum number of epochs for a
certain model is determined by observing and ensuring that the training accuracy and loss
converge at the end of the training process with satisfactory testing accuracy and loss.

Table 6. Hyperparameter setting.

Hyperparameter Value

Learning rate 0.0001
Batch size 8
Epoch 100
Optimizer Momentum 0.9

Table 7 shows the performance of the proposed forest segmentation system at moderate
and high levels of difficulty with and without the SPP module for both datasets. The forest
segmentation system developed by the dataset with a moderate level of difficulty has an
acc, IoU, and F1score of 88.23%, 78.80%, and 87.02%, respectively. It can also be seen that
the base U-Net performance is improved by all SPP variants, especially for the system
embedded with SPP comprising four parallel paths with pooling kernel sizes of 2× 2, 4× 4,
6× 6, and 8× 8. This optimal SPP module successfully produces the highest acc, IoU, and
F1score of 90.81%, 83.17%, and 90.72%, respectively, with a performance improvement of
2.92%, 5.55%, and 4.25%, respectively. The optimal SPP module is made up of four pooling
layers, which effectively preserves the spatial information of various scales, resulting in
more robust segmentation mapping. The forest segmentation system produces the best
performance with an SPP module comprising four parallel paths, followed by SPP modules
with three and two parallel branches. Meanwhile, the experimental results also show that
a combination of smaller pooling kernel sizes is able to detect smaller features in satellite
images, hence allowing the more efficacious segmentation of multi-scale forest areas. This
is the reason why the system integrated with an SPP module with two parallel branches
has the highest performance with pooling kernel sizes of 2× 2 and 4× 4, followed by
3× 3 and 6× 6, and finally 4× 4 and 8× 8. Coincidentally, the patterns are similar for the
SPP module with three parallel paths. It is observable that the forest segmentation system
would be more sensitive to small changes in forest areas by using a combination of smaller
SPP module pooling kernel sizes.
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Table 7. Performance results of the U-Net with an embedded spatial pyramid pooling module.

Dataset Number of Pooling Performance Metrics (%) Improvement (%)

Parallel Paths Kernels acc IoU F1score acc IoU F1score

Moderate level of Original U-Net - 88.23 78.80 87.02 - - -
difficulty 2 2× 2, 4× 4 89.57 81.04 88.85 1.52 2.84 2.10

3× 3, 6× 6 89.54 80.98 88.71 1.49 2.77 1.94
4× 4, 8× 8 89.33 80.64 88.54 1.25 2.34 1.75

3 2× 2, 4× 4, 6× 6 90.73 82.99 90.24 2.83 5.32 3.71
3× 3, 6× 6, 9× 9 89.84 81.52 89.32 1.82 3.45 2.64

4 2× 2, 4× 4, 6× 6, 8× 8 90.81 83.17 90.72 2.92 5.55 4.25
High level of Original U-Net - 84.54 70.84 76.92 - - -
difficulty 2 2× 2, 4× 4 86.42 74.76 81.64 2.22 5.53 6.14

3× 3, 6× 6 86.10 74.42 81.62 1.85 5.05 6.11
4× 4, 8× 8 83.90 71.73 80.85 −0.75 1.26 5.11

3 2× 2, 4× 4, 6× 6 85.25 73.23 80.87 0.84 3.37 5.14
3× 3, 6× 6, 9× 9 84.86 72.81 80.88 0.38 2.78 5.15

4 2× 2, 4× 4, 6× 6, 8× 8 86.71 75.59 82.88 2.57 6.71 7.75

The forest segmentation system developed using a dataset of high-level difficulty on
the base U-Net architecture has an acc, IoU, and F1score of 84.54%, 70.84%, and 76.92%,
respectively. It performs worse than the system developed by the dataset with a moderate
level of difficulty. In this case, all SPP module variants enhanced the system’s performance,
with the exception of the SPP module composed of two parallel paths with pooling kernel
sizes of 4× 4 and 8× 8 pixels. This variant only achieved an acc of 83.90%, which is 0.75%
lower than the system developed using the base U-Net model. This is likely caused by
the large kernel sizes used in both pooling layers that neglect the smaller features in the
feature maps and result in less accurate segmentation maps of forest and non-forest areas
and lower the accuracy performance. As the drop in accuracy performance is very small,
with observable improvements for the F1score and IoU, this SPP module is still considered
the one that can enhance system performance in multi-scale segmentation problems.

Similar to the system developed with a moderate difficulty dataset, the optimal SPP
module variant developed for a high-difficulty dataset comprises four parallel paths with
pooling kernel sizes of 2× 2, 4× 4, 6× 6, and 8× 8 pixels. The performance of the forest
segmentation system optimized by this variant of the SPP module produces the highest
acc, IoU, and F1score of 86.71%, 75.59%, and 82.88%, respectively, with a performance
improvement of 2.57%, 6.71%, and 7.75%, respectively. However, the performance of the
forest segmentation system with two and three parallel paths is significantly different
from the system developed with a moderate difficulty dataset. The SPP module with two
parallel paths is better suited to the forest segmentation system for a set of high-difficulty
datasets because it produces better performance for acc, IoU, and F1score compared to the
SPP module with three parallel paths.

Further experiments were also conducted to compare the performance of the proposed
multi-scale model with the other deep semantic segmentation models. The tests were
carried out using a high-difficulty dataset to test the performance limit of the tested models.
There are four deep semantic segmentation models that were tested with the optimized
individual set up, which are FCN [39], TernausNet [40], SegNet [29], and U-Net [37].
Table 8 shows the performance comparison between the models. FCN and TernausNet
return the worst performance with acc, IoU, and F1score of 38.39%, 19.19%, and 55.48%,
respectively. Interestingly, both of these models use VGG network [41] as their encoder
to extract the respective features of forest and non-forest areas. This encoder design that
comprises 13 layers of CNN with ReLU activation function is not suitable for the forest
segmentation task. Besides that, both SegNet and U-Net have performed relatively well
compared to the FCN and TernausNet. SegNet returns the third best performance values
of 84.54%, 70.84%, and 76.92% for acc, IoU, and F1score, respectively, while U-Net returns
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the second best performance values of 84.54%, 70.84%, and 76.92% for acc, IoU, and F1score,
respectively. Furthermore, both SegNet and U-Net utilize a symmetric network architecture
between their encoder and decoder. However, the best deep semantic segmentation model
is the proposed method with the best performance values across all metrics. The proposed
method also adopts symmetric design architecture because the SPP module is added at the
bottleneck layer.

Table 8. Performance comparison with the other deep semantic segmentation models.

Method Performance Metrics (%)

acc IoU F1score

FCN [39] 38.39 19.19 55.48
TernausNet [40] 38.39 19.19 55.48
SegNet [29] 86.38 75.59 80.28
U-Net [37] 84.54 70.84 76.92
Proposed method 86.71 75.59 82.88

4.3. Training Performance: Accuracy and Loss

Training acc describes how well the system performs in achieving correct segmentation
for both forest and non-forest areas on training data, while training loss refers to the
segmentation error of the corresponding model, which is also used as a variable to update
the weights during the learning process. Figure 5a illustrates the training accuracy and loss
of a forest segmentation system developed using the moderate difficulty dataset without
an SPP module. The training process converged after 80 epochs, despite there being several
spikes in the loss graph at certain epochs. The spikes in loss values are normal because they
are used to update the new weights by the optimizer. Thus, training accuracy drops for
every single epoch that experiences a surge of loss and then increases during subsequent
learning epochs after the new weights are updated with a high loss value.

The addition of the optimal SPP module to the base U-Net architecture resulted in a
higher training loss compared to the system without the SPP module, which converged
faster after 50 epochs, as shown in Figure 5b. The training loss for this model reached
35.2393, which is 34.8725 higher than the base system without the SPP module (0.3368).
This is most likely due to the batch normalization layers, which increased the number
of untrainable parameters and contributed to an increase in the training loss. This small
increment is still tolerable because the batch normalization layer is important in normalizing
the input to speed up the training process.

As shown in Figure 6a,b, using a high-difficulty dataset with and without an SPP mod-
ule, the training accuracy and loss of the forest monitoring system converge successfully
after 70 and 80 epochs, respectively. If we scrutinize the results, the training accuracy for
the system without the SPP module increases very slowly after the loss spike at the ninth
epoch. This is because the learning rate used for the training process is very small, only
0.0001 to ensure that the learning update can be carried out at an optimal level. Despite the
fact that the training loss is higher in the system with SPP due to the batch normalization
layers, the training accuracy is still successfully increased by 1.7%. Therefore, the embedded
multi-scale module has managed to improve the performance of the forest segmentation
algorithm, which is a very important low-level function in a forest monitoring system.
The usage of a multi-scale module can be extended to any problem that encounters the
issue of varying sizes of input. For example, in eye disease screening applications [42],
the multi-scale capability has further improved the detection rate of the disease by better
analyzing affected signals. Besides that, a multi-scale approach has also been implemented
for agriculture applications that allow the system to detect leaf diseases of various sizes [43].
Hence, a multi-scale module can be optimally embedded into a base segmentation network
in order to improve the model’s capability to extract features of various scales.
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Figure 5. Training accuracy and loss of forest monitoring system using moderately difficult dataset.

Figure 6. Training accuracy and loss of forest monitoring system using high-difficulty dataset.
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4.4. Qualitative Discussion on the Segmentation Output

The impact of SPP module integration into the base U-Net model was also studied by
comparing qualitatively the predicted output images to the ground truth maps. Figure 7
depicts several samples of raw satellite images, ground truth maps, and predicted output
maps produced by the proposed forest segmentation system, with and without the SPP
module, tested on a moderate-difficulty dataset. Generally, the base system without the
integration of the SPP module has vague and unclear segmentation maps between forest
and non-forest areas. This weakness is more obvious along the segmentation lines near
the boundaries of both areas, which is the main cause of low segmentation accuracy.
On the other hand, the output maps from the system with an optimal SPP module had
successfully mitigated this weakness. The maps show more precise segmentation lines
along the boundaries of both classes with minimal unwanted interference of white and
black dots. In conclusion, the proposed forest segmentation system with an embedded
SPP module is found to be more capable of detecting and segmenting forest and non-forest
areas of varying scales.

Figure 8 illustrates the predicted segmentation output at locations D and H from 2016
to 2020. The changes in forest status were detected by observing the changes in white
and black areas on the maps, which refer to the forest and non-forest areas, respectively.
Figure 8a depicts the segmentation map of the satellite image at location D, taken from
2016, 2018, and 2020. The circled area in the upper right corner of the respective satellite
image clearly shows the forest areas have shrunk from 2016 to 2020. In 2016, there were
more forest areas than non-forest areas, as shown by the presence of more white pixels
compared to black pixels. Later on, this area was exploited in 2018, and the proposed
system has successfully recognized the reduction in forest areas as depicted by an increment
in black-colored pixels. In 2020, it was detected that this particular area contained a larger
proportion of forest areas again, mainly caused by the COVID-19 pandemic that halted
deforestation activities.

4.5. Changes in the Forest Status

In order to track the changes in forest areas, post-processing of the image was carried
out to stitch the smaller predicted maps from the size of 224× 224 pixels to produce the
original land parcel image of size 4704× 2688 pixels. A total of 252 segmented maps will be
stitched together to produce a single large segmentation map. In this case, the segmented
output maps were taken from the optimized forest segmentation system, improved by the
implementation of an optimal SPP module to enhance the segmentation performance.

Almost similar patterns can be observed in the land parcel at location H, as shown
in Figure 8b. The circled area indicates that there are clear changes in the forest areas,
which have decreased significantly, whereby the deteriorated situation has worsened
year after year. Overall, these predicted forest maps have successfully demonstrated the
performance of our forest segmentation system’s effectiveness in detecting the changes
from 2016 to 2020. The addition of a multi-scale module has further improved segmentation
performance, which enables the system to detect deforestation activities that may be caused
by illegal logging.
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Figure 7. Predicted output images produced by forest monitoring system using dataset of (a,b).
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Figure 8. Predicted output images at (a,b) from 2016 to 2020.
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5. Conclusions and Future Work

This study successfully achieved its initial objectives of developing a forest segmenta-
tion system based on remote sensing technology and an improved deep learning model
through embedding multi-scale capability. Two sets of satellite image datasets, consisting of
6,048 samples, with satisfactory image quality and resolution were successfully developed
for training and testing purposes using Landsat-8 satellite images. The system was built
on the base U-Net architecture to automate the segmentation of forest areas so that any
changes in status could be detected at pixel level with acc, IoU, F1score of 84.54%, 70.84%,
and 76.92%, respectively.

The results reveal that all SPP variants managed to improve the system’s multi-scale
capability in detecting changes in forest areas at varying scales, especially for the SPP
module made up of four parallel paths with pooling kernel sizes of 2× 2, 4× 4, 6× 6, and
8× 8 pixels. Since satellite images from high-difficulty datasets are deemed to be more
reflective of real situations, the overall performance of the system was reported using this
dataset, which produced the highest acc, IoU, and F1score of 86.71%, 75.59%, and 82.88%,
respectively with an improvement of 2.57%, 6.71%, and 7.75%, respectively. The forest
segmentation system developed in this study can monitor changes in forest status at the
pixel level through an automated segmentation process with low operating costs.

This study encountered an issue with Google Colab due to its limited random-access
memory (RAM) and graphics processing unit (GPU) runtime, making the training process
difficult. There is room for improvement to develop a more robust forest segmentation
system in the future. A larger training dataset is proposed for future work so that the
training process can be conducted more comprehensively to learn a greater variety of
features. This study could also be improved by testing different base deep learning models
with other multi-scale modules such as atrous spatial pyramid pooling and a waterfall
version of the SPP.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Networks
SGD Stochastic Gradient Descent
SPP Spatial Pyramid Pooling
IoU Intersection over Union
ReLU Rectified Linear Unit
GIGO Garbage In, Garbage Out
ML Machine Learning
DL Deep Learning
IFL Intact Forest Landscape
GIS Geographic Information System
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VI Vegetation Index
NDVI Normalized Difference Vegetation Index
NDMI Normalized Difference Moisture Index
NBR Normalized Burn Ratio
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