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Abstract: (1) Background: Tomography is widely used in tree risk assessment and forest ecology.
Tomograms should be accurate, repeatable and comparable between consecutive measurements. This
is the first longitudinal study addressing reproducibility over a period of several years and the key
factors influencing it, from raw data to final tomograms. (2) Methods: Trees were either repeatedly
measured by the same researcher over periods of hours to months, by different researchers using
either the same or a new installation of the same equipment, or with different tomographs. (3) Results:
Overall, differences between tomograms were small and without impact on the assessment of the
safety of the tree. Between initial and follow-up measurements after 2 to 5 years, the coefficients of
correlation of stress wave velocity ranged from 0.75 to 0.96, those of loss in section modulus estimated
from tomograms ranged from 0.82 to 0.93. The coefficient of correlation of repeated sapwood area
estimates with electrical resistivity tomography was 0.97. The major cause of deviations was variation
in the sensor positions between repeated tomographies, and, for electrical resistivity tomography,
variation of temperature. (4) Conclusion: Provided that sensor positions are accurately recorded
and documented, tomograms can reliably be repeated by different assessors over periods of years.
Assessments based on complex calculations like loss of section modulus should be treated with
caution, because they accumulate and amplify all sources of variation.

Keywords: tree risk assessment; stress wave tomography; electrical resistivity tomography

1. Introduction

Property owners and government agencies have a legal duty of care for their trees and
thus have to manage risks related to these trees. A central part of tree risk management is
tree risk assessment. The risk of the vast majority of trees can be assessed visually during
a basic assessment, but when the likelihood of failure remains uncertain after a visual
inspection, a number of tools can be used for an advanced assessment to measure the extent
of decay, loss of strength, or anchorage. Tomographs are such tools that have been widely
used in tree risk assessment and research in urban forestry in recent years (e.g., [1–5]). They
are used to map internal decay non-destructively. Sonic tomographs (SoT) measure the
time-of-flight of signals (t) to produce a map of apparent absolute or relative stress wave
velocity (v), which will reveal areas of sound wood, if they can be traversed by stress waves
on a straight path from one sensor to another. Electrical resistivity tomography (ERT) is a
method to determine the spatial distribution of electric resistivity (ρ) non-destructively. In
trees, results mainly correlate with ion and moisture content of the wood (e.g., [2–4]) and,
to a lesser degree, wood temperature. In urban tree risk assessment ERT is used to aid the
interpretation of results from SoT [6].

In tree risk assessment, tomograms are usually assessed with thresholds of residual
wall thickness [7,8] or used in quantitative mechanical evaluations of the tomogram in
terms of the section modulus (Z) or its resistance to bending [9]. Because the contribution
of any part of the cross-section to the second moment of area increases with the square of
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its distance to the neutral axis of the stem (s. Equation (2)), even apparently small variations
in the input to these calculations may result in large variation in their result [10,11].

A source of such variations within tomograms common to both methods is the distance
between measurement points. Stress wave velocity is calculated from the time-of-flight
(measured by the sensors), and the distance between those sensors (measured by the op-
erator), while in electrical resistivity tomography, apparent resistivity is estimated from
resistance between electrode pairs and electrode positions. A further source of varia-
tion between tomograms are the changes in sensor position that are unavoidable when
measurements are repeated after several years, possibly by different operators.

Seasonal and diurnal changes in wood moisture and temperature could add further
variation to tomograms. However, effects of wood moisture on v and resulting SoT of
living trees are generally low [12–15] and the impact of declining temperature on stress
wave velocity and tomograms is negligible as long as wood is not frozen [16].

Stem electrical resistivity, on the other hand, changes significantly with temperature [17,18]
and seasonally changing resistivity has been described for Fagus sylvatica by [19], who
found different pattern of change in sap wood and heart wood. Similarly, wood moisture
content has a significant effect on ρ and resulting tomograms [17,18].

When technical devices support decision making in tree risk management, the degree
of uncertainty of their results should be known. Moreover must results of measurements
in tree risk assessment be reproducible, especially for controversial trees, which might be
assessed by different consultants for opposing clients. Even when trees are deemed safe by
a consultant, the report will often advise making follow-up measurements after a period of
some years. In these cases, it will be important that consultants can distinguish between
effects of measurement uncertainty and a progression of decay.

So far, the different factors relevant to producing comparable tomograms have rarely
been studied quantitatively and research concentrated on the effects of changes in wood
temperature and moisture. No previous study has investigated the level of variation
inherent in measurements of the loss of load bearing capacity (ZLoss) repeated over the
course of years. Here, the complete process from the acquisition of raw data (sensor
positions, stress wave travel times, electrical resistivities) to the mechanical evaluation
of tomograms in terms of loss in section modulus, is analyzed for the first time. This
investigation will help risk assessors and tree pathologists alike to evaluate differences
between tomograms made by different operators at different times.

2. Materials and Methods
2.1. Sites and Trees

Several groups of mature and ancient trees were measured, growing along urban
roads, in parks and forests, or in open landscapes (Table 1). Their diameters ranged from
just over 30 cm to more than 2 m. The species included Fagus sylvativa L., Picea abies (L.)
Karst., Quercus robur L., and Acer pseudoplatanus L. Climate across Germany is temperate.
At site TG (52.3626◦ N, 9.833◦ E), mean temperature in the period studied (2015–2020)
was 10.8 ◦C, annual rainfall was 593 mm, at site KF (51.52574◦ N, 10.01636◦ E), mean
temperature in the period studied (2017–2021) was 10.1 ◦C, annual rainfall was 592 mm,
and at site PA1 (51.509◦ N, 9.9809◦ E), mean temperature in the period studied (February
2021–November 2021) was 11.7 ◦C, rainfall was 483 mm.

2.2. Tomography

Stress wave tomograms were made with a Picus³ sonic tomograph (argus electronic
GmbH, Rostock, Germany), electrical resistivity tomograms were made with either a
Picus Treetronic³ (argus electronic GmbH, Rostock, Germany) or a Geotom (GEOLOG2000
System- und Meßtechnik, Starnberg, Germany).

Briefly, sonic tomographs measure the time-of-flight of signals excited by hammer
blows, and recorded with 8–24 sensors attached with magnets to nails in one plane around
the stem. The nails have to be in contact with the outermost growth ring. The apparent
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stress wave velocity (v) is calculated from the time and distance data measured at the
tree, assuming a straight path of the stress waves, because their true path is unknown.
Electrical resistivity tomography can use the same nails as electrodes to inject and measure
a current. Data were collected using a dipole-dipole configuration. Sensor positions were
recorded with an electronic caliper (Picus Caliper, argus electronic, Rostock, Germany)
using a system of triangulation.

Tomograms were produced with the software Picus Q74 (argus electronic GmbH,
Rostock, Germany). ERT inversion is based on [20,21], while the SoT-algorithm has not
been documented by the company.

2.3. Treatments

The analyzed experimental factors were:

• number of operators: either one, two or three
• installation of nails: either use the same nails, or install new ones
• time between repeated measurement: minutes, weeks, or years
• devices: measurements repeated with the same or a different product

Trees at sites PA2 and AP were felled to take images of the cross-sections of the tomographic
measurements. At site AP, drilling resistance profiles (Resistograph, Rinntech, Heidelberg,
Germany) were used to assist the delineation of decay in the stem cross-sections [22].

At site PA1, soil pF and temperature were recorded with Picus Tension sensors (argus
electronic GmbH, Rostock, Germany). Temperature data of the nearest official weather
station (station code 1691) were used for sites KF and PA1 [23].

Table 1. Sites, trees, and treatments.

Site Location 1 Type Species n Operators Different
Nails

Different
Devices Season Measurements

KF Göttingen open field Fagus
sylvativa L. 47 3 x

Sep. 2017,
Sep.–Dec.
2019, Mar.

2021

SoT, ERT

PA1 Göttingen forest Picea abies
(L.) Karst. 20 1 x Feb.–Nov.

2021 ERT

TG Hannover park Quercus
robur L. 26 2 x Oct. 2015,

Oct. 2020 SoT, ERT

AP Heidelberg roadside
Acer pseudo-

platanus
L.

5 3 x May 2021 SoT, ERT

PA2 Heidelberg forest Picea abies
(L.) Karst. 7 3 Sep. 2014 SoT

1 All sites in Germany.

2.4. Statistical Analyses

The area of the tomogram A, its section modulus Z, and the maximum loss of Z
(Equations (1)–(4), [9,10,24]) were further analyzed with the Plugin BoneJ for ImageJ [25–27].
ImageJ was also used to analyze images of cross-sections of felled trees. R Statistical
Software [28] with package nlme [29] were used for statistical analyses. Linear mixed-effect
models were used to account for random effects like repeated measurements [30]. Reported
coefficients of correlation are robust estimates [31]. Statistical details of model results are
reported in Appendix A Tables A1–A16.

λ =
∑ ydA
∑ dA

(1)

I = ∑(y − λ)2dA (2)

Z =
I

max(λ)
(3)
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ZLoss =
Zsolid − Zdecayed

Zsolid
(4)

where λ is the distance between the edge of the tomogram and the neutral axis, y is the
distance between the horizontal line and a finite small area (dA) which was taken as a pixel
in the white area in the binarized image [24]. I and Z are the moment of inertia and the
section modulus.

Parameters analyzed were:

• Distance between sensors/electrodes, d
• Cross-sectional of the tomogram, A
• Stress wave travel-time, t
• Stress wave velocity, v
• Loss in section modulus, ZLoss
• Electrical resistance, Ω
• Electrical resistivity, ρ

To account for heartwood, central cavities, and the variation of sap and air temperature,
ERT-data were split into central, middle, and edge third by area.

3. Results
3.1. Stress Wave Travel Times, Stress Wave Velocity, and Sensor Positions

Tomograms, even when measured by different operators some years apart, were
generally very comparable (Figure 1).

All follow-up measurements correlated closely with the original data (Figure 2). The
closest correlation was found for stem cross-sectional area A, which results from the
triangulation of sensor positions, and stress wave travel times t (0.92 ≤ r ≤ 0.99). Slight
variation in stress wave travel times and sensor distances resulted in a modest scatter of
stress wave velocity (r ≥ 0.75, Figure 2). A similar scatter is found in the most complex
parameter ZLoss (r ≥ 0.82, Figure 2), which integrates all measurements of sensor positions
and stress wave travel time into one single parameter.

Figure 1. SoT (1. and 3. column) and ERT (2. and 4. column) of two beech trees measured three times
by different operators using slightly different sensor positions every time (site KF).

Measured sensor distances changed significantly by 2.5% to 3.2% when tomography
was repeated after 2 to 5 years at sites KF (p < 0.001) and TG (p = 0.004). In the same data
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sets, mean stress wave travel times t and velocities v had changed significantly (p < 0.001)
by 4% to 11%. The significant change at site KF occurred from 2017 to 2019, with no
difference between measurements in 2019 and 2021. Mean ZLoss at site KF increased by
19% between 2017 and 2019, and fell by 23% over the following 2 years below the level
measured in 2017. At site TG the mean difference in ZLoss after 5 years was 7%. All changes
in ZLoss were not significantly different from 0.

There was a small but significant interaction effect of operator and sensor distance
on absolute stress wave velocity, even when using the same nails (site PA2, linear mixed-
effects model, p < 0.0125). The three operators measuring 7 cross-sections in P. abies at
PA2 differed between 0.1 % and 3 % from the mean travel times. In the experiment where
operators placed new nails individually (AP), there was no significant operator effect
on stress wave travel time (linear mixed-effects model, p = 0.53). Figure 3 illustrates the
proximity of data measured by different operators at the same tree. The area of decay
measured with SoT did not differ significantly between operators (Figure 3), independent
of whether nails were re-used or placed anew. Nonetheless, a few individual results were
clearly wrong from the point of view of a tree assessor.

Figure 2. Correlation of initial and follow-up measurement of t, A, v and ZLoss. Tomography was
repeated after 2 and 4 years at site KF and after 5 years at site TG. Dashed line indicates 1:1. Gray:
95 % confidence interval.

Mean stress-wave velocity in beech was significantly higher than in all other species
(Figure 4), while variation was highest in spruce.

The stress wave velocity at the edge of stem cross-sections was not significantly
correlated with mean air temperature in the range of −1.5 to 22.6 ◦C (p = 0.07, Figure 5).
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Figure 3. Correlation of defect in tomograms and images of stem cross-sections (left: site PA2,
operators used the same nails; right: site AP, operators used different nails at new locations). Dashed
line indicates 1:1. Gray: 95 % confidence interval.

Figure 4. Species differences in stress wave velocity (top) and electrical resistivity (bottom, area-
weighted median). “centre” refers to the innermost third of the stem cross-section, “edge” to the
outermost third, while “middle” refers to the remainder.
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Figure 5. Correlation of tangential stress wave velocity (top), electrical resistivity ((bottom), area-
weighted median), and air temperature (site KF). “centre” refers to the innermost third of the stem
cross-section, “edge” to the outermost third, while “middle” refers to the remainder. Tomography
was repeated for 4 years at site KF by different operators placing new sensor positions. Gray: 95 %
confidence interval.

3.2. Electrical Resistivity Tomography

Results of ERT were reproducible when repeated during a day or several times within
a year (Figure 6), even if measured by different brands of tomographs. Both, after 2 and
4 years, electrical resistivities correlated well with original data ((0.72 ≤ r ≤ 0.73), Figure 7).
However, coefficients of correlation were lower than for SoT.

ρ decreased significantly with rising air temperature (Figure 5). The effect was
strongest in the wood close to the cambium. Even within one day, there were small
but significant differences. After accounting for individual differences between trees and
cross-section geometry, the mean resistance decreased by 2% from 8 in the morning until
noon (linear mixed-effects model, p < 0.001, Figure 8). However, effects on final tomograms
were barely visible (Figure 6).

Estimates of sapwood area of spruce were stable throughout the growing season,
although one tree differed in sapwood area by more than 20% between measurements, two
further trees varied by more than 10% (Figure 9).

Figure 6. ERT of two spruce trees measured several times in 2021 (top) and on one day in July
(bottom), site PA1. Top row: every second measurement with Geotom, all else with Picus Treetronic.
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Figure 7. Correlation of initial and follow-up measurement of ρ. Tomography was repeated after 2
(left), and 4 (right) years at site KF by different operators placing new sensor positions. Here, ρ is
the area-weighted median of the outermost 33% of the stem cross-section. Dashed line indicates 1:1.
Gray: 95 % confidence interval.

Figure 8. Course of Ω from 8 o’clock until noon in four P. abies. Mean and standard error. Site PA1.

Only spruce differed significantly in ρ from all other species (Figure 4, p < 0.001).
In this species, central areas of the stem had a fourfold higher ρ than other species or the
peripheral part of the stem of spruce.

There were no significant differences in Ω and hence ρ between different ERT-devices.
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Figure 9. Sapwood area of 20 spruce trees measured several times in 2021 (site PA1, including only
measurements with Picus TreeTronic). Inset shows variation of sapwood area in one individual tree
with the largest changes in the sample. Blue: Linear Regression, gray: 95 % confidence interval,
dashed: 1:1.

4. Discussion

When tree assessors or scientists repeat a tomographic measurement on a tree, they
need to be able to differentiate between variation caused by the process of measuring and
processing the data, and changes that can be attributed to spreading decay or experimental
treatments. To date, the few longitudinal studies reporting repeated tomography on trees
have interpreted differences between tomograms mainly as treatment effects ([32–34], but
see [11,17,35]).

This study analyzed tomograms repeated within minutes or after several years, by the
same or different operators, using either the same or a different experimental setup varying
the sensor positions or the tomograph.

Stress wave tomograms were comparable even when measured by different operators
some years apart. Thus, they typically allow monitoring the progress of decay, especially
when SoT and ERT are combined [6]. In general, variation between repeated measurements
increased with every computational step from raw data to tomograms, and was highest
in parameters based on decayed area and section modulus. While measures of decayed
area accumulate variation from time-of-flight, distance between sensors, and shape of the
cross-section, loss of section modulus (ZLoss) is derived from the ratio of two parameters,
accumulating all these sources of variation to the third power (Equations (1)–(4)). This
propagation of variation is further illustrated in Figure 10. Even for a perfectly round tree
with a perfectly round central cavity, length measurements with a standard deviation of
10% result in a standard deviation of 25% in ZLoss.

Between repeated measurements, the change in mean ZLoss per site ranged from −23%
to +7%. Although overall, section modulus decreased with time as would be expected,
especially, when the initial ZLoss was large, even large positive gains in section modulus
were recorded after 5 years of advancing decay (Figure 11). Because trees cannot repair
decay and diameter increment was very low in these old trees, some of these results must
be wrong and illustrate the potential impact of apparently small variation of raw data on
highly aggregated parameters like ZLoss.
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Figure 10. Effect of variation in length measurements on the standard deviation of ZLoss (blue area).
Assumptions: Diameter of cross-section D 1 m, diameter of cavity d 0.7 m. I: Second moment of area
(Equation (2)).

At temperatures above freezing, stress wave velocity is not statistically significantly
affected by temperature change. This agrees with previous studies [14,16,36–41]. Only
well below freezing, when the stem or parts of it are frozen, velocity increases and affects
SoT [42]. And unlike ERT, SoT is very unlikely to be affected by changing wood moisture
content, because reported variation of stress wave velocity above the fibre-saturation point
is generally very low [15,40,41,43–45], especially when compared to effects of wood decay.
Therefor, differences in wood moisture content and wood temperature are unlikely to have
contributed to the variation in the tomograms.

It is likely that the main source of variation in SoT is the operator. When SoT was
repeated immediately by different operators using the same or different nails and positions,
v changed by up 5%. This was caused by differences in sensor distance d (≤1% change) and
time-of-flight t (≤6% change). Sensor distance was measured manually with an electronic
caliper and therefor varied between operators due to individual levels of accuracy. Time-of-
flight t depends to a small degree on the force of excitation [46] and is also influenced by the
individual operator. For the practical application of SoT in tree risk assessment is important
to note that the end product of the method, the area of defects, was not significantly affected
by the operator.

Stress-wave velocity v in beech was statistically significant higher than in the other
species (p < 0.0001), which did not differ from each other. Most trees had decay, cavities,
and cracks in their stems, so that these data might not be representative for the species.

ρ and ERT based on it were less repeatable than v and SoT. Most likely, varying wood
moisture and temperature contributed to this difference. Temperature changes affected ρ
well above 0 ◦C (Figure 5), as has already been reported in earlier studies [17,18,35,47–49].
Changing irradiation on the stem, and changing stem and sap temperatures, can all cause
variability in ρ at the stem surface and in sap wood. Changes in stem water content
during transpiration are a further source of variation [33], although they are unlikely to
affect tomograms of urban trees visibly. Ref. [19] reported 5% variation in the resistivity
between successive measurements, somewhat more than the 2% found in the present study.
However, centering the data of each tomogram before further processing [50] eliminated
the correlation with temperature completely (data not shown) and is highly recommended
when comparing ERT over time.
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In spruce, dry heartwood contributed significantly to variation in ρ. This is typical for
many temperate conifer species and has been used to measure heartwood area [3,51,52]. ρ
of the hardwood species in this study was rather homogeneous.

It is important to note, that it is inherent to the process of inversion that the absolute
values assigned to a triangle of the mesh are affected by the choice of parameters and thus
are less stable than the ratios between all values assigned to the mesh. Lastly, changes in
ERT often indicate advancing decay and tend to precede changes in SoT. Thus, they should
not be treated as error without further investigation.

The small but significant effects of temperature on ERT that are reported here and have
been shown in earlier studies [17,18,35,47–49], although relevant for scientific applications
of ERT, affected resulting tomograms only marginally. Thus, ERT can be applied by tree
assessors together with SoT, as long as temperatures are well above freezing.

Figure 11. Correlation of initial ZLoss and its changes at follow-up measurements. Tomography was
repeated after 2 (2019), 5 (2020) and 4 (2021) years at sites TG and KF by different operators placing
new sensor positions. Gray: 95 % confidence interval.

Contrary to findings by [17], long-term installation in P. abies did not affect ER tomo-
grams.

Assessing the quality of tomograms by comparing them to photographic images has
proven difficult. Without the assistance of other devices, in this study a penetrometer, the
visual delineation of decay in the image is error-prone, as is the necessarily somewhat
arbitrary color threshold in the tomogram used to estimate ZLoss.

Judged by the tomograms, the spread of decay after 2 to 5 years was low for most trees.
While the progress of decay has been extensively studied in vitro [53], much less is known
about the speed at which fungi decay standing urban trees [54], so these results at least in-
dicate a time-frame for follow-up measurements for tree risk assessment. Tomography, and
especially the combination of SoT and ERT, is an excellent tool for further non-destructive
studies in this field. They would supply tree assessors with much-needed information to
decide on the intervals between successive advanced tree assessments.

As long as wood is not frozen, large differences in stem surface temperature are absent
(for ERT), sensor positions are recorded and documented precisely, and previous sensor
positions are re-used, results of follow-up measurements can safely be interpreted in terms
of progress of decay. Although changing sensor positions should in theory not affect
tomograms, it will complicate the interpretation of differences between measurements.
When repeating a measurement, tree assessors should therefor try to use the same sensor



Forests 2022, 13, 295 12 of 17

positions whenever possible. Complex derived parameters like loss of load bearing capacity
ZLoss should be interpreted with great caution, because of their amplified uncertainty.

Within these limitations, results should increase confidence in tomographic measure-
ments.

Funding: This research received no external funding.

Data Availability Statement: Data are not publicly available due to legal and privacy issues.

Acknowledgments: The cities of Hannover and Göttingen, as well as the Forest Cooperative Geismar
made this study possible by providing access to trees. Several students provided data measured
under the supervision of the author.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

A Cross-sectional area, m2

d distance
ERT Electrical resistivity tomography
ρ Electrical resistivity, Ωm
SoT Stress wave tomography
t Stress wave travel-time, time-of-flight
v Stress wave velocity, m s−1

Z Section modulus, m3

ZLoss Loss of section modulus

Appendix A

Summaries of statistical analyses. Model estimates and 95 % confidence intervals.
Significant effects are indicated by asterisks: *** p < 0.01; ** p < 0.05; * p < 0.1.

Table A1. Statistical analysis of data presented in Figure 2.

CSA 2021
Generalized Least Squares

CSA 2017 0.928 *** (0.907, 0.948)
Constant 0.023 *** (0.006, 0.040)

N 54

Table A2. Statistical analysis of data presented in Figure 2.

CSA 2020
Generalized Least Squares

CSA 2015 0.970 *** (0.946, 0.995)
Constant 0.015 (−0.011, 0.041)

N 29

Table A3. Statistical analysis of data presented in Figure 2.

Time-of-Flight
Linear Mixed Effects

Year 2019 0.0001 *** (0.00004, 0.0001)
Year 2021 0.0001 *** (0.0001, 0.0001)

d 0.001 *** (0.001, 0.001)
Year 2019:d 0.0002 *** (0.0002, 0.0003)
Year 2021:d 0.0002 *** (0.0002, 0.0003)

Constant 0.001 *** (0.001, 0.001)
N 52,685
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Table A4. Statistical analysis of data presented in Figure 2.

Time-of-Flight
Linear Mixed Effects

Year 2020 −0.00004 ** (−0.0001, −0.00000)
d 0.002 *** (0.001, 0.002)

Year 2020:d −0.0004 *** (−0.0005, −0.0003)
Constant 0.001 *** (0.001, 0.001)

N 15,034

Table A5. Statistical analysis of data presented in Figure 2.

Velocity
Linear Mixed Effects

Year 2019 −83.843 *** (−90.023, −77.663)
Year 2021 −82.239 *** (−88.714, −75.764)

d 385.596 *** (371.721, 399.472)
Year 2019:d −116.463 *** (−134.705, −98.221)
Year 2021:d −143.544 *** (−162.900, −124.187)

Constant 1196.230 *** (1153.759, 1238.701)
N 52,685

Table A6. Statistical analysis of data presented in Figure 2.

Velocity
Linear Mixed Effects

d −288.695 *** (−308.006, −269.384)
Year 2020 −77.531 *** (−104.349, −50.713)

d:Year 2020 61.460 *** (36.516, 86.404)
Constant 1178.768 *** (1087.910, 1269.626)

N 10,017

Table A7. Statistical analysis of data presented in Figure 2.

ZLoss
Linear Mixed Effects

Constant 0.344 *** (0.298, 0.389)
N 204

Table A8. Statistical analysis of data presented in Figure 2.

ZLoss
Linear Mixed Effects

Year 0.008 (−0.001, 0.017)
Constant −15.038 (−33.223, 3.148)

N 51

Table A9. Statistical analysis of data presented in Figure 3.

Decay in Tomogram
Linear Mixed Effects

Operator 2 360.228 (−260.478, 980.935)
Operator 3 45.803 (−574.904, 666.509)

Site PA 1042.200 (−236.794, 2321.193)
Operator 2:Site PA −1179.744 (−2737.216, 377.729)
Operator 3:Site PA −543.753 (−2621.287, 1533.780)

Constant 1962.491 ** (159.324, 3765.658)
N 33
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Table A10. Statistical analysis of data presented in Figure 4.

Velocity
Linear Mixed Effects

Species Fagus 101.765 (−27.576, 231.106)
Species Picea −6.438 (−212.318, 199.443)

Species Quercus 75.431 (−66.245, 217.107)
d 5.746 (−42.482, 53.975)

Species Fagus:d 254.883 *** (205.903, 303.862)
Species Picea:d 188.407 *** (124.049, 252.765)

Species Quercus:d −73.114 *** (−123.187, −23.040)
Constant 873.880 *** (753.399, 994.362)

N 68,451

Table A11. Statistical analysis of data presented in Figure 4.

R
Linear Mixed Effects

Species Fagus 30.617 (−106.249, 167.482)
Species Picea 702.369 *** (560.373, 844.365)

Species Quercus −136.691 * (−292.989, 19.606)
Section edge −71.491 (−210.607, 67.624)

Section middle −19.997 (−159.113, 119.119)
Species Fagus:Section edge 6.014 (−136.829, 148.857)
Species Picea:Section edge −560.837 *** (−711.898, −409.776)

Species Quercus:Section edge 154.985 * (−11.290, 321.260)
Species Fagus:Section middle −41.345 (−184.188, 101.498)
Species Picea:Section middle −344.959 *** (−496.020, −193.898)

Species Quercus:Section middle 55.538 (−110.737, 221.813)
Constant 275.118 *** (144.350, 405.885)

N 984

Table A12. Statistical analysis of data presented in Figure 5.

Velocity
Linear Mixed Effects

Air temperature −0.678 * (−1.422, 0.066)
Constant 900.022 *** (870.669, 929.376)

N 215

Table A13. Statistical analysis of data presented in Figure 5 .

R
Linear Mixed Effects

Section middle 19.333 *** (7.814, 30.851)
Section edge 21.844 *** (10.325, 33.364)

Air temperature −3.072 *** (−3.741, −2.403)
Section middle:Air temperature −0.864 * (−1.764, 0.036)

Section edge:Air temperature −1.552 *** (−2.452, −0.652)
Constant 248.454 *** (229.677, 267.231)

N 648

Table A14. Statistical analysis of data presented in Figure 7.

R
Linear Mixed Effects

Section middle 19.333 *** (7.814, 30.851)
Section edge 21.844 *** (10.325, 33.364)

Air temperature −3.072 *** (−3.741, −2.403)
Section middle:Air temperature −0.864 * (−1.764, 0.036)

Section edge:Air temperature −1.552 *** (−2.452, −0.652)
Constant 248.454 *** (229.677, 267.231)

N 648
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Table A15. Statistical analysis of data presented in Figure 8.

R
Linear Mixed Effects

Repetition 2 −0.066 (−0.211, 0.078)
Repetition 3 0.234 *** (0.089, 0.378)
Repetition 4 0.552 *** (0.408, 0.697)
Repetition 5 0.814 *** (0.670, 0.959)
Repetition 6 1.000 *** (0.855, 1.144)

Constant −49.086 *** (−63.570, −34.602)
N 5148

Table A16. Statistical analysis of data presented in Figure 9.

Sap Wood Area
Linear Mixed Effects

Tag 0.00000 (−0.00000, 0.00000)
Constant 0.033 *** (0.026, 0.039)

N 96

Table A17. Statistical analysis of data presented in Figure 11.

Decay in Tomogram
Linear Mixed Effects

Operator 2 360.228 (−260.478, 980.935)
Operator 3 45.803 (−574.904, 666.509)

Site PA 1042.200 (−236.794, 2321.193)
Operator 2:Site PA −1179.744 (−2737.216, 377.729)
Operator 3:Site PA −543.753 (−2621.287, 1533.780)

Constant 1962.491 ** (159.324, 3765.658)
N 33
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