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Abstract: The rapid expansion and pervasive reach of the internet in recent years have raised
concerns about evolving and adaptable online threats, particularly with the extensive integration of
Machine Learning (ML) systems into our daily routines. These systems are increasingly becoming
targets of malicious attacks that seek to distort their functionality through the concept of poisoning.
Such attacks aim to warp the intended operations of these services, deviating them from their true
purpose. Poisoning renders systems susceptible to unauthorized access, enabling illicit users to
masquerade as legitimate ones, compromising the integrity of smart technology-based systems like
Network Intrusion Detection Systems (NIDSs). Therefore, it is necessary to continue working on
studying the resilience of deep learning network systems while there are poisoning attacks, specifically
interfering with the integrity of data conveyed over networks. This paper explores the resilience
of deep learning (DL)—based NIDSs against untethered white-box attacks. More specifically, it
introduces a designed poisoning attack technique geared especially for deep learning by adding
various amounts of altered instances into training datasets at diverse rates and then investigating
the attack’s influence on model performance. We observe that increasing injection rates (from 1%
to 50%) and random amplified distribution have slightly affected the overall performance of the
system, which is represented by accuracy (0.93) at the end of the experiments. However, the rest of
the results related to the other measures, such as PPV (0.082), FPR (0.29), and MSE (0.67), indicate
that the data manipulation poisoning attacks impact the deep learning model. These findings shed
light on the vulnerability of DL-based NIDS under poisoning attacks, emphasizing the significance
of securing such systems against these sophisticated threats, for which defense techniques should
be considered. Our analysis, supported by experimental results, shows that the generated poisoned
data have significantly impacted the model performance and are hard to be detected.

Keywords: deep learning; network intrusion detection system (NIDS); deep fool; poisoning attacks;
pearson correlation method; CICIDS2019

1. Introduction

Cybercriminal activities continue to pose significant threats to personal data, particu-
larly amid an era of heightened technological advancements [1,2]. Each attacker, driven by
the nature of target data, employs a distinct set of skills [3], often targeting valuable infor-
mation, especially private data encompassing economic, military, and celebrity—related
content [4]. These attackers carefully lead their attacks through using different techniques,
such as data interruption, interception, modification, and manufacturing, to produce harm
in the targets [5–7]. They orchestrate different cybercriminal activities using their effective
ways to provide malicious threats, namely data poisoning [3].
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To prevent such attacks, intrusion detection systems (IDSs) have been effectively intro-
duced to play a crucial role in checking the data streams and give alerts to decision-makers
once certain criteria are achieved [8–10]. More specifically, IDSs transfer into Network Intrusion
Detection Systems (NIDS) at the network flow stage, which necessitates training data to identify
network flow records [11]. Traditional retraining of NIDS is important to improve the flow
behavior [12].

Deep Learning (DL) is considered to be one of the best techniques in many domains,
such as pattern recognition, spanning language, images, speech, and video content [13–16].
Its superiority over other techniques stems from its improved computational capabili-
ties, cost-effectiveness of computing equipment, and breakthroughs in Machine Learning
(ML) [15]. However, poisoning cyberattacks targeting training datasets have emerged as
a prominent concern among machine learning practitioners [12]. These attacks aim to
corrupt training data intentionally, leading to poor performance of ML systems [12]. Yet,
creating feasible poisoning attacks for cyber activities remains challenging, with limited
understanding of mitigation strategies [17].

Motivated by the discrepancy between proposed adversarial settings in NIDS stud-
ies and their actual feasibility [18], our research aims to address this gap. Many studies
often assume that threat models are without sufficient consideration of their practical-
ity [18–20]. Moreover, research on poisoning attempts in the cyber realm has been confined
to specific applications, such as computer vision, tabular, and text data [21–23]. However,
reliance on outdated datasets like NSL-KDD (35%) [24], fraught with flaws and unreflecting
modern networks, underscores the necessity for updated datasets, such as CICIDS2017,
CSECICIDS2018, and LITENT2020 [25–28].

Utilizing these updated datasets allows for accurate conclusions regarding modern
technological challenges in networks [27,28]. Label manipulation attack techniques in
training data, though limited in attacking power, present an evident drawback as it is inca-
pable of achieving sophisticated adversarial goals [29,30]. Current hostile machine learning
studies predominantly focus on evasion attacks during inference [31]. Recent surveys
highlight poisoning attacks as a primary concern among implementing ML organizations,
necessitating a shift towards addressing poisoning attack during the training [32]. This
shift emphasizes the need for further research in this critical area.

While poisoning assault strategies have been extensively explored within conventional
ML techniques, only few studies have been specifically tailored for DL [33,34]. To address
these issues, we introduce a poisoning attack approach aimed at evaluating the performance
of DL model. Our experimentation involves inserting varying quantities of harmful samples
into the model. These poisoned samples, generated via the DeepFool method as an untargeted
attack [35], ensure minimal modifications to repeatedly deceive the model’s classification [36].
This methodology strategically avoids large modifications that might drastically deviate sam-
ples from benign elements, resulting in diminished performance and rapid detection [37].

Subsequently, these poisoned instances are introduced into the original training dataset
with diverse poisoning rates ranging from 1% to 10%. The injection involves altering
the distance among the injected poisoned samples, randomly placing them within the
original training locations. Given the substantial data requirements for DL techniques and
hyperparameter adjustment, our research leverages extensive datasets provided by the
Canadian Institute of Cybersecurity (CIC), specifically the Communications Security and
Establishment dataset (CIC2019 or CICIDS2019) [38]. This choice showcases the efficacy of
our proposed assault approach in a real-world context.

Feature selection crucially relied on Pearson’s Correlation technique to discern rela-
tionships between features, acknowledging the stability of associations in larger datasets
compared to smaller ones [39]. Leveraging a high-dimensional dataset encompassing
recent network attacks, we rigorously assessed the robustness of the system and presented
our findings based on multiple metrics, such as accuracy, True Positive Rate (TPR), and
True Negative Rate (TNR). This comprehensive evaluation offers a comprehensive insight
into the efficacy of the proposed approach.
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This paper contributes significantly by bridging critical gaps in the field of network
security. Specifically, this work presents a strong poisoning-based attacks method de-
signed explicitly for DL to address a prominent deficiency in most recent literature that
focuses on orthodox ML techniques. Our research provides an evaluation on the resilience
and susceptibility of DNNs towards poisoning-based attacks via meticulous experiments
leveraging the novel DeepFool method to create poisoned data. Furthermore, the study
presents a comprehensive analysis of the attack’s influence on the performance of the sys-
tem by injecting various amounts of such manipulated samples into the training datasets.
Employing inclusive dataset provided by the Canadian Institute of Cybersecurity (CIC),
notably as CIC2019 (CICIDS2019), offers real-world pertinence and validity to the findings
of this study. Applying Pearson’s Correlation method to select features in datasets with
high-dimensions further enhances the accuracy and depth of this investigation. Ultimately,
the paper’s contribution lies in its meticulous exploration of data poisoning-based attacks
on DNNs, shedding light on their implications for network security and offering insights
into fortifying systems against such threats.

The article is structured into distinct sections, each dedicated for specific facets of
the research. Section 2 delves into a review of related work. Following this, Section 3
elucidates the fundamental concepts introduced in this paper. Section 4 intricately details
the experimental setup. The methodological implementation is thoroughly outlined in
Section 5, providing insight into the research approach. Section 6 examines and presents
the findings derived from the study’s experimental cases. Finally, Section 7 offers insightful
concluding remarks and outlines potential avenues for future research endeavors.

2. Related Work
2.1. DL-Based NIDS

The rapid evolution of network services has spurred the development of IDSs bolstered
by DL techniques. Xu et al. devised a multi-level deep-learning-based IDS that showcased
exceptional performance metrics when tested on benchmark datasets like KDD 99 and NSL-
KDD. Their technique produces high identification rates, 99.42% and 99.31%, accompanied by
low False Positive Ratios (FPR) of 0.05% and 0.84%, respectively [40]. In [41], Peng, Kong et al.
proposed a reliable Neural Network (NN) designed to retrieve features from a traffic network
to offer higher accuracy compared to conventional ML systems based on the KDD99 dataset
evaluation. Fernandez, Xu, and Aldallal research improved the effectiveness of DL-based
IDSs in real-world situations. A DL is proposed to identify abnormal transactions in many
datasets to outperform different ML techniques with a high True Positive Rate (TPR) of 99.93%
in certain examples [42]. An IDS framework is introduced to detect DDoS attacks to ensure
high resilience and speed against adversarial attacks, where the framework achieves a
remarkable recall rate of 98.2% [43]. These works have effectively underlined the increasing
dependence on DL models to fortify IDSs against strong and resilient cyber-attacks.

2.2. Poisoning Attacks

Extensive research about poisoning attacks has been conducted recently due to the
escalating challenges of ML security vulnerabilities. Many approaches have been presented
by researchers to compromise ML systems to highlight their susceptibility towards ad-
versarial manipulation. In [44], a gradient ascent technique with the MNIST dataset has
been used to construct optimal threats through employing poisoning attacks to target Support
Vector Machines (SVM). In contrast, the realm of targeted clean-label-based attackers has been
presented to introduce slight changes in labeled samples to perturb certain examples in the
training set, even though such kind of attack could be detectable in the created disruptions [45].

Furthermore, many studies have concentrated on data poisoning-based attacks in the
feature selection setting and interpretability of the system model. Data poisoning-based
attacks have been suggested against two embedded feature selection approaches, namely:
ridge regression and LASSO. A sub-gradient ascent method is leveraged to compromise
system models. The research shows the effectiveness of the poisoning attack on the targeted
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system [46]. The investigation of data poisoning-based attacks across many different machine
learning models and methodologies of feature selection has ensured the necessity to have
strong defenses to counteract such attacks. These explorations assure the immediate
urgency to protect ML systems against poisoning-based threats, a pressing challenge in
contemporary cybersecurity fields.

In contrast to prior studies, our proposal addresses and evaluates the robustness of
DL-based NIDS against poisoning-based attacks. Data-based poisoning attack has been
launched to exploit the DL model during the training phase. This threat occurs when the
training data of the DL model is changed, affecting the ML decision-making findings. This
type of attack intends to deceive the system into drawing incorrect conclusions although deep
learning models are usually considered as black boxes. Therefore, the attack compromises
the integrity of the model. The resilience of DL-based NIDS has been evaluated via injecting
manipulated samples, which are generated using the DeepFool method, into training datasets.
Our research assesses different quantities of poisoned instances, focusing on the effectiveness of
such assaults on the DL-based NIDS performance. It also aims to provide insights to boost DL-
based NIDS against contemporary network security attacks to address the vital aspect of
system robustness in the face of poisoning-based threats leveraging the most recent dataset
CIC2019 (CICIDS2019) produced by the Canadian Institute of Cybersecurity. The reliability
and depth of our proposal has been further improved by incorporating the application of
feature selection approach, which is Pearson’s Correlation in high-dimensional datasets. A
summarization of prior works discussed above are illustrated in Table 1.

Table 1. Summary of related work.

Reference Dataset Methodology Conclusion

[40] KDD99 NSL-KDD
Developed a Recurrent Neural Network

(RNN) algorithm and Gated Recurrent Units
(GRU) with automatic feature-selection.

Comparative experiments showed that the
GRU is more suitable as a memory unit for

intrusion systems than LSTM.

[41] UNSW-NB15

Focused on the utility of DL frameworks for
NIDS systems that scan traffic across

networks to detect and record a violation
based on the intrusion’s behavioral patterns

discovered in the dataset.

The suggested technique achieved a total
accuracy of (95.4% and 95.6%) for the

prepartitioned and multiple-class
categorization systems.

[42] ISCXIDS 2012

Proposed Deep Neural Network (DNN) that
trains an NIDS using supervised training and

uses an autoencoder to identify and
categorize attack traffic by

unsupervised learning.

DNN works satisfactorily in supervised IDSs,
particularly when only the first 3 octets of IP
addresses are processed. Autoencoders can

additionally recognize anomalies when
trained on benign traffic.

[43] CICIDS2018
Developed a DL technique for detecting

cloud computing assaults, utilizing Pearson’s
Correlation method.

The suggested system has an extremely low
FPR of 0.003%. This minimizes the need for

human analysts to manage many alerts.

[44] MNIST

Suggested an attack to employ a gradient
ascent technique, in which the gradient is

calculated using characteristics of the SVM’s
best solution to raise the classifier’s

test errors.

The findings show that the gradient ascent
approach accurately determines the local

maxima of the non-convex validation
error surface.

[45] ImageNet

Focused on targeted poisoning assaults that
change the classification in modern-DNN of

unaltered test images, compromising
system integrity.

This approach enables highly successful data
poisoning assaults against completely

retrained models.

[46] PDF file.

A methodology has been suggested to better
analyze and define assaults on feature

extraction strategies, which are: LASSO,
ridge regression, and the elastic net.

Malware detection outcomes indicate that
feature selection approaches can be greatly

compromised during attacks, focusing on the
necessity for particular countermeasures.
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3. Background
3.1. Vulnerabilities in Deep Learning Models

DL models represent a cornerstone in modern ML, harnessing complex neural struc-
tures akin to the human brain to excel in learning intricate patterns from expansive
datasets [37]. Their hierarchical architecture, often comprising multiple layers includ-
ing input, hidden, and output layers, enables sophisticated learning and abstraction of
features within data [47,48]. The iterative training process refines DNNs’ performance by
adjusting internal parameters, continuously improving outcomes [49,50].

Despite their remarkable capabilities, DL models exhibit vulnerabilities to adversarial
attacks and data poisoning. Adversarial example-based attacks contain malicious input
instances to fool the ML models, leading to an unsuccessful classification and incorrect
results [51]. From another side, inserting poisoning sample-based threats in the training
datasets creates malicious samples to reduce the performance of the ML model [52]. Such
attacks have challenged the reliability of DNNs model due to exposing the vulnerability
of the ML model. Adversarial example-based threats can lead to incorrect predictions
or misclassifications, which highlight the need to propose a technique that is capable of
protecting DNNs against such threats [53]. Revealing the vulnerability of the ML models
has become a concern, and it is necessary to create a strong model against these threats in
many applications. This kind of high level protection renders the system strong against
possible threats and guarantee the best performance of the model.

In this article, DNNs against malicious data poisoning-based threats have been effec-
tively evaluated via inserting different rates of poisoning sample-based threats, which are
created leveraging DeepFool approach, into the training datasets.

3.2. DeepFool Method

The DeepFool technique, found by Moosavi-Dezfooli, is considered as an untargetable
white-box threat among adversarial data-based threats [54]. This technique operates via
estimating the distance between a given classifier and input data and then applying an
orthogonal projection towards the closest boundary. During this operation, a computational
approach is used to find the least required perturbations that are necessary to generate
adversarial examples that can affect the classifiers [55]. DeepFool repeats this procedure
iteratively until the input is successfully changed to lead to a misclassification in the
network system. The resilience metric connected to such threat is based on measuring the
lowest required modification to fool the network once it is provided with a certain input
data [56].

3.3. Pearson’s Correlation Method

Although feature selection is an important aspect in the ML field, the abundancy of
features in a dataset can increase model complexity and extend training durations. To
enhance efficiency and ensure effective attack identification, it has become imperative to
transform collected data into a more streamlined dimension [57]. Various feature selection
strategies exist in ML, including but not limited to backward feature selection, chi-square,
and recursive feature removal, and each considers specific dataset characteristics, dimen-
sionality, and correlation [58]. Our chosen approach for feature extraction revolves around
Pearson correlation coefficient method. This method evaluates variable correlation by
illustrating the linear relationship between dataset features [39]. Ranging between −1 and
+1, the correlation coefficient denotes the strength and nature of the relationship between
variables. A value of ‘0’ means that there is no relationship, while ‘1’ refers to a strong
positive correlation, and ‘−1’ indicates a strong negative correlation. Higher absolute val-
ues that are closer to ‘+1’ imply strong relationship between variables [59]. This method is
used to identify feature relationships that are vital to get a robust model with high accurate
intrusion detection rate.
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4. Experimental Setup

Our experimental setup utilizes a computer server equipped with a powerful configu-
ration, comprising a 16 GB NVIDIA Graphics Card RTX 4090 Ti, a 3.0 GHz multithread
Core i9 CPU, and 64 GB of RAM. We employ Anaconda Python 3.6 software to execute our
program and evaluate the effectiveness of the proposed technique.

4.1. Proposed System Framework

The proposed technique of this work, illustrated in Figure 1, involves several phases.
Initially, the system starts with fetching the network security dataset that contains various
attacks, focusing on leveraging new and pertinent dataset for experimental purposes. Data
preprocessing is considered as a critical step to treat the inherent noise, empty values, or
inconsistencies of the collected data from different sources. The preprocessing includes
refining and cleaning dataset, removing incorrect values, to futher enhance the accuracy
of the next analyses. Afterwrds, feature selection method is used to remove redundant or
inconsequential features that could significantly affect the model’s accuracy and complexity.
Employing Pearson’s Correlation analysis is necessary to eliminate unrelated and undesir-
able features and to ensure that only essential pertinent features to the study’s objectives
are retained.

As for the deep neural networks, models are usually classified into several layers that
include interconnected neurons. Each neuron processes incoming data through weighted
connections and activation functions to obtain the output. Ultimately, the framework
produces poisoned data-based threat. In this study, the generation of such data has been
achieved using the DeepFool as a white box attack methodology, in which these adversarial
samples are injected into the training dataset at different rates to evaluate their impact on
the model performance.

The final step of the framework contains an analysis of the model’s efficiency and
resilience against these adversarial threats. Several evaluation metrics are leveraged to
test the performance of the system, highlighting the strength of the system once adver-
sarial instances are injected. A thorough investigation of the system’s behavior under
adversarial attacks is achieved using our comprehensive framework, in order to reveal the
vulnerabilities of the system and fortify its resilience in real-world applications.

4.2. Dataset Description and Preprocessing Procedures

The dataset leveraged in this work, namely CIC2019, has been recently produced by
the Canadian Cyber Security Institute, to further fix flaws and address limitations that have
been recorded in the two previous versions, CICIDS2017 and CICIDS2018 datasets [38]. The
new version of this dataset has been collected during a period of two days from a recording
network flow, and then the recorded data instances are stored in a CSV format [60]. The
CIC2019 dataset involves eighty-seven features divided into normal and malware intrusion
samples. Table 2 provides more information regarding the dataset. It also includes an
extensive collection of valuable samples that belong to the Distributed Denial of Service
(DDOS)-based threats.

An important preliminary step involved initializing and preprocessing the dataset is
required to remove common presence of undesirable data, including but not limited to
noise, irregularities, outliers, and null values. The given dataset goes through two primary
steps: cleaning and standardization. Initially, certain columns that involve “Flow ID”,
“SimillarHTTP”, “Timestamp”, “Source IP”, and “Destination IP” have been eliminated to
further reduce the complexity of the dataset and keep it with only eighty-two features. The
“Flow Bytes” column has been standardized via replacing missing and infinite values with
zeros to make the data consistent. In fact, real-world datasets usually include features with
different units, magnitudes, and ranges to standardize the dataset and guarantee that the
features are uniformed in ML models. During the scaling methods, the features have been
rescaled to a range between zero and one in order to ensure homogeneity and enhance
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the performance of the ML algorithm. Note that some ML models, e.g., Neural Networks
(NNs), assign standardized input data patterns for optimization purposes.
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In this work, the dataset has been divided into 75% for training and 25% for testing
through all levels to assure a comprehensive evaluation on the performance and generaliz-
ability of the ML model.

Table 2. The number of normal (benign) and malware (threat) data in the CIC2019 network dataset.

Type Number

Normal 14,040

Malware 99,219

4.3. Performance Evaluation

To assess the performance of the model, we employ the Confusion Matrix (CM), a
pivotal tool used for binary classification purposes to identify the differences between
normal (benign) and malware (threat) data samples. CM provides a complete malfunction
regarding the performance of the ML model, and it contains four primary elements: True
Positive (True-P) refers to the accurate classification of normal instances, True Negative
(True-N) denotes the correct identification of deceitful threats, False Positive (False-P)
implies the misclassification of normal activity in the model as malware, and False Negative
(False-N) represents the incorrect labeling of data attacks as normal tasks. Such elements
are fundamental in order to successfully evaluate the accuracy of the ML model. Moreover,
we incorporated different measurements, in which each has been designed for a specific
task. Among these, the primary measurements utilized include:

1. Accuracy (Acc): Represents the percentage of successfully classified records in the
whole dataset after training the algorithm.

2. Positive Predictive Value (PPV): Refers to the percentage of successfully recognized
threat samples from all predicted threats.

3. False Positive Rate (FPR): Signifies the proportion of incorrect distinguished threat
samples to the total number of actual threats.

4. Mean Squared Error (MSE): Represents the average squared dissimilarity between
the predictions of the ML model and the original monitored outcomes. While MSE is
traditionally used in regression problems rather than binary classification tasks, we
employ MSE in our study for specific analytical purposes. Our objective is to analyze
and monitor the changes in the system’s behavior when different ratios of poisoning
data are applied. By utilizing MSE, we are able to quantify the deviations between
the predicted and original outputs, providing valuable insights into the impact of
poisoning attacks on model performance.

5. Experimental Methodology

This section of our work depicts the utilized experimental procedures to evaluate the
detection effectiveness of the DL model against data poisoning-based attacks in two steps.
The first phase involves assessing the model’s performance using pristine, unaltered data,
while the second phase focuses on updated data exposed to poisoning attacks generated
through the DeepFool method. These poisoned points are strategically inserted into the
training dataset to deceive and compromise the model. Following each experimental phase,
an extensive evaluation of the DL model’s performance is conducted. The subsequent
subsections provide comprehensive details for each phase of the experimentation.

5.1. Phase-I Experiment

In the first phase of the experiments, a DL model is adopted for intrusion detection.
The architecture of this model comprises four hidden layers with a neuron configuration
of 200, 100, 50, and 20 neurons, respectively, for the input and output layers. Activation
functions—ReLu for the hidden layers and Softmax for the output layer—are applied
to classify normal and malware labels. The model’s parameters are detailed in Table 3
below. Once the model’s hyperparameters are fine-tuned and the dataset is preprocessed,
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the model training commences using features derived through Pearson correlation-based
feature deduction method as depicted in Figure 2. In Figure 2, the correlation strength
of the linear relationship between features is depicted. The correlation coefficient value
ranges from 1 to −1. A value of 1 signifies a strong positive linear correlation, depicted
by a dark color in the figure. Conversely, a value of −1 indicates a strong negative linear
correlation, portrayed in a light color. Values close to 1, typically above 0.60, are considered
a strong correlation, suggesting a significant relationship between the features. Conversely,
correlation coefficients below this threshold are regarded as weak correlations and are often
disregarded in the analysis. The extracted features utilized in our analysis are outlined in
Table 4.

Table 3. The parameters of DNN model.

Hyperparameter Value

Learning rate 0.001

Batch size 512

Epochs 20

Loss function Binary cross-entropy

Dropout 0.4

Optimizer Adam

Activation function -hidden layers ReLU

Activation function -output layer Sigmoid

Table 4. High correlation features.

Features Correlations

Source Port 0.885809

Protocol 0.805606

Total Length of Fwd Packets 0.797673

Fwd Packet Length Max 0.952294

Fwd Packet Length Min 0.992838

Fwd Packet Length Mean 0.988572

Flow Bytes/s 0.643855

Flow Packets/s 0.557369

Fwd Packets/s 0.558265

Min Packet Length 0.994147

Max Packet Length 0.825010

Packet Length Mean 0.988031

URG Flag Count 0.679175

Down/Up Ratio 0.691483

Average Packet Size 0.990900

Avg Fwd Segment Size 0.988572

Subflow Fwd Bytes 0.797673

Init_Win_bytes_forward 0.503775

Inbound 0.940320
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The model initiates training using these non-crafted (clean) data features. Subse-
quently, the testing phase follows the training, focusing on a binary classification problem
(zero for normal labels and one for malware labels). Multiple evaluation metrics detailed
in Section 4.3 are employed to assess the model’s efficiency and performance. The experi-
ment’s results are analyzed and compared to the subsequent section’s outcomes.

5.2. Phase-II Experiment

In the second phase of the experiments, the same DL model undergoes multiple tests
to explore potential attacks during the training. The objective is to determine whether
varying rates of poisoned data impact the system detection’s functionality. Poisonous
points are generated from attributes selected based on their correlation, replicating the
features present in the original dataset. These highly correlated features are chosen not to
compromise the model but to align the generated points with the original data to reduce the
performance of the model. The creation of poisoned points and data updates is executed
using the DeepFool white-box method. The investigation aims to understand the influence
of increased data insertion rates (1%, 5%, 10%, and 50%) on the model’s efficiency in each
experiment case. The training set is segregated from the testing set to observe the model’s
natural performance and accuracy when dealing with contaminated data. The primary
goal of this attack is not to manipulate the model’s output but to influence the classifier’s
decision-making process through an untargeted attack.

6. Results

The pursuit of enhancing DL-based NIDS has garnered considerable attention among
researchers. Various methodologies have surfaced, encompassing diverse technologies,
tools, algorithms, datasets, and benchmarks. Notably, many researchers have adopted
DL algorithms in their investigations, each utilizing distinct datasets. The efficacy of our
system can be readily gauged through its accuracy, when compared to previous works,
which are detailed in Table 5 below.
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Table 5. Comparison of DL-based NIDS Accuracy with Existing Studies.

Authors Year Dataset Technique Acc

Tang [61] 2018 NSL-KDD GRU-RNN 0.89

Le [62] 2019 NSL-KDD RNN 0.89

Kim [15] 2020 CICIDS2017 CNN-LSTM 0.93

Choras [63] 2021 CICIDS2017 ANN 0.99

Fu, Zeyuan [64] 2022 IADA, IADB BiLSTM-DNN 0.97

Proposed idea 2024 CICIDS2019 DL-ANN 0.99

Figure 3 depicts the accuracy curve of our DL model after training on selected features
in the first phase, in which the generated poisoned data are not included. The curve
demonstrates a steady increase as epochs progress, indicating the suitability of the chosen
features for training the system and the sufficiency of epochs in achieving high accuracy.
Additionally, Figure 4 illustrates the model’s loss, indicating a consistent decrease with
increasing epochs.
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In the study’s second phase, we evaluated the performance of the model after injecting
three different ratios, 1%, 5%, and 10%, of constructed poisoned patterns into the training
set, where the inserting has been performed randomly to make the attack more realistic
(closer to the real-world scenario) and render revealing the attack much harder once a
traditional defense technique is employed. The main purpose of leveraging this technique
is to appraise the effectiveness of the injected poisoned data to the model performance.
Remarkably, even after injecting all three percentages of patterns into the original training
set while isolating the test data, the accuracy remained relatively high. Figures 5–7 display
the accuracy across these three cases, while Figures 8–10 visualize the corresponding
model loss.
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During the first injection of the poisoned data with the ratio of 1% (1000) into the
training set, there is no much difference in the result of the Acc when comparing the trained
model with and without injecting poisoned data, but the MSE has increased and PPV has
decreased. When the 5% ratio dataset is injected, the MSE and PPV have been further
impacted, and the Acc has slightly affected. When the poisoned data ratio is increased to
10%, the MSE and PPV have been more affected while still the Acc has barely changed.
In general, the effectiveness of the injected poisoned data to the model is summarized in
Table 6, in which the impact of the Acc, PPV, FPR and MSE are reported when the ratio of
the injected poisoned samples is elevated. This explains the effect of the randomly injected
points within the training group, and how the rate of misclassification increases as the
injection rate elevates.

Table 6. Summarized the obtained results.

DNN Model Training on Count Acc PPV FPR MSE

Clean data (19 features) 0.999 0.999 1.00 0.000008

Poisoned data with different
number of samples

1000 (1%) 0.998 0.96 0.998 0.001

5000 (5%) 0.995 0.92 0.998 0.004

10,000 (10%) 0.992 0.89 0.971 0.007

Support (50%) 0.932 0.082 0.295 0.67

To provide an additional proof, we injected half of the training set with the generated
poisoned data (50%) to further show the effectiveness of the injected poisoned data on
the model performance. The result indicates a significant drop in accuracy, as shown in
Figures 11 and 12 and also in the prediction, as summarized in Table 6. To sum up, the
poisoned data are considered strong if the PPV, FPR, and MSE are significantly impacted
while the accuracy is slightly influenced, and this is clearly shown in Table 6. In other
words, the injected poisoned data, that are carefully constructed from highly correlated
features and randomly distributed into the training data, cause deluding the model and
ensuring that these generated patterns are highly concealed since the model fails to detect
such poisoned data. Unlike other techniques, e.g., Flipping Label method, in which the
accuracy has dramatically decreased and resulted in exposing the attack and the position
of the enemy. This type of attack poses a significant threat as it directly manipulates the
data, rendering it invisible to traditional detection methods. Its insidious nature demands
highly skilled defenders capable of promptly processing and validating data to mitigate
potential damage to system outputs. While these attacks may not immediately impact the
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accuracy of the system, other metrics utilized in this study revealed their detrimental effects.
Additionally, deep learning-based systems exhibit inherent weaknesses, rendering them
particularly vulnerable to such attacks unless robust preventive measures are implemented.
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Considering the overall performance of our proposed technique shown in Table 6, we
can conclude that deep learning model can be considered as a reliable system for detecting
intrusion tasks on network field. However, defense techniques against strong poisoned
data that are carefully generated leveraging highly correlated features with large data
volume are required, especially for sensitive information that are pertinent to medical
healthcare field [65]. Also, analyzing the model’s performance of deep neural networks
using other types of generation methods, particularly when the target is to attack the model,
not just the data should be taken into consideration during the evaluation. Moreover, it is
not enough to say that the model is strong when only the accuracy is high. As shown in
this work, an attacker can inject poisoned data into the training set and such data cannot be
detected since the accuracy is still high, where the impact of such attack is shown on other
metrics, e.g., precision.
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7. Conclusions and Future Works

In this study, we investigate the robustness of a DL model employed for the detection
of computer network attacks. Our research is centered on examining the susceptibility of the
model towards adversarial attacks, particularly focusing on the impact of such attacks on its
performance and resilience. Experiments were conducted utilizing the widely recognized
CICIDS2019 network dataset. Employing Pearson correlation coefficient method for feature
deduction, we meticulously identified relevant features crucial for effective attack detection.
The DeepFool white-box attacks has been included to carefully evaluate the resilience
of the model against strong poisoning-based threats, which are designed to evade the
system’s detection and significantly affect the performance of the model. Our analysis,
supported by experimental results, indicates that the generated poisoned data is highly
concealed and hard to be detected, which is shown in accurate results that range from 0.99
to 0.93, which indicates the significant concealment achieved by the proposed threats. It
also has a significant impact on the performance of the model to correctly recognize normal
from malignant instances in the network, as evidenced by variations in Positive Predictive
Value (PPV) ranging from 0.99 to 0.082, False Positive Rate (FPR) from 1.00 to 0.29, and
Mean Squared Error (MSE) from 0.000008 to 0.67. Also, our proposal aims to explore
alternative techniques to further improve the robustness of the system, including but not
limited to the selection of more distinguished features, experimenting different features,
and exploring alternative deep learning architectures. Furthermore, future attempts will
include multiclass classification tasks and investigating various feature selection methods
to generate better defense mechanisms and efficient strategies against complicated network
threats. This holistic approach underscores our commitment to advance the state-of-the-
art in network security, with a keen focus on developing resilient and adaptive defense
mechanisms capable of mitigating emerging threats effectively.
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