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Abstract: This paper introduces an agent-based model grounded in the ACO algorithm to investigate
the impact of partitioning ant colonies on algorithmic performance. The exploration focuses on
understanding the roles of group size and number within a multi-objective optimization context.
The model consists of a colony of memory-enhanced ants (ME-ANTS) which, starting from a given
position, must collaboratively discover the optimal path to the exit point within a grid network. The
colony can be divided into groups of different sizes and its objectives are maximizing the number of
ants that exit the grid while minimizing path costs. Three distinct analyses were conducted: an overall
analysis assessing colony performance across different-sized groups, a group analysis examining the
performance of each partitioned group, and a pheromone distribution analysis discerning correla-
tions between temporal pheromone distribution and ant navigation. From the results, a dynamic
correlation emerged between the degree of colony partitioning and solution quality within the ACO
algorithm framework.

Keywords: ant colony optimization; multi-objective optimization; group cooperation and network
analysis

1. Introduction

Network analysis is typically understood as a collection of methodologies and heuris-
tics that allow us to understand the relationships among entities within complex systems.
Network analysis finds application in human fields such as sociology [1,2], economics [3–5],
biology [6,7], medicine [8,9], and many others. For example, in sociology, network analysis
can identify online communities [10,11] and social interactions [12] or measure social influ-
ence within a friendship network. In economics, we can analyze business relationships and
understand how the interconnection between companies affects market stability. In biology,
we can study interactions between proteins within cells to better understand biological
mechanisms [13,14].

In this paper, we delve into a specific aspect of network analysis within the framework
of an Ant Colony Optimization (ACO) algorithm, focusing on the dynamic relationships
and interactions among individual ants and various groups within a colony. The colony
functions as a complex network, where ants collaborate to find the optimal path between a
food source and their nest, communicating through a simple yet indirect mechanism using
chemical signals known as pheromones. This phenomenon serves as a prime example of a
complex adaptive system (CAS), where the collective behavior transcends the actions of
individual elements, showing the colony’s ability to thrive through cooperation [15]. In
essence, it is not the solitary ant that discovers the optimal path, but rather the intricate
interactions among groups of ants within the colony, facilitated by pheromones, that yield
the overall outcome [16]. Our exploration delves into the interactions through pheromones
and the structural organization of the colony. By analyzing how various forms of grouping,
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coupled with factors such as pheromone evaporation, influence intra-colony relations, we
aim to comprehensively grasp the diverse outcomes generated by the algorithm in question.
Consequently, our investigation extends beyond the realm of pheromone-driven interac-
tions to encompass the substantial impact of colony subdivision on the overall dynamics.

1.1. The ACO Paradigm and Applications

Ant Colony Optimization (ACO) derives its inspiration from the foraging behavior
observed in natural ant colonies, where decentralized communication through chemical
signals known as pheromones plays a pivotal role in finding the shortest path between
their nest and a source of food. Initially proposed in [17], ACO has demonstrated remark-
able efficacy in addressing a multitude of complex combinatorial optimization problems,
including scheduling and, particularly, routing problems [18–23]. More generally speak-
ing, agent-based or swarm intelligence heuristics have been applied as well to coloring
challenges [24–26], robot path planning for inaccessible areas [27,28], transportation com-
plexities and traffic problems [29,30], and feature selection across diverse fields [31]. Beyond
optimization, ACO demonstrates utility in modeling crowd dynamics. In [32], the authors
translated ACO rules into conceptual frameworks rooted in social dynamics. They pro-
posed an agent-based model to study collective crowd behaviors. Furthermore, ref. [33]
provides a sensitivity analysis.

The notion of dividing ant colonies into groups has received particular attention
because of its potential to enhance optimization performance. In [34], an adaptive ACO
was implemented, where the colony was separated into three groups: ordinary ants, using
heuristic information; abnormal ants, seeking low pheromone paths; and random ants,
exploring randomly. This collaborative approach improved the optimization performance,
and was able, for instance, to effectively address the traveling salesman problem.

Extending this exploration into multi-objective optimization problems, ref. [35] em-
phasized the performance benefits of employing multiple ant groups. In their study, a
grouping approach was applied to enhance the efficacy of the ACO paradigm when dealing
with multi-objective optimization problems.

In a related effort, ref. [36] proposed a multi-objective ACO algorithm for community
detection in complex networks. By partitioning the ant colony into groups and coordinat-
ing their exploration, the algorithm achieved a more efficient search ability for solutions.
Further corroborating these findings, Ref. [37] introduced a group-based ACO algorithm
for bi-objective optimization, where ants were organized into groups based on parameters
related to the objective function, resulting in an enhanced overall algorithm performance.
Recent advancements include the Grouping Ant Colony Optimization (GACO) algorithm
presented by [38]. GACO specifically addresses the multi-UAV reconnaissance task allo-
cation problem by dividing the ant colony into distinct subgroups. This division proves
crucial as different UAVs focus on distinct targets, ultimately leading to superior optimality
in the results when compared to existing methods reported in the literature. Lastly, we
stress the possibility of future applications of the GACO algorithm to networks modeling
the mobility of groups of people, providing, for instance, personalized recommendations
of places of interest [39] and possibly analyzing the impact of restrictions to mobility due
to extreme circumstances [40].

Building upon the advancements in multi-objective optimization techniques, some
recent studies have introduced innovative algorithms to address specific problems in differ-
ent domains. For instance, in [30] the authors propose a modified Competitive Mechanism
Multi-Objective Particle Swarm Optimization (MCMOPSO) algorithm for optimizing sig-
nalized traffic problems. This approach incorporates a dynamic leader selection mechanism,
guiding particles toward elite solutions through angle comparisons. Similarly, in [41] a sin-
gle deep reinforcement learning model is employed to tackle the multi-objective traveling
salesman problem (MOTSP). The method makes use of an encoder–decoder framework
with a routing encoder, efficiently extracting and aggregating information to generate
approximate Pareto-optimal solutions in parallel.
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1.2. Objective of Our Research

The exploration of dividing ant colonies into groups as a strategy to optimize Ant
Colony Optimization (ACO) raises some compelling questions: what is the optimal degree
of partitioning to achieve the best solution to the problem at hand? Are there any potential
correlations between the solution quality and variables within the ACO framework? To
address these questions, an agent-based model, rooted in the ACO paradigm but where the
agents (ants) have memory, was employed to tackle a maze navigation problem. Drawing
on insights from existing research, the present study investigates the impact of partitioning
the colony into groups on the ACO algorithm’s performance, particularly examining the
roles of group size and number in the context of a multi-objective optimization problem.
The decision to adopt an agent-based approach is motivated by the necessity to explore
the network dynamics inherent in the collaborative behaviors of the ant colony. In re-
lated studies [42], the same approach was used to explore the network dynamics of both
collaborative and competitive ant colonies. The flexibility of this model proves crucial
in capturing the complex and dynamic interactions within the colony, where each agent,
representing an individual ant, interacts with the environment and each other. These inter-
actions, facilitated by pheromones, lead to the emergence of collective behaviors, offering
a deeper understanding of how the network evolves and adapts to changing conditions
while exploring diverse scenarios.

In conclusion, the present study focuses on a dynamic scenario where a colony of
memory-enhanced ants, starting from a designated position, collaboratively attempts to
discover the optimal path to the exit within a grid network. The colony is divided into
groups of varying sizes, with the overarching goal of maximizing the number of ants
successfully exiting the maze while minimizing path costs.

The paper is structured as follows: Section 2 clarifies the model, offering a comprehen-
sive understanding of it. In Section 3, the experimental setup and results of the experiments
are provided. Section 4 critically discusses the obtained results. Finally, in Section 5 we
present the concluding remarks.

2. The Model

We used the NetLogo software [43] to implement our model. NetLogo is an agent-
based programming language as well as an integrated development environment (IDE)
that provides a comprehensive environment, from the implementation of the simulation
model to the creation of the graphical interface supporting the simulation. The graphical
interface typically includes various elements such as switches, sliders, choosers, and inputs,
chosen according to the user’s needs for model development. These elements allow a
real-time interaction to observe changes in the dynamics without directly modifying the
code. Interface elements can correspond to either simple model variables or code blocks
and are arbitrary, as they may not be present for the model’s executability, as long as the
associated variables or code are properly defined in the source code. The graphical interface
must include two elements: one designed to invoke the code initializing the simulation
environment (typically named “setup”), and another that calls the code initiating the
dynamics (commonly labeled as “start”).

The environment is a weighted network defined as a graph G = (V, E, w), where V is
the set of vertices, E is the set of edges, and w : V ×V → R+ is the weight function which
assigns a positive cost to each edge of the graph. The weight measures the difficulty of
crossing a specific edge. The starting point is a randomly selected node on one side (e.g., left
side), while the exit point is another randomly chosen node on the opposite side (e.g., right
side). The graph is undirected, therefore, all the edges can be crossed in both directions.

Let Ai = {j ∈ V : (i, j) ∈ E} represent the set of vertices adjacent to vertex i and let
πk(t) = (π1, π2, . . . , πt) denote the set of vertices visited by the ant k at a specific time
t, where (πi, πi+1) ∈ E for i = 1, . . . , t − 1. The probability pk

ij(t) which measures the
likelihood that ant k, placed on a vertex i, chooses as destination one of its neighbor vertices
j at time t is defined as
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pk
ij(t) =


τij(t)α ·ηβ

ij

∑l∈Jk
i

τil(t)α ·ηβ
il

if j ∈ Jk
i

0 otherwise,

(1)

where Jk
i = Ai \ {πk

t } represents all the possible displacements of ant k from vertex i,
τij(t) is the pheromone intensity on edge (i, j), and ηij(t) is the desirability of edge (i, j)
at a given time t. The parameters α and β determine, respectively, the importance of
pheromone intensity and the importance of the desirability of an edge. Each link undergoes
asynchronous updates through two types of rules based on the number of ticks T (the tick
is the unit of time in the simulation software). The first rule is a local updating rule, which
adjusts the pheromone levels after each movement of the ant as follows:

τij(t + 1) = τij(t) + K. (2)

Here, K denotes the pheromone left by each ant after traversing an edge (i, j), and τij(t)
represents the pheromone amount on the link at time t.

The second rule is a global updating rule, which updates the pheromone amount on all
network links every T ticks as follows:

τij(t + 1) = (1− ρ) · τij(t), (3)

where τij(t) is the trace amount on edge (i, j) at time t, and ρ is the evaporation decay
parameter. At any given time t, the desirability ηij(t) measures the attractiveness of an
edge (i, j). This desirability is associated with the information Iij(t) about the weight of the
edge. It is shared by each ant on the endpoint of the crossed edge (i, j) and initialized to 0,
as in Algorithm 1 line 3.

2.1. Memory-Enhanced Ants and Knowledge Acquisition

In our model, ants employ a navigation strategy that combines the use of pheromones
and the calculated desirability of edges to make informed decisions about their movement
within the environment. Pheromones act as a communication device among ants, directing
them towards paths with higher concentrations of pheromones. Conversely, desirability is
internally determined based on acquired information Iij(t) about edge weights, achieved
through two mechanisms.

The first memory mechanism employed by ants involves traversing edges and storing
the weights in their memory as prior knowledge w̄k

p. As ants explore their environment, they
accumulate information about the weights of the edges they traverse. The prior knowledge
represents the average weight of the visited edges, computed by summing the weights
along a generic path (π(t)) and dividing by the number of edges in that path (n). This
process, outlined in Equation (4), enables ants to establish a historical understanding of the
environment. The prior knowledge mechanism allows ants to form preferences for certain
paths based on their past experiences. In essence, this memory mechanism reflects the ants’
ability to internalize and use information about previously encountered paths, shaping
their decision-making in navigating the environment.

w̄k
p =

1
n

n

∑
i=1

w(πi, πi+1); (4)

The second memory mechanism involves the acquisition of information about edge
weights at the nearest endpoint, leading to the formation of their local knowledge w̄k

l . Ants
discern information (Iij(t)) about the weights of edges in their immediate vicinity, consider-
ing the number of neighboring edges (m) at the position where this information is present
(Figure 1).
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(a) (b)
Figure 1. Ant k positioned on node i perceives information Iij(t) (green dot) regarding the weight of
edge (i, s) only when it is located at the nearest endpoint (a); otherwise, it remains unaware of it (b).

The local knowledge is then determined as the average weight of these neighboring
edges, as expressed in Equation (5). This mechanism allows ants to adapt their decision-
making based on real-time information acquired from their immediate surroundings. By
considering the specific context at the nearest endpoint, ants enhance their awareness of the
current environment and adjust their desirability calculations accordingly. The combination
of prior knowledge and local knowledge mechanisms enables ants to strike a balance between
past experience and current information, facilitating efficient navigation and adaptation to
their dynamic surroundings,

w̄k
l =

1
m

m

∑
i=1

w(πi, πi+1). (5)

The overall desirability value ηij(t) is then determined using a decision tree (Equation (6)),
considering the availability of information Iij(t) and the type of knowledge:

ηij(t) =


1

wij
if Iij ̸= 0 and T ̸= 0

1
w̄ if Iij = 0 and T ̸= 0
1 if Iij = 0 and T = 0

(6)

The global knowledge (w̄) is the mean of the prior and local knowledge:

w̄ =
w̄k

p + w̄k
l

2
. (7)

When an ant is on a node i, it calculates ηij(t) considering the edge weight, with higher
desirability for lower weights. If information Iij(t) is available at either nearest endpoint,
the ant inversely relates desirability to the edge weight. In scenarios where information
Iij(t) about neighboring edges is absent, the ant estimates desirability as the inverse of
its global knowledge. This estimation is derived by averaging prior and local knowledge.
Figure 2b illustrates this.

(a) (b)
Figure 2. In (a), an ant k situated at node i assesses the desirability of adjacent edges as equal to 1 in
the absence of both prior (wk

p = 0) and local knowledge (wk
l = 0). In (b), when ant k reaches node i

from node i− 1, it evaluates adjacent edges. If information Iij(t) on edge weights is either missing or
not visible, the desirability is determined as the inverse of global knowledge. When the information
Iij(t) is visible, the desirability is assessed as the inverse of the weight of the link.
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In cases of no prior and local knowledge, as depicted in Figure 2a, the ant assigns an
equal desirability value of 1 to all edges.

In essence, as ants traverse edges, their prior and local knowledge contributes to
the calculation of the desirability values. These values, representing the attractiveness of
different paths, guide ants in choosing routes that align with both the pheromone trail
and the desirability criteria. The combination of pheromone-based communication and
desirability-driven decision-making allows the ants to navigate efficiently in a complex
environment, adapting to changing conditions and optimizing their collective exploration.

The total path cost from the initial to the destination point is determined by the
following expression:

t−1

∑
i=1

w(πi, πi+1), (8)

where π1 and πt represent the starting and destination points, respectively.

2.2. Description of the ME-ANTS Algorithm

The ME-ANTS algorithm, whose pseudocode is given in Algorithm 1, takes as input
a weighted graph G(V, E, w), which represents the environment, with set of vertices V
of size |V| = m, set of edges E, and edge weights w. It also takes as inputs several other
parameters, namely, α and β, which determine the importance of pheromone intensity
and edge desirability; K, which is the amount of pheromone released by each ant; ρ is the
evaporation rate; Td and Tmax represent the exit interval between groups and maximum
simulation time; A = {a1, a2, . . . , an} is the set of ants, partitioned into g groups S1, . . . , Sg
of equal cardinality, with n being the total number of ants, g the number of groups, and ∆
the collection of the g groups. The algorithm outputs two key values: num_exited, which
denotes the number of ants successfully reaching the exit node, and path_cost, which is
the average cost of the traversed paths.

Two matrices are used: P for pheromone levels and I as a Boolean matrix for informa-
tion release. P is initialized with all entry values equal to 1, while I is initialized with all
entry values equal to 0. I plays a crucial role in calculating edge (vi, vj) desirability (ηij) as
ants traverse the edges and release information. Next, the following variables are initialized
to manage performance metrics: num_exited counts successful exits, path_costs collects
path costs, and each ant ak has a list (Lwk ) associated with it, tracking its traversed edges.

The while loop governs the progression of the simulation, which continues until
the current simulation time t until it reaches the maximum Tmax. Within this loop, an if
statement checks whether the current time t is a multiple of the total number of vertices |V|.
If true, a process is launched involving a designated group Sh in ∆ and the global updating
rule (as defined by Equation (2)). In the network, each ant ak in the selected group Sh moves
through the network, allowing for the simultaneous exploration of different nodes or edges.
The Ant-Movement-Async function runs in parallel for each ant in the network and defines
how each ant explores the network.

As the ant traverses the graph, starting from initial node v1, it dynamically selects
adjacent nodes using the transition probability equation (Equation (1)), considering both
the pheromone matrix P and the Boolean matrix I. Once an ant moves between nodes,
the visited edge is recorded in the path variable π. Concurrently, pheromone levels
on traversed edges are updated, and information is released. A proportional wait time
on each node, determined by the edge weight wij, is incorporated to simulate realistic
movement dynamics. If an ant successfully reaches the exit node vm, the count of exited
ants (num_exited) is increased, and the cost of the traversed path π is calculated using the
defined path cost function (Equation (8)).

The return statement concludes the algorithm, and it provides the count of successful
exits (num_exited) and the mean of path costs (mean(path_costs)).
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Algorithm 1: ME-ANTS Pseudocode
1 Function ME-ANTS(G(V, E, w), α, β, K, ρ, Td, Tmax, n, g):
2 P pheromone matrix of size |E| × |E|; each entry Pij is initialized to 1 ;
3 I Boolean matrix of size |E| × |E|; each entry Iij is the information used to compute the desirability

ηij (Equation (6)) and it is initialized to 0 ;
4 num_exited← 0;
5 path_costs← ∅;
6 For each ant (ak) create an empty list: visited edge Lwk ;
7 ∆ = {S1, . . . , Sg} partition into groups of the ants of the population;
8 t = 0 /* Global time variable */ ;
9 h = 1;

10 while t ≤ Tmax do
11 if t mod |V| == 0 then
12 apply the global updating rule in Equation (2);
13 foreach each ant ak in the group Sh do
14 c, e← Ant-Movement-Async(k, Sh, t);
15 path_costs← path_costs ∪ {c} ;
16 num_exited← num_exited + e;
17 end
18 h = h + 1
19 end
20 t = t + 1
21 end
22 return num_exited, mean(path_costs);
23 Function Ant-Movement-Async(k, Sh, tm):
24 /* The k-th ant in the group Sh enters in the network from the node v1 at global time tm */;
25 π ← ∅;
26 vi = v1;
27 while vi ̸= vm is not the exit node and t ≤ Tmax do
28 Select a node vj adjacent to vi using Equation (1) by taking into account P and I ;
29 Move the k-th ant from vi to vj ;
30 π ← π ∪ {(vi , vj)};
31 τij ← τij + K;
32 Iij ← 1 ;
33 vi ← vj;
34 Wait on the node vj until t = tm + 10 ∗ wij;
35 tm = t
36 end
37 exited← 0;
38 if the k-th ant is on the exit node vm then
39 exited← 1;
40 end
41 Calculate the cost of the path π using Equation (8);
42 return path_cost, exited;

3. Experiments and Results

In the analyses, a graph with |V| = 225 and |E| = 501 was employed. In this graph,
each node was connected to a maximum of eight neighbors, and edge weights were real
numbers uniformly chosen from the range (0, 1]. The simulations involved distributing
n = 200 ants across g groups (see Algorithm 1 line 7), with g taking values from the set
{1, 2, 5, 10, 20, 50} and ng representing the number of ants in the group. The specific set
considered was a subset of all possible divisors of n, that was selected based on practical
considerations and to cover a range of scenarios. Smaller group sizes (g = 10, 20, 50)
provided insight into the performance of small groups, while larger group sizes (g = 1, 2, 5)
simulated scenarios where collaboration involved more ants. This approach struck a balance
between granularity analysis and computational efficiency, ensuring a thorough exploration
of various group sizes while maintaining practical feasibility in terms of computational
resources. Exploration by groups started after a fixed time Te = |V| following the previous
group, and an overall time limit Tmax was established for the entire colony to reach the exit.
This limit was defined as Tmax = c× |V|, with c set to 150. Individual ants had specific
time windows to reach the exit, determined by Ti = Tmax − (Te × (i − 1)). Pheromone
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reduction occurred at a fixed degradation interval of Td = |V|, and the global updating
rule took place every Td ticks with evaporation rates of ρ = 0.01 and ρ = 0.001. The
initial pheromone value was τij(t = 0) = 1.0, as expressed in Algorithm 1 line 2, and the
parameter determining the amount of pheromone released by ants after crossing an edge
was K = 0.1 (as in Algorithm 1 line 32). To assess the impact of group size, 10 independent
simulations were conducted for each value of g. Three different kinds of analysis were
performed: an overall analysis to evaluate the performance of the colony, a group analysis
for every group configuration to evaluate the performance of the single groups, and a
pheromone distribution analysis to identify correlations between the temporal diffusion of
pheromones and the navigation behavior of ants. All variables and parameters of interest
in our model are listed in Table 1 for clarity.

Table 1. Description of variables and parameters used in the proposed model.

Variable Description

w(i, j) weight of an edge

pk
ij(t) transition probability of the ants

τij(t) pheromone intensity on the edge

ηij(t) desirability of an edge

Iij(t) information about the weight of an edge

α importance of pheromone intensity

β importance of desirability

K quantity of pheromone intensity left by ants

ρ evaporation rate

n number of ants

g number of groups

ng number of ants per group

w̄k
p prior knowledge of an ant

w̄k
l local knowledge of an ant

w̄ global knowledge of an ant

Te exit interval between groups

Ti maximum time to reach the exit for ith group

Tmax maximum time of simulations

3.1. Overall Analysis

In the overall analysis phase, the costs were normalized using the success rate (SR). The
SR is calculated as the ratio between the number of ants that successfully exited and the
total number of ants involved in the exploration. This normalization provides a fair and
informative perspective, facilitating an accurate assessment of the performance relative to
the overall success of ants in completing the exploration of the virtual environment. The
tables below present the obtained results based on two evaluation metrics: the success
rate at the top of Table 2 and the cost of the discovered paths at the bottom. These values
represent the averages across 10 simulations. The values in bold represent the best results
for each evaluation metric.
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Table 2. Results obtained based on two evaluation metrics: success rate (on the top) and path cost (on
the bottom).

Success Rate

g ρ = 0.01 ρ = 0.001

1 0.849 0.848
2 0.855 0.868
5 0.862 0.8765
10 0.8685 0.8665
20 0.8125 0.8875
50 0.795 0.8645

Path Cost

g ρ = 0.01 ρ = 0.001

1 1293.53 1311.20
2 1276.09 1265.81
5 1249.52 1251.05
10 1242.63 1264.48
20 1339.24 1201.36
50 1289.45 1227.27

Examining the success rate in Table 2, it is observed that at ρ = 0.01 optimization
occurs with 10 groups, while at ρ = 0.001 optimization shifts to 20 groups. Regarding the
path cost at the bottom of Table 2, it is noted that, in general, it decreases with an increase
in the number of groups. However, the optimal value is at 10 groups for ρ = 0.01 and 20
groups for ρ = 0.001.

3.2. Group Analysis

In the group analysis phase, adjustments were made to the path costs considering
each group’s success rate. The success rate, denoted as SRg, is determined by the ratio of
ants that successfully reached the exit to the total number of ants within the group.

When the colony is composed of a single group, as in Table 3, the success rates
at both evaporation rates are comparable (0.849 at ρ = 0.01 and 0.848 at ρ = 0.001),
indicating consistent performance. The normalized cost considering the success rate allows
for a more accurate evaluation. For ρ = 0.01 the cost is 1293.53, while at ρ = 0.001 the
corresponding value is 1311.197. These results suggest that despite minor variations the
colony maintains relatively consistent performance in terms of success rates and cost across
different evaporation rates.

Table 3. Results obtained with one group (g = 1).

ρ = 0.01 ρ = 0.001

Group Success Rate Cost Success Rate Cost

1 0.849 1293.53 0.848 1311.197

Let us analyze now the results when we have more than one group. In what follows,
the index of the group will denote its turn in starting the exploration. Thus, group 1 starts
first, then group 2, and so on.

When the colony is divided into two groups, as in Table 4, for ρ = 0.01 group 1, which
is the one that starts first, has the highest success rate of 0.856 and a lower cost of 1270.571.
In comparison, the second group, group 2, exhibits a slightly lower success rate of 0.854 and
a marginally higher cost of 1281.639. Shifting to ρ = 0.001, group 1 maintains a consistently
high success rate of 0.860. However, this comes with a higher cost of 1312.964. On the other
hand, group 2 shows a notable improvement, achieving the highest success rate in this
context at 0.876, accompanied by the lowest cost of 1220.156.
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Table 4. Results obtained with two groups (g = 2).

ρ = 0.01 ρ = 0.001

Group Success Rate Cost Success Rate Cost

1 0.856 1270.571 0.860 1312.964
2 0.854 1281.639 0.876 1220.156

When the colony is divided into five distinct groups (g = 5), as in Table 5, under
ρ = 0.01 group 1 shows a remarkable success rate of 0.9125 accompanied by a cost of
1201.690. The subsequent groups (3, 4, and 5) show signs of performance degradation, as
evidenced by varying success rates and costs. Transitioning to ρ = 0.001, group 1 maintains
the best performance across both metrics, with a success rate of 0.9100 and a cost of 1210.888.
However, similarly to the ρ = 0.01 scenario, groups 2, 3, 4, and 5 exhibit varying degrees of
success rates and costs, denoting a slight general degradation in performance as we move
across the groups.

Table 5. Results obtained with five groups (g = 5).

ρ = 0.01 ρ = 0.001

Group Success Rate Cost Success Rate Cost

1 0.9125 1201.690 0.9100 1210.888
2 0.8700 1206.368 0.8775 1235.365
3 0.8350 1266.726 0.8650 1301.793
4 0.8700 1243.534 0.8575 1268.863
5 0.8225 1336.451 0.8725 1240.825

When the colony is divided into ten groups (g = 10), as in Table 6, under ρ = 0.01
group 1 distinguishes itself with an impressive success rate of 0.925, showing a high level of
efficiency in reaching the exit. Following closely, group 2 achieves a slightly lower success
rate of 0.850 but maintains competitive values for the cost. Group 3 stands out with the
lowest cost of 1178.144, emphasizing its cost-effectiveness despite a moderate success rate.
Transitioning to ρ = 0.001, group 1 continues to lead with the highest success rate of 0.905.
Group 2 shows improvement, achieving a success rate of 0.890 with the lowest cost of
1155.843. Despite these strengths, there is a slight trend of performance degradation as we
progress through the groups, as one can see in both ρ scenarios.

Table 6. Results obtained with ten groups (g = 10).

ρ = 0.01 ρ = 0.001

Group Success Rate Cost Success Rate Cost

1 0.925 1251.004 0.905 1227.731
2 0.850 1288.651 0.890 1155.843
3 0.870 1178.144 0.880 1217.516
4 0.895 1214.612 0.860 1287.937
5 0.885 1180.499 0.870 1299.610
6 0.905 1282.315 0.880 1217.064
7 0.830 1259.452 0.845 1306.233
8 0.850 1198.390 0.840 1311.303
9 0.830 1310.130 0.855 1303.442
10 0.845 1254.935 0.860 1331.005

When the colony is divided into g = 20 groups, as in Table 7, and ρ = 0.01, group
1 emerges as the top performer, with a notable success rate of 0.92 accompanied by a
competitive cost of 1171.355. Group 2 closely follows, achieving a success rate of 0.90 and
showing competitive values for the cost. Noteworthy is group 6, standing out with the
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lowest cost of 1115.392, emphasizing its cost-effectiveness. Transitioning to ρ = 0.001,
group 1 maintains a high success rate of 0.92 with a slightly increased cost of 1226.367.
Group 5 exhibits the lowest cost of 1059.165. Conversely, group 4 boasts the highest success
rate of 0.96 coupled with a competitive value for the path cost. Additionally, there is a
noticeable trend of performance degradation, especially under ρ = 0.01.

Table 7. Results obtained with twenty groups (g = 20).

ρ = 0.01 ρ = 0.001

Group Success Rate Cost Success Rate Cost

1 0.92 1171.355 0.92 1226.367
2 0.90 1233.459 0.91 1118.648
3 0.88 1255.381 0.95 1083.556
4 0.86 1294.775 0.96 1080.811
5 0.83 1263.156 0.90 1059.165
6 0.89 1115.392 0.90 1166.186
7 0.88 1246.594 0.89 1075.165
8 0.77 1394.649 0.89 1217.577
9 0.85 1350.021 0.92 1310.244
10 0.83 1334.283 0.91 1169.145
11 0.77 1439.880 0.88 1286.262
12 0.80 1439.435 0.91 1191.761
13 0.90 1129.509 0.87 1176.769
14 0.77 1504.220 0.83 1423.822
15 0.75 1419.998 0.84 1276.752
16 0.69 1720.004 0.81 1240.255
17 0.77 1385.782 0.89 1247.258
18 0.72 1397.629 0.87 1226.935
19 0.75 1353.457 0.86 1240.497
20 0.72 1571.263 0.84 1258.229

Finally, when the colony is divided into g = 50 groups, as in Table 8, under ρ = 0.01
group 1 stands out, with a perfect success rate of 1.000 along with a competitive cost
of 1162.1375. Subsequent groups closely follow with relatively high success rates and
competitive values for cost and exit time. Notably, group 11 excels with the lowest path cost
of 985.3046. However, there is a moderate degradation in performance across successive
groups. Transitioning to ρ = 0.001, group 2 maintains a perfect success rate of 1.000,
coupled with a path cost of 1111.2629. Meanwhile, group 6 emerges as the top performer,
showing a perfect success rate of 1.000 and the lowest cost of 938.1332. This highlights the
group’s remarkable ability to efficiently navigate and exit the environment. Overall, for
both values of ρ, a diverse range of success rates, costs, and exit times is observed across
the groups. Some groups excel in achieving high success rates, while others prioritize
minimizing costs or achieving faster exit times, providing valuable insights into optimizing
the management of larger ant colonies.
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Table 8. Results obtained with fifty groups (g = 50).

ρ = 0.01 ρ = 0.001

Group Success Rate Cost Success Rate Cost

1 1.000 1162.1375 0.950 1135.9887
2 0.925 1158.7023 1.000 1111.2629
3 0.975 1163.7995 0.975 1131.4784
4 0.925 1206.3686 0.900 1380.4290
5 0.950 1048.1886 0.900 1298.5476
6 0.875 1135.8786 1.000 938.1332
7 0.925 1233.2364 0.925 1068.3007
8 0.925 1049.1158 0.975 1144.3801
9 0.925 1188.1906 0.950 1105.7798
10 0.925 1127.6558 0.950 1077.9356
11 0.950 985.3046 0.975 1173.0694
12 0.850 1138.1477 0.925 1045.7094
13 0.850 1327.3394 0.900 1314.4445
14 0.900 1183.3587 0.925 1185.8384
15 0.850 1346.7265 0.950 1078.2593
16 0.800 1243.6818 0.875 1234.9214
17 0.800 1344.9576 0.950 1236.5639
18 0.825 1319.1944 0.850 1407.0209
19 0.900 1128.4360 0.875 1211.4137
20 0.875 1343.8826 0.900 1131.3349
21 0.675 1666.8771 0.900 1112.5776
22 0.775 1218.7089 0.925 1141.0186
23 0.775 1496.6244 0.900 1312.2767
24 0.825 1388.5435 0.900 1088.1684
25 0.675 1435.5838 0.875 1215.7378
26 0.800 1136.2591 0.950 1107.3724
27 0.650 1282.3804 0.850 1325.3072
28 0.800 1288.6605 0.900 1056.2103
29 0.800 1151.4192 0.875 1104.8473
30 0.775 1276.2288 0.875 1242.3154
31 0.725 13729.138 0.750 1361.5867
32 0.850 1198.2754 0.850 1176.4607
33 0.725 1352.9615 0.825 1108.4895
34 0.775 1269.9917 0.825 1483.7002
35 0.725 1479.8374 0.875 1050.3742
36 0.700 1409.3747 0.800 1428.6403
37 0.700 1245.4093 0.725 1462.6775
38 0.800 1120.8637 0.775 1484.8115
39 0.725 1501.1083 0.700 1359.2875
40 0.700 1484.2970 0.825 1152.9818
41 0.750 1403.8416 0.875 1118.3799
42 0.750 1351.1252 0.800 1334.9016
43 0.625 1568.7299 0.700 1496.3216
44 0.750 1352.6976 0.700 1432.3804
45 0.700 1427.5347 0.875 1116.7630
46 0.550 1753.9532 0.700 1416.9457
47 0.725 1300.9152 0.675 1488.6332
48 0.625 1443.7247 0.775 15,315.673
49 0.600 1653.4699 0.875 13,732.195
50 0.750 1155.2576 0.700 1360.1492

3.3. Pheromone Distribution Analysis

We now study the correlation between the temporal distribution of pheromones on the
edges and the number of ants navigating the network during the simulation. This involves
the systematic computation of the mean and standard deviation of pheromones on the
edges, as well as counting how many ants are still in the network.
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The mean and standard deviation of pheromones over time provide insights into
how ants distribute the pheromone along the edges. The average quantity of pheromone
deposited by ants is directly proportional to the number of ants in the network. As the
number of ants increases, the quantity of pheromone deposited along the edges also
increases. Conversely, when some ants exit the network, the pheromone is deposited in a
lower quantity. The standard deviation of the pheromone, on the other hand, measures the
degree of heterogeneity of the pheromone on the edges. A low value indicates a higher
uniformity of the pheromone, leading to greater difficulty for the ants to exit the network
since the edges have more or less the same level of pheromone. Conversely, high values
denote a higher degree of heterogeneity of the pheromone and this information can be used
by ants to exit the network. Finally, the number of ants that are present in the network at
each instant of time allows us to better visualize the groups of ants that enter the network at
regular intervals and their persistence in the network. This process was carried out for each
group configuration and both values of ρ. The resulting data are presented through three
plots discussed before, which are obtained by selecting the best experiment that maximizes
the number of ants that exit the network, considering a total of 10 experiments performed
for each configuration.

In Figure 3, the outcomes for g = 1 and ng = 200 are illustrated. In the initial phase
of the simulation, there is an increase in the mean of pheromones, coinciding with active
exploration by a substantial number of ants in the environment. Subsequently, a decline
occurs, more pronounced, with an evaporation rate of 0.01 and a slower stabilization at
0.001. This pattern underscores the deep connection between mean pheromone levels and
the presence of ants in the network. As ants exit the network, there is a corresponding
decrease in the pheromone quantity on edges, particularly clear at a higher evaporation
rate. This decrease is attributed to the reduced ability of the remaining ants to counteract
the ongoing pheromone evaporation. The second plot mirrors these dynamics, illustrating
changes in the standard deviation. Also, in this scenario there is an initial rise in the
value during the simulation’s early phase, signifying an increase in the heterogeneity of
pheromones as ants release them at the edges. As the ants gradually exit the network,
the standard deviation decreases when ρ = 0.01 and stabilizes when ρ = 0.001. This is
consistent with the idea that a smaller ant population in the network results in a diminished
ability to counteract the evaporation rate, ultimately leading to a more uniform distribution
of pheromone levels across the edges. The third plot depicts the evolving number of ants
in the network over time, starting at 200, corresponding to the initial exploration group in
the g = 1 configuration. As time progresses, ants exit with varied trends influenced by the
ρ value. Notably, these trends undergo an inversion around 14, 000 ticks.

In Figure 4, the plots for g = 2 and ng = 100 exhibit a trend similar to the previous
configuration. Both mean pheromones and standard deviation show an initial increase
during the simulation. Subsequently, a decline is observed, but only when ρ = 0.01. Under
ρ = 0.001, both mean and standard deviation continue to rise over time. This discrepancy
can be attributed to the more efficient exploratory activity of ants in this setup, resulting
in fewer ants being present in the network at any given moment to counteract ongoing
pheromone evaporation, particularly with the higher evaporation rate of ρ = 0.01. The
third plot illustrates the evolving number of ants in the network over time, starting at 100
and peaking at 200, indicating the entry of groups 1 and 2. As time progresses, ants exit
more rapidly under ρ = 0.001 and slower under ρ = 0.01.

The plots for g = 5 and ng = 40 in Figure 5 follow a similar trend. Both the mean
and the standard deviation exhibit an initial increase during the simulation, followed by a
decline, but only when ρ = 0.01. Under ρ = 0.001, both metrics reach stabilization. As ants
gradually exit the environment, their ability to counteract pheromone evaporation is more
effective with a low evaporation rate (ρ = 0.001), resulting in a higher degree of pheromone
heterogeneity. Conversely, when the evaporation rate is higher (ρ = 0.01), the remaining
ants in the network struggle to counteract pheromone evaporation, leading to a decrease in
the mean and heterogeneity. Concerning the number of ants in the environment, it initiates
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at 40, with the fluctuations in the plot representing the intermittent entry of the five groups.
Over time, ants exit at varying rates depending on the value of ρ.

In Figures 6 and 7, the plots for the configurations g = 10 and Ng = 20, as well
as g = 20 and ng = 10, exhibit a trend similar to previous configurations. For both
configurations, both the mean and the standard deviation show an initial increase during
the simulation, followed by a decline, but only under ρ = 0.01. Under ρ = 0.001, both
metrics in both cases reach a stabilization. In other words, as ants gradually exit the
environment their ability to counteract pheromone evaporation is more effective with a
low evaporation rate (ρ = 0.001), resulting in a prolonged period of higher pheromone
heterogeneity. Conversely, when the evaporation rate is higher (ρ = 0.01) the remaining
ants in the network struggle to counteract pheromone evaporation, leading to a decrease
in mean and standard deviation. Regarding the number of ants in the environment,
they initiate at 20 and 10, respectively, with the fluctuations in the plot representing the
intermittent entry of the other groups (10 and 20, respectively). For g = 10, it is clear that
over time ants exit more rapidly when ρ = 0.01 than when ρ = 0.001, suggesting that the
ants increasingly benefit from the remaining pheromones on the edges as time unfolds.
In contrast, for g = 20 this pattern holds true but only until around 11,000 ticks, beyond
which the two trends reverse.

In Figure 8, for the configuration g = 50 and ng = 4, both the mean and standard
deviation show a continuous increase during the simulation when ρ = 0.001. However,
with ρ = 0.01, the trend in the standard deviation, after an initial phase of increase, starts to
decrease, followed by stabilization and a slight subsequent increase. This is in contrast to the
mean, which experiences a more pronounced decrease. Furthermore, in this configuration a
high degree of heterogeneity is sustained for a more extended period. These behaviors are
closely linked to the evolving number of ants in the network, as observed in the third plot.
Initially (for 0 < T < 5000), groups of four ants engage in exploration, swiftly exiting with
no noticeable peaks in the curve. Concurrently, other groups are launched, but their rapid
exit is not reflected in the curve. In the subsequent time interval (5000 < T < 10,000), there
is an increase in the number of ants, marked by fluctuations in the curves. Notably, higher
values are observed under ρ = 0.01, while lower values are seen at ρ = 0.001. Around
11,000 ticks, the number of ants gradually starts to decrease.
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Figure 3. Plots obtained with one group (g = 1) and two hundred ants per group (ng = 200).
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Figure 4. Plots obtained with two groups (g = 2) and one hundred ants per group (ng = 100).
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Figure 5. Plots obtained with five groups (g = 5) and forty ants per group (ng = 40).
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Figure 6. Plots obtained with ten groups (g = 10) and twenty ants per group (ng = 20).
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Figure 7. Plots obtained with twenty groups (g = 20) and ten ants per group (ng = 10).
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Figure 8. Plots obtained with fifty groups (g = 50) and four ants per group (ng = 4).

4. Discussion

The observed trends across the two metrics in the overall analysis are deeply connected
to the interplay between the number of groups and the evaporation rate. In terms of success
rate, the dynamics shift at different evaporation rates. At a higher rate (ρ = 0.01) the
optimal performance is achieved with 10 groups, suggesting that a more consolidated
effort among a moderate number of groups is favored for efficient exploration. Conversely,
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at a lower evaporation rate (ρ = 0.001) the extended lifespan of pheromones promotes
sustained collaboration across 20 groups, leading to improved overall efficiency. The trend
in path cost reflects a delicate balance between the collaboration benefits and potential
drawbacks of increased group size. At a higher evaporation rate (ρ = 0.01) the optimal
path cost is achieved with 10 groups, denoting an optimal level of cooperation. Conversely,
at a lower evaporation rate (ρ = 0.001), sustained collaboration across 20 groups becomes
beneficial due to the extended period of information retention. The slower evaporation rate
facilitates distributed collaboration, enhancing exploration efficiency and reducing overall
path costs. In this scenario, the persistence of pheromones enables distributed ant groups
to communicate better and share information.

In the group analysis, operating as a single group, the colony displayed a remarkable
level of consistency, showing comparable success rates and costs at different evaporation
rates (ρ values). This consistency suggests that the collective behavior of the colony is
inherently robust, adapting seamlessly to varying environmental conditions. Upon division
into two groups, a clear dynamic emerged. Group 1 outperformed group 2 when the evap-
oration rate was higher and vice versa. However, the colony showed an overall consistent
performance, hinting at the robustness of its collective decision-making processes. Expand-
ing the analysis to five groups revealed a standout performance by group 1, achieving
the highest success rate along with a competitive cost. However, the subsequent groups
exhibited signs of performance degradation, highlighting the complexity of managing
larger ant colonies with diverse group compositions. Similar trends persisted when the
colony was divided into ten groups, with specific groups distinguishing themselves in
terms of success rates and costs. Notably, there was a discernible trend of performance
degradation progress through the groups. This suggests that as the number of groups
increases, the coordination challenges become more pronounced, potentially affecting the
overall effectiveness of the colony. Further dividing the colony into twenty and fifty groups
exposed a more intricate landscape of performance variations. While certain groups consis-
tently excelled, demonstrating high success rates and cost-effectiveness, others displayed a
noticeable decline in performance. Overall, it is noteworthy that the optimization process
does not reach its best with the final group of ants in each configuration. In other words,
the group achieving the optimal values in terms of success rate or path cost is typically one
of the initial groups. Subsequent groups tend to exhibit a decline in performance after one
of these early groups attains optimal values in both evaluation metrics.

Finally, in the pheromone distribution analysis, in general, the plots across all configura-
tions exhibit comparable trends. Initially, there is a noticeable increase in mean pheromone
levels, corresponding to active exploration and a significant presence of ants. However,
a subsequent decline becomes apparent, particularly significant when there is a higher
evaporation rate (ρ = 0.01). This decrease can be attributed to the reduced capacity of the
remaining ants to counteract the ongoing evaporation of pheromones. In contrast, lower
evaporation rates (ρ = 0.001) result in more extended periods of elevated pheromone levels.
The standard deviation mirrors this pattern, suggesting heightened heterogeneity during
exploration and a more uniform distribution as ants exit. The number of ants in the network
undergoes fluctuations over time, reaching a peak corresponding to the entry of the last
group into the environment. As various groups enter and exit, the network experiences
dynamic changes. Generally, a lower evaporation rate leads to a swifter and more efficient
exit of ants from the network. These findings shed light on why, in group analysis, the
groups that perform exceptionally well are typically among the first rather than the last in
each configuration. What emerges is that once a particular group within the considered
configuration discovers or achieves the optimal value in terms of success rate and cost,
subsequent groups exhibit a decline in their performance. This phenomenon could be
attributed to the non-constant presence of groups and ants within the environment over
time. Groups initiate exploration at regular intervals, but as time progresses ants exit the
environment. Consequently, the activity of pheromone evaporation becomes increasingly
significant because the remaining ants within the environment struggle to counteract this
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process. Consequently, there is yet again an increase in the homogeneity of pheromone
distribution across the edges. As a result, each path becomes similar for the ants, impeding
their ability to optimize path choices.

5. Conclusions

This paper introduces an agent-based model based on the ACO paradigm where ants
are memory-enhanced to explore how partitioning a colony into groups influences the
algorithm’s performance. The study specifically delves into the roles of group size and
number in the context of a network analysis. Within the model, a collective of ants, starting
from a specified location, collaboratively works to find the optimal path leading to the
exit within a grid network. The overarching objectives of the colony include maximizing
the number of ants successfully leaving and minimizing path costs. Three different kinds
of analysis were conducted: an overall analysis, to analyze the performance of the whole
colony concerning the two evaluation metrics when divided into groups of different sizes;
a group analysis, to investigate the performance of each group into which the colony is
partitioned; and a pheromone distributions analysis, to discern any correlation between the
temporal distribution of pheromones on the edges and the number of ants navigating the
network during the simulation.

In the overall analysis, a nuanced relationship emerged between the number of groups
and the algorithm’s performance. At a higher evaporation rate, the optimal configuration
involved 10 groups, obtaining the best success rate and path costs. It follows that under con-
ditions of accelerated pheromone decay a moderate level of colony partitioning enhances
effective collaboration. Conversely, at a lower evaporation rate, a superior performance
was observed with 20 groups, emphasizing the role of prolonged pheromone lifespan in
facilitating distributed collaboration and reducing overall costs. This finding underscores
the significance of pheromone persistence, particularly in scenarios where environmental
conditions permit longer-lasting pheromones.

The group analysis delved deeper into the performance of individual groups. Notably,
the colony operating as a single group demonstrated consistent adaptability across different
evaporation rates. However, as the number of groups increased, a complex landscape of
performance rates emerged. Optimal values in success rate or path cost were typically
achieved by one of the initial groups, with subsequent groups showing a decline in per-
formance. This highlights the coordination challenges that escalate with the number of
groups and their interactions, emphasizing the need for careful consideration in partition-
ing colonies, especially in larger-scale scenarios, to mitigate challenges associated with
managing diverse groups effectively.

The pheromone distribution analysis provided additional insights into the correlation
between pheromone dynamics, ant presence, and group behavior. As the number of ants
increased, mean pheromone levels collectively rose, indicating active exploration. However,
a subsequent decline, particularly noticeable at higher evaporation rates, emphasized the
challenge of sustaining the pheromone quantity over time. The standard deviation analysis
added depth to this understanding, revealing that a more uniform distribution, as indicated
by lower values, could make it harder for ants to differentiate paths and exit efficiently.
Conversely, higher standard deviation values suggested greater heterogeneity, enabling
ants to effectively use pheromone signals for their exploration. The temporal dynamics
of group entry and exit further highlighted the transient nature of group presence. Peaks
in mean pheromone levels aligned with group entry, followed by decreases indicating
exits. This temporal pattern underscores the dynamic nature of group interactions and
their impact on pheromone distribution.

In summary, our study reveals a correlation between the partitioning of ant colonies
and the quality of solutions within an ACO framework, shedding light on the complex
interplay between individual ant behaviors and collective dynamics. The adaptability of ant
colonies, discerned through the optimal degree of partitioning influenced by pheromone
lifespan and group entry into the environment, underscores their responsiveness to di-
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verse environmental conditions. The importance of the evaporation rate of pheromones
emerges as a key factor in comprehending group dynamics during maze navigation. When
pheromones persist for a longer time, dividing the colony into more groups becomes
advantageous. This is because it allows for a more distributed and efficient exploration
of the maze. The surplus of pheromones in the network, if not properly managed, could
hinder exploration by leading ants in unproductive directions. Conversely, the height-
ened performance of initial groups highlights the critical role of the early exploration
stages. The delicate balance between pheromone presence and evaporation rate fosters
effective communication, enabling these groups to efficiently identify and reinforce optimal
paths. Yet, as the simulation progresses and ants exit the network, subsequent groups
experience performance declines due to a diminished ability to counteract pheromone
evaporation. The observed variability in optimal configurations underscores the need
for adaptive strategies to optimize ACO performance in evolving environmental condi-
tions. The demonstrated adaptability of the Memory-Enhanced Ant Colony Optimization
(ME-ACO) framework holds practical implications, particularly in fields such as logistics,
supply chain management, and energy distribution. Dynamically adjusting group configu-
rations could optimize transportation routes in response to changing traffic conditions and
seasonal demands. Similarly, in smart grids and energy management, adaptability could
enhance efficiency by responding to fluctuating demands and renewable energy availability.
Expanding beyond optimization, the ME-ACO framework can be used in modeling and
understanding collective behaviors in diverse scenarios. Its flexibility might be crucial
in capturing the complex and dynamic interactions among social agents as they interact
with the environment and each other. Utilizing an indirect communication mechanism,
these interactions give rise to the emergence of collective behaviors, providing a valuable
perspective on social dynamics across various contexts. Future extensions of the presented
framework may include a sensitivity analysis of parameters to explore model dynamics
under different configurations, additional experiments with more complex environments,
possibly incorporating benchmark networks from the literature, and the consideration of a
dynamic version of the framework where group number and size adapt dynamically to
environmental conditions.
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