
Materials 2014, 7, 7513-7532; doi:10.3390/ma7117513 

 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Article 

Kinetic Study on the Formation of Bimetallic Core-Shell 

Nanoparticles via Microemulsions 

Concha Tojo 1,†,* and Nuria Vila-Romeu 2,† 

1 Physical Chemistry Department, Faculty of Chemistry, University of Vigo, E-36310 Vigo, Spain 
2 Physical Chemistry Department, Faculty of Sciences, University of Vigo, E-32004 Ourense, Spain; 

E-Mail: nvromeu@uvigo.es 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: ctojo@uvigo.es;  

Tel.: +34-986-812-299; Fax: +34-986-812-321. 

External Editor: A. Schmidt-Ott 

Received: 23 July 2014; in revised form: 17 October 2014 / Accepted: 12 November 2014 /  

Published: 21 November 2014 

 

Abstract: Computer calculations were carried out to determine the reaction rates and the 

mean structure of bimetallic nanoparticles prepared via a microemulsion route. The rates of 

reaction of each metal were calculated for a particular microemulsion composition (fixed 

intermicellar exchange rate) and varying reduction rate ratios between both metal and metal 

salt concentration inside the micelles. Model predictions show that, even in the case of a very 

small difference in reduction potential of both metals, the formation of an external shell in a 

bimetallic nanoparticle is possible if a large reactant concentration is used. The modification 

of metal arrangement with concentration was analyzed from a mechanistic point of view, 

and proved to be due to the different impact of confinement on each metal: the reaction 

rate of the faster metal is only controlled by the intermicellar exchange rate but the slower 

metal is also affected by a cage-like effect. 
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1. Introduction 

Bimetallic nanoparticles, in which two kinds of metals are assembled, are particularly attractive 

because their properties often differ markedly from either of the constituent metals [1–3]. The presence 

of a second metal modifies the physical and chemical interactions, thus spatial distribution of atoms 

changes the chemical and physical properties of the nanoparticle [4,5]. Because the properties of 

bimetal nanoparticles strongly depend on their size, structure and morphology [6,7], the design and 

control of the spatial arrangement of both metals in bimetallic nanoparticles are critical for exploiting 

their potential applications [8]. Nowadays, much effort has been devoted to the preparation of 

bimetallic nanoparticles with controlled composition distribution [9–13]. 

Because the synthetic route seems to be crucial in determining the final metal distributions of 

bimetallic nanoparticles, our study was focused on a concrete method, the one-pot microemulsion 

technique. Microemulsions are thermodynamically stable dispersions in which two liquids initially 

immiscible (water and oil) coexist in one phase due to the presence of a monolayer of surfactant 

molecules. The main advantage of using microemulsions is the fact that the size of the resulting 

micelles can be controlled by varying the temperature and the composition of the microemulsion.  

The surfactant-stabilized droplets provide a microenvironment for the preparation of nanoparticles by 

exchanging their contents and preventing excess aggregation of particles. In addition, nanoparticles 

prepared in microemulsions often exhibit better surface properties, so nanocatalysts obtained from 

microemulsions show better activity and selectivity than those prepared by other methods [14]. For the 

synthesis of bimetallic nanoparticles each reactant (metal salts and the reducing agent) is solubilized in 

the aqueous phase of a microemulsion. Microemulsion droplets are subject to Brownian motion, and 

collisions between them are frequent, leading to the formation of transient dimers. The material 

intermicellar exchange during the dimer formation allows the reactants to be in contact. The reduction 

of metal ions and the subsequent nanoparticle formation result from mixing the microemulsions.  

The nanoparticles obtained in such a medium are very fine and monodisperse. However, controlling 

the bimetallic distribution is a very difficult task even when microemulsions are used. 

In the synthesis of bimetallic nanoparticles, the nucleus develops in a particle by building up new 

layers, so that the order of deposition of the metals defines the resulting structure. Core-shell 

nanostructures consist of a shell of one type of atom surrounding a core of another, though there may 

be some mixing between the shells. This structure is the most common in a large variety of systems, 

such as Au-Ag nanoparticles. Mixed alloys may be either ordered or random, and the random mixing 

arrangement is common to many systems, for example Pt-Pd nanoparticles. At first, when the synthesis 

takes place in a homogeneous media, it is assumed that the ions with a higher reduction potential are 

reduced first [15–21], so the difference in the reduction potential of two metal ions is the main factor 

determining the final structure of the particles: when one of the reduction reactions is faster, the first 

nuclei are composed of the fastest reduction product. Because the slower reduction product appears later, 

the outer layers show a progressive enrichment in the slower one. This effect is more pronounced as  

the difference between both reduction rates increases. However, this is too simple a picture, because 

this explanation was extended to synthesis in microemulsions without taking into account the 

compartmentalization of the reaction media. In fact, a given bimetallic nanoparticle, such as  

Au-Ag [12,22] or Au-Pt [20,23], can be obtained in alloy form or in a core-shell structure depending 
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on the microemulsion composition. This means that the rate of intermicellar exchange, which strongly 

depends on surfactant [24,25], plays an important role in the kinetics [26–28]. Previous simulation 

studies [29,30] concluded that the nanoparticle structure is defined by the difference in the reduction 

rates only if both reductions occur at the same rate (an alloy is obtained) or if both reductions have 

very different rates (a core-shell structure is obtained). These two extreme cases reproduce the 

behavior obtained in homogeneous media, that is, compartmentalization of the reaction media cannot 

modify the metal arrangement. However, a vast majority of bimetallic systems belong to the large space 

between both extremes (1 < vA/vB < 100, where vA and vB are the reduction rates of fast and slow metal 

respectively), in which metal distribution depends on microemulsion composition. A more flexible 

surfactant allows a quicker exchange of reactants and an exchange of larger aggregates of products, 

favoring in this way the mixture of both metals at the atomic level [29]. 

However, the preparation of different nanostructures by changing the microemulsion composition 

(different surfactant, cosurfactant, etc.) gives rise to nanostructured particles with different cappings, 

which complicates the comparison of their properties. On the basis of the fact that a faster intermicellar 

exchange is able to diminish the natural metal nanosegregation when the difference in reduction rates 

is moderate [29], it was recently proved that metal arrangement can also be modified by changing only 

the reactant concentration [31]. Simulation results for a couple of metals characterized by a reduction 

rate ratio vA/vB ≈ 10 and using a flexible surfactant film were successfully compared with Au/Pt 

nanoparticles synthesized using the same conditions of the simulation studies. A good agreement 

between theoretical and experimental STEM profiles confirmed the validity of the simulation  

model [31]. Based on this agreement, the model can be used as a tool to elucidate the complex 

interactions of the dynamics of the colloidal reaction medium and the precipitation reaction.  

We present a kinetic study by means of systematic Monte Carlo simulations showing that the reaction 

rate of the metals is deeply modified by the compartmentalization of the reaction media. Consequently, 

the interplay between compartmentalization and reactant concentration can induce changes in the 

sequence of metal deposition, even in the case of a very small difference in reduction rates, when a 

flexible film is used. 

The ratio between the reduction rates of the fast (vA) and the slow (vB) metal is a parameter used in 

the simulation model to characterize the nature of the metals. The structure of the Au/Pt bimetallic 

system, whose difference in standard reduction potentials is Δε = 0.26 V, was proven to be 

satisfactorily reproduced by simulation by means of a reduction rates ratio vAu/vPt ≈ 10 [31]. The present 

study is focused on bimetallic pairs with a difference in standard reduction potentials smaller than  

Δε ≈ 0.15 V, such as Pt-Pd (Δε ≈ 0.11 V) or Ag-Pd (Δε ≈ 0.12 V), which can be simulated by a 

reduction rate ratio vA/vB ≈ 5. Results can be generalized to other bimetallic couples whose Δε is in 

this range. The catalytic potential of Au-Pt and Pt-Pd bimetallic systems has been proved. Recently, 

Ag-Pd pairs were studied [32] because of their catalytic activity [33–36], as well as their high 

sensitivity as detectors of cysteine [37]. This study contributes to fundamental research concerning the 

understanding of microemulsion-based nanoparticle synthesis, and can open up a new way to 

synthesize bimetallic nanoparticles with ad-hoc controlled nanostructures. 
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2. Simulation Model 

The main strategy of the one pot method for the synthesis of Au/Pt bimetallic nanoparticles via 

microemulsions consists of mixing three microemulsions, one containing each reactant (the two metal 

salts and reducing agent). After mixing, micelles move and collide, allowing reactants be in contact 

with each other due to material transfer between colliding droplets. It is assumed that this intermicellar 

exchange occurs when a collision between two micelles is able to merge the micelles and establish a 

water channel between them. When one of the two metal salts (PdCl4
− or PtCl6

− used to prepare Pd/Pt 

particles) and the reductor (e.g., hydrazine) are located in the same micelle, chemical reduction takes 

place inside the reverse micelle to obtain metal atoms (Pd or Pt). That is, the droplets of microemulsion 

are conceived as tiny compartments or nanoreactors. They are ideal templates for nanoparticle 

synthesis because they can isolate a particle obtained within a micelle from those in neighboring 

micelles, thus preventing particle aggregation. The model tries to simulate the kinetic course of the 

chemical reaction inside these nanoreactors. In order to study the metal distribution in the final 

nanoparticle, the order of metal reduction inside each micelle is stored, and analyzed at the end of  

the synthesis. 

2.1. Reaction Media Description 

The microemulsion structure is assumed to consist of spherical micelles in a continuous oil phase. 

To reproduce this heterogeneous media, the microemulsion is defined as a set of micelles randomly 

located on a three dimensional lattice. Each simulation run starts with three different sets of micelles 

randomly distributed: micelles carrying A salt (M-A), B salt (M-B) and reducing agent (M-R).  

The fraction of the volume occupied by micelles is a φ = 10%. Each micelle can act as a nanoreactor 

during nanoparticle synthesis, so although initially each microemulsion carries only one kind of reactant, 

as the synthesis takes place different species can coexist together inside a micelle: reactants  

(faster reduction metal salt A+, slower reduction metal salt B+ and reducing agent R), free metal 

products (A and B), and growing particles (aggregates composed of A and B atoms). 

Micelles diffuse by performing random walks. In a previous algorithm used to simulate the 

preparation of simple nanoparticles (non bimetallic), micelles moved to the nearest neighbor sites by 

choosing at random the direction of the motion at each step. The length of each step was constant and 

equal to one length of lattice unit. This random walk was subject to the exclusion principle so that the 

trial movements resulting in micelles overlapping, were excluded. Cyclic boundary conditions were 

enforced at the ends of the lattice. Micelles collided when they occupied contiguous lattice sites and 

only binary collisions were considered. In order to save computation time, the model was improved by 

simulating the movement and collisions as follows: Two micelles chosen at random are allowed to 

collide (due to random motion). Because of collision, micelles fuse to form a short-lived dimer, so a 

water channel can be established between them [24], allowing the exchange of material contents.  

After collision, micelles redisperse. All collision are here assumed to be effective. Both ways of 

simulating the motion and collision lead to exactly the same results [38]. The second method was used 

to simulate bimetallic nanoparticle synthesis because it is less time consuming. 
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2.2. Microemulsion Composition 

Microemulsions are colloidal dispersions in which two liquids, initially inmiscible (water and oil), 

coexist in one phase due to the presence of a monolayer of surfactant in the interphase. The flexibility 

of the surfactant film surrounding micelles is a parameter associated with the interfacial curvature, 

which depends on the interactions at both sides of the interface, and this is dictated by microemulsion 

composition, mainly by the surfactant. So the flexibility of the surfactant film surrounding  

micelles is directly related to the facility with which intermicellar channels can be established. The  

intermicellar exchange of material takes place through the intermicellar channel, so the kinetics of 

nanoparticle formation will strongly depend on the channel feature, which in turn depends on the 

microemulsion composition. 

Two aspects must be taken into account in order to establish how surfactant film flexibility is 

included in the simulation model: First, the material exchange between micelles will only be possible 

if the dimer remains long enough. The longer two colliding micelles stay together, the greater the 

number of species can be exchanged during a collision. So dimer stability can be directly related to  

the intermicellar exchange rate. Second, the intermicellar channel diameter restricts the size of the 

particles capable of crossing the channel. It is also related to microemulsion composition, because the 

more flexible the film, the larger the channel size. That is, a flexible film allows the exchange of larger 

particles than that of a rigid film. The most important factor determining the intermicellar exchange of 

an isolated species, such as reactants and non-aggregated metallic atoms, is the dimer stability [39], 

because free species traverse the channel one by one. So in this case the channel size would not be 

important. On the contrary, the channel size is the most determining factor if the exchanged specie is a 

growing particle (an aggregate of metal atoms), which is exchanged as a whole. From this picture, the 

flexibility of the surfactant film is introduced in the model by means of two simulation parameters:  

the exchange parameter kex, which dictates the exchange protocol of free species (see below), and the 

flexibility parameter f, which restricts the size of the exchanged particles. Both parameters must rise 

together, because a flexible film implies that a larger particle can be transferred (high f) and 

intermicellar exchange is faster (high kex). Experimental results obtained in a rigid microemulsion, such 

as AOT/n-heptane/water, were successful compared to simulation data where flexibility is characterized 

by f = 5 and kex = 1 [40]. Nanoparticles obtained using a more flexible microemulsion, such as 

tergitol/isooctane/water, were successfully reproduced by simulation data using f = 30, kex = 5 [31]. 

2.3. Initial Concentration inside Droplets 

Initially, each kind of reactant (A+, B− and R) is distributed throughout the micelles of the 

corresponding microemulsion according to a Poisson distribution as: 

 i
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)( , i = A+, B− or R (1) 

where the number of each reactant per micelle is referred to as ci, i represents one of the metal salts or the 

reducing agent, and P(ci) is the probability that a micelle carries ci reactants (A+, B− or R) whose average 

occupancy is ci That is, not all micelles carry the same number of reactants. We present results using 

different mean values of concentration: cA+ = cB+ = 4, 32, 64 and 128 metal ions initially located in a 
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droplet. These values were calculated to simulate concentrations 0.02 M, 0.16 M, 0.40 M and 0.64 M, 

respectively. Molar concentration was calculated considering the droplet radius r of a 75% 

Isooctane/20% Tergitol/5% water microemulsion (r = 4 nm, obtained by DLS). From this radius, and 

assuming spherical shape (Vmicelle = 4/3π r3), the molar concentration of a micelle containing 64 atoms 

is calculated from  

   
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where NAv is the Avogadro’s number. The reducing agent concentration <cR> was always double that 

of the average concentration of the metal precursors. 

2.4. Time Unit Base 

The time unit is one Monte Carlo step, defined as follows: One Monte Carlo step starts when 10% 

of the micelles are chosen to collide at random. Then, micelles fuse and material exchange may take 

place. The nature and quantity of species inside chosen micelles can be modified according to the 

exchange criteria described below. Once the composition inside both micelles is updated, one Monte 

Carlo step (mcs) is completed. The composition inside each micelle is stored step by step, because the 

sequence of metal reduction is decisive in order to describe nanoparticle structure. We monitored  

the evolution of particle distribution as a function of time. One simulation run is finished when the 

composition of every particle inside all micelles remains constant. 

2.5. Intermicellar Exchange Criterium of Isolated Species (Reactants and Metal Atoms):  

Intermicellar Exchange Rate 

Species can be transferred between micelles during the short-lived dimer formation. This transfer is 

closely related to the intermicellar exchange rate, because the faster the rate, the more species can 

traverse the dimer channel during a collision. The exchange criterium is the concentration gradient, 

that is, species flow from a region (micelle) of higher concentration to one of lower concentration until 

concentration becomes equal. A simulation parameter kex is included to restrict the maximum number 

of reactants (A+, B+ or R) which can be exchanged between micelles during a collision. In particular, if 

the higher occupied micelle contains a quantity of molecules greater than kex, at the most kex reactant 

molecules can go across the channel towards the micelles containing less reactants. In the case of the 

number of reactants to be exchanged being lower than kex, reactants are redistributed until 

concentrations inside both colliding micelles becomes equal after collision. 

It is assumed that kex is mainly determined by the microemulsion composition [24,25,41,42]  

and material nature is less important. So, although the characteristics of species traversing the  

channel could modify the intermicellar exchange rate, a single value of kex is used in this investigation 

(kex,A+ = kex,B+ = kex,R= kex). 

2.6. Chemical Reduction Rates 

Due to redistribution of material between micelles, both reactants (one metal salt and the reductor) 

can be located inside the same micelle, so chemical reduction can take place inside the nanoreactor. 
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The reduction potentials of the two metal salts are different, so both chemical reductions will occur at 

different rates. The two metal salts are reduced according to the simulation parameter vi, where i 

corresponds to metal salts A+ and B+. This parameter represents the chemical reduction rate as the 

probability of obtaining one reduced metal atom from each pair of metal salt–reducing agent molecule 

available in the micelle. Because of the fastest reduction rate of A+, it is associated to vA+ = 1, that is, 

A+ reduction rate is instantaneous. This implies that the reaction is completed, and only A atoms and 

excess of reactants (either A+ salt or R) are to be distributed in daughter micelles. Hence reactants  

A+ salt and R will not coexist in a micelle. To consider different reactions rates, the probability of 

reactants located in the same micelle which reduces to metal atoms can be decreased. Because the final 

nanoparticle structure strongly depends on the reduction rate ratio, in this study we present results for 

vA =1 and vB =1, 0.2, 0.1 corresponding to vA/vB = 1, 5, 10 respectively. For example, a value  

vA/vB = 5 means that only 20% of the pairs B+ salt and a reducing agent available in the micelle 

produces B atoms. The rest of B+ salt and reducing agent, which did not react, remains in the micelle, 

and can be exchanged or can react in a posterior collision. When both reduction reactions are possible 

because the three reactants (A+, B+ or R) are located inside the same micelle at the same time, both 

reductions are allowed to take place during the same collision. 

One must keep in mind that the microemulsion dynamics, that is, the whole process of  

motion-collision-exchange, determines the rate for the exchange of the micelle content. Microemulsion 

dynamics, which is characteristic of each kind of microemulsion, becomes relevant depending on the 

relative rates of chemical reaction and intermicellar exchange. The pseudo-phase model is employed 

when the chemical reaction is very slow compared with the exchange rate. In this case, the reaction 

“sees” the microemulsion as a static object, so microemulsion dynamics do not have to be taken into 

account [27]. On the contrary, when the reaction rate is faster than the rate of exchange, this plays a 

decisive role in the particle formation process [27,43,44]. In this study the reduction rate of one metal 

is instantaneous, and the second one is a little slower, so both speeds are very fast with respect to the 

intermicellar exchange rate. 

2.7. Nucleation 

Nucleation is the process by which atoms (ions or molecules), initially isolated in solution, become 

arranged forming a thermodynamically stable nucleus. The nucleus grows as more atoms are deposited 

on it. Nucleation is initiated by a random fluctuation which is able to overcome the energy barrier for 

the phase transition. Once this fluctuation takes place, further growth is energetically favorable. Classical 

nucleation theory established the existence of a critical nucleus size from which a nucleus can grow 

instead of dissolving, so a nucleus smaller than the critical size is spontaneously dissolved. In 

microemulsions, nucleation requires the simultaneous presence inside the same micelle of enough 

atoms to exceed the critical nucleation size [45]. Nucleation is included in the model by means of the 

variable critical nucleus n*, which is compared with the actual amount of metal atoms inside the same 

micelle: if it is smaller than n*, atoms remain free (non-aggregated) inside the micelle because the 

nucleus is considered to be unstable, and breaks up to produce isolated atoms. This implies that atoms 

can be exchanged during a posterior collision subject to kex parameter. However, if the number of 

reduced atoms located inside the same micelle exceeds n*, all atoms gather producing a stable nucleus 
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capable of further growth. The exchange of nucleus between colliding micelles depends on the 

intermicellar channel size, because an aggregate of atoms has to be exchanged as a whole. This kind of 

material exchange is governed by the film flexibility parameter f (see below). 

The total Gibbs energy of an atomic arrangement determines the alloying ability of a bimetallic 

nanoparticle A/B. It depends on composition, because of the different atomic binding energies of A-A, 

B-B, and A-B species. These different binding energies (A-A, B-B, and A-B) are the cause of the 

minimum size that must be reached by atoms for nucleation depending on the composition. This 

phenomena is included in the simulation model by means of the inclusion of three critical nucleus 

numbers (nA*, nB* and nA-B*). Once the critical number is exceeded, the cluster grows by deposition of 

all metal atoms (either faster or slower metal) located inside the same micelle. It is assumed that only 

one particle can be carried by a micelle. That is, only one nucleation event is possible in each micelle. 

Previous simulation studies prove that the critical size plays a fundamental role in nanoparticle 

formation [44,46–48], and show that metal segregation not only can be caused by a difference in the 

reduction rates of the metals but also by a difference in the nucleation rates. In this paper the chemical 

reduction rates for the two precursors are very similar, so n* was kept constant (nA* = nB* = nAB* = n* =1) 

to not interfere in the discussion. The combination of larger n* (which implies a delay in nucleation) and 

almost similar reduction rates would not allow to identify which rate (nucleation or reduction) is the 

cause of metal segregation in the final nanoparticle. Furthermore, although the fact that n* = 1 applies to 

both Ag, Pd and Pt is just an approximation, a low n* value can be expected. Due to the very small size 

of micelles, local concentrations can be very high, favoring nucleation. Ritcey et al. [45] propose that 

reverse micelles constitute environments in which critical nucleus size is smaller than that associated 

with precipitation in simple aqueous solutions. Within micelles, stable nuclei composed of as few as 

one, two and four metal ions have been proposed for Co [49], Ni2B [50] and CdS [51] respectively. 

The surface chemistry is not considered. Pileni [52] demonstrated that the presence of the 

surfactant layer does not induce a preferential facet growth or truncation in Ag and Cu nanoparticles, 

that is, surfactant does not play a role during the nanoparticle growth. Different atomic-scale 

simulations provide detailed information of the surface chemistry of bimetallic nanoparticles of 

different composition [32,53,54]. 

2.8. Nanoparticle Growth 

It is assumed that nanoparticles grow by deposition of metallic atoms on the nucleus, so a growing 

particle builds up layer by layer. Therefore, whenever a metal atom is located in a nucleated micelle, 

this atom is deposited on the nucleus. The sequence of metal deposition (A or B) is stored in each 

micelle at each step. 

In addition, nanoparticle can grow by autocatalysis [30,40,48,55]. This kind of growth appears at 

advanced stages of the synthesis, when collisions between micelles containing reactants and a growing 

particle simultaneously become frequent. An autocatalytic reduction is simulated by introducing two 

new criteria: when one of the colliding micelles is carrying a particle, the reduction will occur at 

double the rate and always on the existing particle. When both colliding micelles are nucleated, 

reduction takes place in the micelle containing the larger particle, and the produced atom is deposited 

on it. These criteria allows us to include in the model the fact that a bigger surface (a bigger particle) 
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has a greater probability to play as catalyst. In this way, the growth of a pre-existent nucleus is favored 

instead of the formation of a new one. To simplify, autocatalytic growth is governed only by particle 

size, without taking into account the surface composition (A or B). 

Another way of growth is Ostwald ripening, i.e., growth of larger particles at the expense of smaller 

ones by transport of material. Due to the solubility of individual metal atoms in the oil phase not being 

known, and Ostwald ripening would only be possible if they are soluble, it was proposed that it could 

be Smoluchowski ripening [48], which concerns diffusion-mediated coagulation of particles. It is not 

clear which of the two is the dominant process in nanoparticle formation inside micelles, but in any 

case, it is assumed that the easier solubilization of the smallest particles causes their decrease in size. 

These atoms/molecules, free in solution, will deposit on the largest particles. That is, large particles 

grow even larger, drawing material from the smaller ones, which shrink. This possibility is included in 

the exchange protocol of particles described as follows. 

2.9. Intermicellar Exchange Protocol of Growing Particles 

The transfer of a growing particle to another micelle containing also a particle has to be possible, 

whenever the channel communicating colliding micelles is large enough. As mentioned before, the size 

of the channel is represented by the film flexibility parameter f, which is strongly correlated to the 

surfactant film flexibility. Then, a collision between micelles both containing a growing particle will 

take place in a unidirectional transfer, so that the smaller particle moves always from the initial micelle 

to the micelle containing the larger one. In this way, two particles in two colliding micelles can give 

rise to a single particle. This exchange is only possible when the smaller particle can traverse the 

intermicellar channel, that is, the smaller particle must be smaller than f (channel size). This rule is 

defined simply by the particle size, so the composition (A or B) is not taken into consideration. 

All types of material exchange (reactants, isolated atoms and growing particles) are allowed to be 

exchanged during the same collision. 

2.10. Droplet Size 

Nanoparticle growth may be restricted by the size of the micelles, because the surfactant film 

covering the micelle has a finite bending modulus. The simulation includes a micelle size parameter, 

which limits the nanoparticle size establishing a maximum quantity of metal products which can be 

located inside the same micelle. In this study we present results using low values of reactant 

concentrations, so that the influence of micelle size on nanoparticle growth is assumed to be negligible. 

2.11. Describing Metal Distribution in Bimetallic Nanoparticles 

Nanoparticle formation finishes when the contents of each micelle do not vary with time. So each 

simulation run results in a set of micelles, each one of which can contain a particle, whose composition 

can be different. The metal distribution in the nanoparticle is determined by the order in which the two 

metals are deposited on the nanoparticle surface. On the assumption that particles are spherical, 

clustering steps give rise to the build up of concentric layers by adding new atoms to a particle. 

Therefore, for each nanoparticle, the sequence of metals is stored during the synthesis and divided into 



Materials 2014, 7 7522 

 

 

ten concentric layers. The number of particles containing each percentage of Au is monitored from the 

inner layer (core) to the outer layer (shell), so dispersity and averaged composition (% of faster metal A) 

can be calculated layer by layer. This final distribution is averaged over 1000 runs. 

Nanoparticle structure is represented by histograms, in which the layer composition (% of faster 

reduction metal, A) is represented by a color grading: the degradation goes from blue (0%–10% of fast 

metal A) to red (90%–100% of A); 50% of each metal is represented by grey. As the color turns 

lighter, the proportion of pure metal in the layer is higher. The histograms shows how many particles 

have a given percentage of A in each layer. In this way, histograms allow to analyze the variation of 

metal arrangements from the early stages (core) as the synthesis reaches the shell formation.  

The nanoparticle structure is also represented by means of concentric spheres, whose thickness is 

proportional to the number of layers with a given composition, keeping the same color scheme. 

3. Results and Discussion 

Our hypothesis is that the resulting nanostructure is due to the particular combination of three main 

factors: the reduction rate ratio between both metals, the amount of metal precursors inside micelles, 

and the intermicellar exchange rate (determined by microemulsion composition). All together will 

determine a particular sequence of deposition of the metals, which in turn determines the metal 

distribution in the final nanoparticle. 

3.1. Chemical Reduction Rate Ratio 

It is well-known that different pairs of metals, whose standard reduction potentials are different, show 

a different metal segregation in a bimetallic nanoparticle. First of all, we will study the modifications in 

metal distribution in a narrow range of difference between the reduction rates of the two metals.  

To isolate this dependence, reactant concentration (cA = cB = 32 reactants per micelle = 0.16 M) and 

intermicellar exchange rate (characterized by f = 30, kex = 5), must be kept constant. Figure 1 shows the 

simulation results obtained using different reduction rate ratios. In these figures, the reduction rate of 

the fast metal (A) is always instantaneous (vA = 1), that is, 100% A reactants inside the same micelle 

give rise to products. The reduction rate of the slower metal (B) is decreased from vA/vB = 1 (100% B 

reacts, see Figure 1a); vA/vB = 5 (20% B reacts, see Figure 1b); to vA/vB = 10 (10% B reacts, see  

Figure 1c). As observed in Figure 1, metal distribution strongly depends on the reduction rate ratio.  

It is assumed that a large difference in the reduction potential usually results in a core-shell structure 

and a small difference in the reduction potential leads to an alloy one [18]. Figure 1a shows the metal 

distribution obtained when the reduction rates are equal (vA/vB = 1). It can be observed that the 

composition of the inner layers (core) is variable: some particles are mainly composed of only one of the 

metals, and other particles show a core with a different degree of mixture. As the synthesis advances 

(from the inner to the outer layers), the metal distribution shows a progressive improvement towards a 

perfect mix of both metals. At the end of the process, the composition of most of the particles is 50% in 

each metal. That is, nanoparticles show an alloyed structure. When the reduction rate of the metal B is 

slower (20% B reactants inside the same micelle give rise to products) the structure evolves to an 

alloyed structure with an A-enriched core and a B-enriched shell, as observed in Figure 1b. Figure 1c 

shows a core-shell structure, obtained when only 10% B reactants leads to products (vA/vB = 10):  
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most particles have a core composed of the faster reduction metal (see red bars on the left), followed 

by mixed middle layers, and then outer layers composed by the slower metal forming the shell  

(see blue bars behind on the right). A further increase of reduction rate ratio gives rise to a better metal 

segregation [29]. 

Figure 1. Histograms represent the number of particles with a given percentage of the 

faster metal A in each layer, from the nanoparticle core to the surface, for different values 

of reduction rate ratio. (a) vA/vB = 1; (b) vA/vB = 5; (c) vA/vB = 10). Synthesis conditions: 

film flexibility (kex = 5, f = 30) and metal salt concentration (c = 32 metal salts in a 

micelle). Scheme color: blue (0%–45% of A), grey (45%–55% of A), red (55%–100% of A). 

Less red means less A. Circles in each histogram represent the nanoparticle structure in 

concentric layers, keeping the same color scheme. 

 

For a better understanding of the chemical kinetics in micelles, the number of metal atoms produced 

in all micelles was monitored vs. time by simulation. Figure 2a shows the number of atoms of A and B 

(quick and slow reduction products) produced in all micelles as the synthesis advances. This figure 

corresponds to the same synthesis conditions shown in Figure 1. Continuous lines in Figure 2a 

represent the number of faster atoms (A) and discontinuous lines correspond to slower ones (B). Blue 

lines show the case vA/vB = 5 and red lines show results for vA/vB = 10. Each A curve (continuous line) 

must be related to the corresponding B curve (discontinuous line in the same color). All curves lead to 

a plateau when the reactants have been exhausted. The grey dashed-dotted line represents the case  

vA/vB = 1, in which the curves showing the obtaining of faster and slower metals overlap, as expected. 

When the reduction rates are different (see blue lines, vA/vB = 5) the later obtention of the metal which 

is reduced slower can be clearly observed. As the second metal reduction rate is slowed-down, fast and 

slow curves appear more separated (see red lines, vA/vB = 10). Note that the slopes of all A curves are 

almost similar. On the contrary, the B curves are strongly dependent on reduction rate. 

To gain more insight on how reactant confinement influences chemical reactivity, the reaction rate 

of each metal was calculated from the slopes of the curves showed in Figure 2a as time proceeds.  

In this way, both contributions (intermicellar exchange rate and chemical reduction rate) are taken into 

account to determine reaction rate (dnmetal/dt). It is important to point out that the chemical reduction rate 

must be distinguished from the reaction rate. Chemical reduction rates are represented by the simulation 

parameters vA and vB, which are related to the percentage of reactants inside a micelle that gives rise to 

products during an intermicellar collision. Reaction rates are calculated from simulation results as 
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dnmetal/dt, so it includes the fact that reaction media is compartmentalized, therefore material 

intermicellar exchange is also taken into account. Continuous and discontinuous lines in Figure 2b 

represent the resulting A and B reaction rates, respectively, keeping the same scheme color as used in 

Figure 2a. 

Figure 2. (a) Time evolution of the number of metal atoms obtained in micelles using 

different reduction rate ratio vA/vB = 1, 5, 10; (b) reaction rate vs. time. Continuous and 

discontinuous lines show the obtaining of fast (A) and slow (B) metals respectively. 

Synthesis conditions: flexible film (kex = 5, f = 30), average concentration c = 32 metal 

salt in a micelle. Scheme color: grey line represents vA/vB = 1; blue lines represent  

vA/vB = 5; red lines represent vA/vB = 10. 

 

Note that the usual decay vs. time is preceded by an increasing rate until a maximum is reached. 

Then, the usual behavior can be observed: reaction rate decreases as reactants are being consumed in 

the reaction. The increasing rate before the peak can be explained keeping in mind that the two reactants 

must be located inside the same micelle before chemical reduction can take place. It implies an 

intermicellar exchange of material, whose rate is determined by microemulsion composition. In the 

simulation model, the intermicellar exchange rate is simulated by the parameter kex, which quantifies how 

many ions/molecules can be transferred between colliding droplets. Figure 2 shows data obtained 

simulating a surfactant film which allows a maximum intermicellar exchange of five reactants (metal salts 

and/or reducing agent). That is, independently of the metal salt amount inside the droplet, only kex = 5 

reactants are allowed to be exchanged in each collision. As a result, although an instantaneous 

reduction is simulated for the faster metal, only a maximum of five A atoms can be obtained during 

each effective collision. This restriction allows us to understand the A rate profile: at the beginning of 

the synthesis, three microemulsions are mixed. Each microemulsion is represented as a set of micelles, 

each one containing one kind of reactant. Micelles collide with each other, but only collisions between 

one droplet carrying A salt (M-A) and another droplet carrying reductor (M-R) allows the location of 

both reactants inside the same waterpool. The rest of the possible collisions (M-A and M-A, M-A and 

M-B, M-B and M-B, M-R and M-R) only redistribute reactants between micelles. Collisions between 
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micelles carrying metal salt B and reductor (M-B and M-R) will be discussed later. When the metal salt 

A and the reducing agent are located by the same micelle, chemical reduction of A precursor takes 

place instantaneously. Therefore, as the reactants are redistributed, more collisions will be effective, 

providing metallic A atoms and increasing the reaction rate. One can conclude that the speed at which 

the maximum rate is achieved only depends on the material intermicellar exchange rate. That is, 

compartmentalization of reaction media causes the faster reduction to be mainly controlled by the 

intermicellar exchange rate. As a consequence, all slopes at the beginning of A curves in Figure 2b  

(see continuous lines) are equal. As redistribution of reactants enables the reactants to encounter and  

A chemical reduction takes place, reactants are been consumed, resulting in a decreasing reaction rate. 

As shown in Figure 2a, the reaction rate profile of the faster metal is almost the same for the three values 

of vA/vB. 

In relation to the reaction rate of the slower metal, discontinuous lines in Figure 2b show that it is 

strongly dependent on reduction rate ratio, even though the intermicellar exchange rate is the same for 

both reactants (kex = 5). B reduction rate is 5/10 times slower than A reduction rate. That is, only 10% 

(vA/vB = 10) or 20% (vA/vB = 5) of reactants (B salt and reducing agent) located in the same droplet 

will react to produce B metal atoms in each collision. Therefore, because of the intermicellar 

restrictions, only kex = 5 reactants can be transferred between droplets, and in addition, only a 

percentage of reactants inside the same micelle gives rise to products. Consequently, the slopes of the 

discontinuous lines (slower metal B) in Figure 2b before the maximum, decrease as the chemical 

reduction rate of B metal is slower. Furthermore, as the B chemical reduction diminishes, the reaction 

rate maximum is lower and appears at later stages of the synthesis, as expected (compare blue and red 

discontinuous lines). It is interesting to note that, after the maximum, the slope of B reaction rates 

strongly depends on vA/vB (in contrast with A slopes). This can be understood by keeping in mind that 

at the advanced stages of the synthesis, reactants have been exhausted, so that B reaction rate 

continuously decays, and the rate of this decay will be faster as the reactants are consumed faster. 

Reaction rates profiles can be directly related to nanoparticle structure. At the beginning of the 

synthesis, when the core is forming, the gap between the faster and the smaller reaction rates is higher 

at a higher vA/vB ratio, giving rise to a higher A-enrichment in the core (see grey arrows in Figure 2b). 

Likewise, at advanced stages of the synthesis, when A salt is almost consumed, the gap is larger if 

vA/vB ratio is larger (see pink arrows in Figure 2b). This results in a B composed shell, which is better 

separated as the vA/vB ratio increases. 

3.2. Metal Salt Concentration 

To study the dependence of nanoparticle structures on metal salt concentration, a small difference 

between both chemical reduction rates (vA/vB = 5) was chosen in order to find out if the nanoparticle 

structure can be modified by a change in reactant concentration under these conditions. Figure 3 shows the 

histograms obtained keeping the reduction rates ratio (vA/vB = 5) and film flexibility (f = 30, kex = 5) 

constant, while the metal salts concentration is increased (see Figure 3a–c). It can be observed that,  

in spite of the small difference in chemical reduction rate, the metal distribution depends on the metal 

salt concentration. One can observe that a very small concentration (see Figure 3a, c = 4 metal ions in 

a micelle) lead to an A-enriched core covered by an alloyed shell. A higher concentration gives rise to 
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the incipient formation of a shell (see Figure 3b), which is more enriched in the slower product with 

the increase of concentration (see blue bars on the right in Figure 3c). 

Figure 3. Histograms represent the number of particles with a given percentage of the faster 

metal A in each layer, from the nanoparticle core to the surface. Synthesis conditions: 

reduction rate ratio vA/vB = 5; film flexibility (kex = 5, f = 30). (a) Metal salt concentration 

c = 4 metal ions in a micelle; (b) c = 32 metal ions in a micelle; (c) c = 128  

metal ions in a micelle. Scheme color: blue (0%–45% of A), grey (45%–55% of A),  

red (55%–100% of A). Less red means less A (faster metal). Circles in each histogram 

represent nanoparticle structure in concentric layers, keeping the same color scheme. 

 

These nanostructures can be easily understood by analyzing the relative reaction rates. Figure 4 

shows the reaction rates calculated as dnmetal/dt, for the same synthesis conditions as those used in 

Figure 3. In all cases it can be observed that the greater the concentration, the faster the reaction rate, 

as expected. However, the behavior of the faster and the slower metal with increasing concentration is 

different. Firstly, we will focus our attention on the dependence of A reaction rate on concentration  

(see continuous lines in Figure 4). Figure 4 shows that the slope of the fast metal rate is the same for all 

concentrations and seems to reach a threshold from which it cannot increase anymore. As mentioned, 

A reaction rate is controlled by exchange rate, so the faster reaction rate increases as quickly as the 

material intermicellar exchange allows the localization of both reactants inside the same droplet. 

Therefore, while reactants are being redistributed between micelles, the reaction rate increases, until it 

starts to diminish as the reactants are exhausted. So larger values of the reaction rate are reached by 

increasing A salt concentration, as expected. If the concentration is high enough, the faster reaction rate 

achieves the intermicellar exchange rate (see the plateau in Figure 4, red line) and it remains constant 

while there is A precursor, even though the A amount inside the micelles would be larger. If the A salt 

concentration is small, the reaction rate does not reach intermicellar control because A salt is exhausted 

earlier. Summarizing, the speed at which the intermicellar control is achieved does not depend on A salt 

concentration, but it only depends on the material intermicellar exchange rate (see equal slopes at the 

beginning of Au curves in Figure 4). Likewise, according to model predictions, the decrease in rate is not 

influenced by the A concentration either, because, once the A salt is redistributed, Au reduction only 

depends on the intermicellar rate: it steadily diminishes while there is A precursor. Finally, it is 

interesting to emphasize that if synthesis conditions lead to the plateau achievement, the classical 

belief that the larger the reactant amount, the faster the reaction rate is not valid in this confined media. 
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Figure 4. Reaction rate vs. time. Continuous and discontinuous lines show the reaction rate 

of fast (A) and slow (B) metals respectively. Synthesis conditions: reduction rate ratio 

vA/vB = 5; flexible film (kex = 5, f = 30). Metal salt concentration: c = 128, 64, 32 and 4 

metal salt in a micelle are represented by red, green, grey and blue lines respectively. 

 

In relation to the slower reaction rates, different behavior before and after the peak can be observed. 

Before the peak, the reaction rates at different concentrations increase with the same slope, that is,  

the speed at which the maximum is reached does not depend on concentration. The reason is that, 

independently of concentration inside the micelle, only 20% of the kex = 5 exchanged reactants can 

react during each collision. Because of the intermicellar exchange control, the only effect of increasing 

concentration is the achievement of higher and later maxima, as expected. However, the behavior after 

the peaks in Figure 4 shows an unexpected result: the slopes of B reaction rates strongly depends on 

concentration, in contrast with A reaction rates. One could expect that B reaction rate after the peak 

would not depend on concentration because the restrictions are the same before and after the peak.  

So a priori, B reaction rate would uniformly decrease while there is B precursor. The main difference in 

chemical kinetics between the faster and the slower metal is the effect of confinement on each metal.  

In the case of the faster metal, once both reactants are located inside the same droplet the reaction rate is 

very quick. On the contrary, if the reduction rate inside the micelle is slow, many reactants do not react, 

stay in the micelle, and can be exchanged or can react later. This leads to a local accumulation due to a 

“cage-like” effect. Briefly, the cage effect assumes that encounters between reactants take place in a 

different way in a solution than in a gas. In a solution, a reactant molecule enclosed in a solvent cage 

undergoes many collisions with the solvent molecules surrounding it before it escapes from the cage. The 

reactant molecules will move from cage to cage in the solvent matrix, so the two reactants will eventually 

find themselves in the same solvent cage. They can fail to react the first time, but several collisions may 

occur as long as reactants remain in the same solvent cage. That is, there will be fewer encounters but 

they will be close together for much longer than in a gas. However, if a chemical reaction takes place 

in gas phase the molecules have the freedom to go anywhere, so many collisions between reactants 

take place. However, if the collision should fail to react, the reactants move away and are unlikely to 
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meet again anytime soon. So there will be more encounters between reactants, but they will be together 

a shorter time. Micelles were previously described as “supercages” [56], and many studies proved a 

cage-effect in chemical reactions in micelles [25,57,58]. The hypothesis is that this approach can be 

used to compare the chemical kinetics in micelles and in a solution, instead of in liquid and in gas phases. 

The fact that a micelle plays the role of a cage, does not affect the fastest reduction, because it is 

considered instantaneous. That is, when the exchange of material between colliding droplets results in 

the reactants A+ salt and R being located in the same micelle, all of them produce A metal atoms without 

delay. Therefore, after interdroplet collision, only A atoms and the excess of reactants (either A+ salt or 

reducing agent R) are contained in the micelle. In other words, reactants A+ salt and R cannot coexist 

inside the same micelle. On the contrary, slow reactant confinement will strongly affect the slow 

reduction rate. A value vA/vB = 5 means that only 20% of the pairs B+ salt and R available in the micelle 

produces B atoms. The rest of B+ salt and reducing agent, which did not react, remains in the micelle and 

can be exchanged or can react later. That is, the pairs B+ salt and R can fail to react the first time, but they 

have more opportunities as long as they remains in the same micelle. Therefore, slow reduction proceeds 

while there are enough reactants inside a micelle, without having to depend on a new intermicellar 

exchange. This means that the amount of pairs of reactants B+ salt and R inside the micelle, available to 

react, is much higher than the exchanged pairs during the last collision. As a consequence, B reaction rate 

not only depends on the exchange rate (as the case of A metal) but also on the reactants accumulation. 

It results in a faster B reaction rate due to the cage effect. This cage-like effect does not concern fast 

metal reduction, because A reduction is instantaneous so A precursors are not accumulated. 

Cage-like effect takes place to a greater extent at high concentrations, because more reactants lead 

to more accumulation of B. The different decay of B reaction rate can be accounted for by the cage 

effect: After the maximum, when the B reaction rate continuously decays, the rate of this decay will be 

faster as the reactants are consumed faster. If the cage-like effect is more pronounced at higher 

concentration, it also results in a quicker decay of B reaction rate.  

Finally, the resulting nanostructures can be explained on the basis of reaction rate profiles. The main 

feature is the formation of a B-shell when the concentration is large (see Figure 3). The outer layers 

will be composed by B if A reduction is almost finished but B reduction rate is still high. Pink arrows 

in Figure 4 show the difference between both reaction rates at each value of concentration towards the 

end of the process (when A rate is close to zero). It is noteworthy that the difference between both rates 

increases with concentration. This results in the formation of outer layers whose B enrichment is higher 

as concentration is larger. On the contrary, the differences between A and B rates during the early stages, 

when the core is forming, are negligible. Grey arrows in Figure 4 show the gap between the maximum 

A rate and the B rate at different concentrations. One can observe that the length of the arrows does not 

depend on concentration, which can be related to the almost similar core enrichment shown in Figure 3. 

4. Conclusions 

Monte Carlo simulations have been employed to determine the mean structure and the reaction rates 

of bimetallic nanoparticles prepared via a microemulsion route. On the basis of the nanoparticle,  

build up by bringing together new layers, the sequence of metal reduction defines the resulting metal 

distribution. The combination of three factors (intermicellar exchange rate, reduction rate ratio 
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between both metals, and metal salts concentration inside micelles) determine the reaction rates of the 

metals, which in turn define a particular sequence of deposition of the metals. The rates of reaction of 

each metal were calculated for a particular microemulsion composition, characterized by a fixed 

intermicellar exchange rate. Simulation results allow us to conclude that reactant confinement is a 

factor of critical importance in the metal reduction reaction in micelles. Model predictions show that, 

even in the case of a small difference in reduction potentials of both metals (about 0.15 V), the 

formation of a shell in a bimetallic nanoparticle can be manipulated solely by varying concentration:  

a pure core with a mixed surrounding shell is obtained using low concentrations, and a core-shell 

structure is obtained at higher concentration. This modification of metal arrangement with concentration 

is analyzed from a mechanistic point of view, proving that it is due to the different impact of confinement 

on each metal: the reaction rate of the faster metal is only controlled by the intermicellar exchange rate, 

so it cannot be accelerated by an increase in concentration. On the contrary, the slower metal reduction 

is also affected by a cage-like effect, which is more pronounced as the concentration is higher. 

In this paper we have shown how the Monte Carlo simulations approach can help to identify 

suitable synthesis parameters which influence the metal segregation in a bimetallic nanoparticle. These 

results may open a new door by which the experimental conditions for designing specific bimetallic 

structures can be tuned. 
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