

Article **Dual-Emission Origins in Bi³⁺-Doped** M_2O_3 Sesquioxides (M = Sc, Y, Gd and Lu): A First-Principles Study

Haonian Bai¹, Bibo Lou^{1,*}, Mekhrdod S. Kurboniyon^{1,2}, Andrzej Suchocki³, Mikhail G. Brik¹, Jing Wang⁴ and Chonggeng Ma^{1,2,*}

- ¹ School of Science & Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; s210601001@stu.cqupt.edu.cn (H.B.); mehrdod-92@mail.ru (M.S.K.); mikhail.brik@ut.ee (M.G.B.)
- ² Center of Innovative Development of Science and New Technologies, National Academy of Sciences of Tajikistan, Dushanbe 734025, Tajikistan
- ³ Institute of Physics, Polish Academy of Sciences, Al Lotnikow 32-46, PL-02668 Warsaw, Poland; suchy@ifpan.edu.pl
- ⁴ State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; ceswj@mail.sysu.edu.cn
- * Correspondence: loubb@cqupt.edu.cn (B.L.); macg@cqupt.edu.cn (C.M.)

Abstract: Bi³⁺-doped sesquioxides exhibit dual emissions, marked by distinct Stokes shift and bandwidth, meaning unraveling their underlying origins is particularly intriguing. In this study, we employ first-principles calculations to investigate the luminescence mechanisms within the M_2O_3 :Bi³⁺ (M = Sc, Y, Gd, Lu) series, with the goal of addressing the posed inquiry. Our investigation commences with the analysis of the site occupancy and charge state of bismuth ions in the two cationic sites through formation energy calculations. Additionally, we examine the local coordination environments for various excited states of Bi³⁺ dopants, including the ³P_{0,1} state and two types of charge transfer states, by evaluating their equilibrium geometric structures. The utilization of the hybrid functional enables us to obtain results of electronic structures and optical properties comparable with experiments. Importantly, the calculated energies for the 6s-6p transitions of Bi³⁺ dopants in the M_2O_3 series align well with the observed dual-emission energies. This alignment challenges the conventional spectroscopic sense that emission bands with large Stokes shifts can be exclusively ascribed to charge transfer transitions. Consequently, the integration of experimental and theoretical approaches emerges as the optimal strategy for designing novel Bi³⁺-doped phosphors.

Keywords: bismuth; sesquioxide; dual emissions; Stokes shift; first-principles

1. Introduction

Due to the presence of the $6s^2$ lone pair, the photoluminescence of Bi^{3+} is sensitive to the ligand environment and ranges from ultraviolent to infrared in different matrices, making bismuth an excellent activator [1,2]. In particular, some single Bi^{3+} -doped phosphors exhibit an extra red-shifted emission band in addition to the commonly observed green or blue emission [3–5]. This dual-mode emission characteristic is attractive for anti-counterfeiting, temperature sensing and healthcare lighting, e.g., the MgGa₂O₄: Bi^{3+} material exhibits dynamic luminescence evolution from near-infrared or green light to bluish-white light, showing excellent multi-mode dynamic anti-counterfeiting and encryption performances [6]. In order to improve the performance of the dual-mode emission in Bi^{3+} -doped phosphors and to push their application boundaries, great efforts have been made to reveal the origin of emission bands and understand the luminescence mechanism. Several potential mechanisms have been proposed in different materials, including the site-selective occupancy of dopants [5,6], the influence of bismuth ions with lower valence states [7], the formation of Bi pairs or clusters [8] and the Jahn–Teller distortion of the

Citation: Bai, H.; Lou, B.; Kurboniyon, M.S.; Suchocki, A.; Brik, M.G.; Wang, J.; Ma, C. Dual-Emission Origins in Bi³⁺-Doped M_2O_3 Sesquioxides (M =Sc, Y, Gd and Lu): A First-Principles Study. *Materials* **2024**, *17*, 2039. https://doi.org/10.3390/ ma17092039

Academic Editors: Marco Girolami and Gregorio Bottaro

Received: 4 March 2024 Revised: 9 April 2024 Accepted: 11 April 2024 Published: 26 April 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). local environment [9]. However, the spectra assignments of the Bi³⁺-doped phosphors were generally judged by the full-width at half maximum (FWHM) and the Stokes shift properties, where the emission bands with larger Stokes shift were always assigned to the charge transfer transitions in experiment. Obviously, such experiential spectra assignment methods were not explicit enough for understanding and developing dual-mode emission phosphors.

 Bi^{3+} -doped sesquioxides, such as the series of M_2O_3 : Bi^{3+} (M = Sc, Y, Gd and Lu), are promising hosts that exhibit dual-mode emission. In M_2O_3 hosts, the M^{3+} cations have two different ligand sites, namely S_6 and C_2 sites, both of which are hexacoordinated, and the six O^{2-} ions form highly symmetric octahedral coordination in the S₆ site [10]. Previous research has focused on elucidating the assignment of the narrow-band emission and the broad-band emission with larger Stokes shift to the two Bi^{3+} sites in the $M_2O_3:Bi^{3+}$ series. It has been found that Bi³⁺ ions mainly occupy the central position of the highly symmetric octahedron, which contributes to the stable narrow-band emission with small Stokes shift, e.g., the emission of Lu₂O₃ and Gd₂O₃ with 35 and 40 nm FWHM, respectively, as reported by Z. Zhang [11]. However, the detailed geometric and electronic properties have hardly been studied to understand the remarkable difference in the Stokes shift of the two cation sites, and the possibility of the charge transfer transition has not been completely ruled out. First-principles calculations have been widely used as a powerful tool to investigate and elucidate the excitation, relaxation and emission processes of a large number of bismuthdoped phosphors [12]. Density functional theory (DFT) can effectively simulate the energy of the ground state and excited states of Bi ions with different valence states in activated phosphors, as well as the optical transitions of Bi³⁺ dopants in phosphors, including the ${}^{1}S_{0} \rightarrow {}^{3}P_{0,1}$ inner Bi^{3+} , the charge transfer transitions including the valence band to Bi^{3+} charge transfer (CT) transitions or the Bi³⁺ to conduction band, i.e., the metal-to-metal charge transfer (MMCT) transition.

Here, the luminescence mechanism of the dual-mode emission of Bi^{3+} ions in M_2O_3 (M = Sc, Y, Gd and Lu) matrices was investigated using the first-principles methods. The site occupancy and the valence state of the bismuth ions were confirmed by formation energy studies. The geometric and electronic properties of the ground and excited states were calculated to obtain the excitation, relaxation and emission processes of the series of phosphors, which provides insight into the origin of the dual-mode emission. Furthermore, the variation in the $(BiO_6)^{3-}$ ligand environment from the ground states to the excited states was studied for the two cation sites to help explain the remarkable difference in Stokes shift between the two emission bands.

2. Methods

The first-principles calculations were performed utilizing the Vienna ab initio simulation package [13], employing the projector augmented-wave method in conjunction with density functional theory (DFT). The Perdew–Burke–Ernzerof (PBE) functional [14] was adopted in the geometric structure relaxation, along with the consideration of the spin-orbit coupling interaction for Bismuth dopants. Semicore electrons were explicitly treated with the recommended projector augment-wave (PAW) pseudopotentials [15], including $4s^24p^65s^24d^1$, $2s^22p^63d^14s^2$, $5p^65d^16s^2$, $5p^66s^25d^1$, $2s^22p^4$ and $5d^{10}6s^26p^3$ for Y, Sc, Lu, Gd, O and Bi elements, respectively. The supercell, containing 80 atoms, was employed in modeling the defect-doped systems, and one *k* point Γ was used in sampling the Brillouin zone. The cutoff energy of the plane-wave basis was set to 520 eV, and the convergent criteria were 10^{-5} eV for electronic energy minimization and 0.02 eV/Å for Hellman–Feynman forces on each atom. Based on the relaxed equilibrium geometric structures, the standard PBE0 functionals [16] were utilized to obtain better electronic structure and photoluminescence properties.

The formation energy of a defect *X* in the charge state of *q* can be derived as follows [17]:

$$E^{f}(X^{q}, E_{\mathrm{F}}) = E_{\mathrm{tot}}[X^{q}] - E_{\mathrm{tot}}[\mathrm{bulk}] - \sum_{i} n_{i}\mu_{i} + qE_{\mathrm{F}}$$
(1)

where E_{tot} is the total energy of the optimized supercells, n_i is the number of atoms in elements *i*, which are added to $(n_i > 0)$ and or removed from $(n_i < 0)$ the perfect supercell, and μ_i corresponds to chemical potentials of these species. The Fermi energy level E_F represents the chemical potential of the electrons in the host. The thermodynamic charge transition level $\epsilon(q_1/q_2)$ was utilized to predict the positions of defect levels. It is defined as the Fermi level at which the defect formation energies of X^{q_1} and X^{q_2} equal each other. It can be deduced from Equation (1) as:

$$\epsilon(q_1/q_2) = \frac{E^f \left(X^{q_1}, \ E_f = 0 \right) - E^f \left(X^{q_2}, \ E_f = 0 \right)}{q_2 - q_1} \tag{2}$$

where post hoc corrections to the total energy of the charged defects are employed following the method proposed in Ref. [18].

For Bi³⁺ ion-doped system, the dominant emission can originate from the equilibrium structure of the $6s^{1}6p^{1}$ (${}^{3}P_{0,1}$) excited state and the charge transfer state, e.g., Bi⁴⁺+*e* and Bi²⁺+*h*, where the Bi⁴⁺+*e* is the excited state of charge transfer from Bi³⁺ ions to the bottom of the condition band and always denoted as MMCT, whereas the Bi²⁺+*h* is the excited state of charge transfer from the top of the valance band to Bi³⁺ dopants and always denoted as CT. As in our previous work [8], the equilibrium geometric structure of the MMCT excited state was approximated as M_2O_3 : Bi⁴⁺ by the geometric relaxation of the supercell that one cation was substituted by Bi⁴⁺ ions. Similarly, the CT excited state was approximated as M_2O_3 : Bi²⁺. The ${}^{3}P_{0,1}$ excited state was approximated by constraining the electron occupancy to $(6s_{1/2})^{1}(6p_{1/2})^{1}$ for M_2O_3 : Bi³⁺, where the $6s_{1/2}$ and $6p_{1/2}$ are Kohn–Sham orbitals obtained with PBE+ SOC functional. Based on the relaxed equilibrium geometric structures, the peak energy of excitation or emission for a given transition can be obtained approximately by the differences of the total energies of the excited and ground electronic state following the Franck–Condon principle.

3. Results and Discussion

3.1. Properties of the M_2O_3 Hosts

The M_2O_3 (M = Sc, Y, Gd and Lu) matrices are attributed to the cubic crystal system and Ia-3 (No. 206) space group. There are two different cation crystallographic sites, C_2 and S_6 , which can be replaced with Bi³⁺ ions, as shown in Figure 1. The crystal structure of cubic M_2O_3 is composed of regular and asymmetric octahedra of M and O atoms, with M atoms filling the interstitial sites of the octahedra. The band structures of four pristine M_2O_3 are plotted in Figure 2.

The results show that Sc_2O_3 is a direct band gap material, with the conduction band minimum (CBM) and valance band maximum (VBM) located at the high-symmetry k-point of Γ . For the remaining three hosts, Y₂O₃, Gd₂O₃ and Lu₂O₃, their VBM was located at the k-path from the high-symmetry k-point of Γ to H, implying indirect gap semiconductors. The Kohn–Sham band gaps calculated with the PBE functional are 3.83 eV, 3.87 eV, 4.02 eV and 4.12 eV for M = Sc, Gd, Lu and Y, respectively, which are seriously underestimated compared to the experimentally reported optical band gaps. Since the excitation and emission processes of the CT and MMCT states involve the orbitals of the band edges, the accuracy of the band gap values can greatly influence the spectral assignments and mechanism studies. Hybrid DFT has been widely used to improve the description of electronic structures. With the standard PBE0 functional, the band gap energy (E_g) was improved to be 6.49 eV, 6.16 eV, 6.21 eV and 6.39 eV for M = Sc, Gd, Lu and Y, respectively. The PBE0 calculated band gap values are consistent with those estimated in the vacuumreferred binding energy diagram, reported by P. Dorenbos [19], which are about 6.50 and 6.40 eV for Sc₂O₃ and Y₂O₃, respectively. Furthermore, the choice of the PBE0 functional aligns well with the nonempirical hybrid functionals, characterized by a Fock exchange

fraction inversely correlated with the material's dielectric constant (ϵ_{∞}) [20], showing promise in achieving more uniform accuracy in band gap prediction, as well as in predicting other electronic and optical properties of semiconductors [21]. In Figure 2, the PBE0 calculated density of states (DOSs) exhibit the composition of the band edges. For all four hosts, the tops of the valence bands are dominated by the O-p orbitals, partially contributed by the orbitals of cations. For Sc₂O₃ hosts, the bottom of the conduction band was dominated by the Sc-d orbital. However, the bottom of the conduction band of the other three hosts was dominated by the *M*-s orbitals and partially mixed with *M*-p, *M*-d and O-p orbitals.

Figure 1. The crystal schematic diagram of the (**a**) M_2O_3 (M = Sc, Y, Gd and Lu) and the (**b**) S_6 and (**c**) C_2 cation crystallographic sites, where the bond lengths of Gd₂O₃ material were listed as example.

Figure 2. Cont.

Figure 2. The PBE calculated band structure (**a**–**d**) and the PBE0 calculated DOSs (**e**–**h**) of a series of M_2O_3 (M = Sc, Gd, Lu and Y), respectively.

3.2. The Defect Properties of M_2O_3 :Bi³⁺

As shown in Figure 3, the formation energy calculations were performed for studying the properties of the intrinsic and Bi-doped defects in M_2O_3 (M = Sc, Y, Gd and Lu), including the intrinsic defects of cation vacancies at the C₂ and S₆ sites, e.g., $V_M(C_2)$ and $V_M(S_6)$, oxygen vacancies (V_O) and oxygen interstitial defects (O_i), as well as those of bismuth ions substituting the C₂ and S₆ cation sites.

Figure 3. The PBE calculated formation energies of intrinsic defects and Bi^{3+} dopants in M_2O_3 sesquioxides (M = Sc (**a**), Gd (**b**), Lu (**c**) and Y (**d**)) as a function of the Fermi level in O-rich environment. It should be noted that the formation energy lines of Bi^{3+} dopants will be slightly shifted according to the actual doping concentration.

By considering the synthesis conditions, the referenced chemical potentials of the O, *M* and Bi elements were set as follows:

$$\mu_{\rm O} = 1/2E_{\rm O_2[gas]} + \Delta\mu_{\rm O} \tag{3}$$

$$\mu_M = 1/2 \Big(E_{M_2 O_3[\text{bulk}]} - 3\mu_O \Big), \tag{4}$$

$$\mu_{\rm Bi} = 1/2 \Big(E_{\rm Bi_2O_3[bulk]} - 3\mu_{\rm O} \Big), \tag{5}$$

where $E_{M_2O_3[bulk]}$ and $E_{Bi_2O_3[bulk]}$ are the calculated total energy per formula unit for M_2O_3 and Bi_2O_3 , respectively, and $E_{O_2[gas]}$ is the room temperature and partial-pressure-corrected chemical potential of oxygen gas. In our calculation, $\Delta \mu_O$ was set as 0 eV to simulate the oxygen-rich environment [22,23]. By studying the formation energies, the site occupancy and charge state of the intrinsic defects and bismuth dopants can be well determined. According to the formation energy diagrams, the electric neutrality of the four M_2O_3 (M = Sc, Gd, Lu and Y) hosts is maintained by the charge balance between the cation vacancies V_M^{3-} and anion vacancies V_O^{2+} . The energy positions of the Fermi levels were obtained to be around the middle of the band gap but close to the VBM, which is consistent with the O-rich environment in our calculations. Compared with the intrinsic defects, including V_O , $V_M(S_6)$, $V_M(C_2)$ and O_i defects, whose formation energies are all around 2.0 eV in the M_2O_3 series, the bismuth dopants show remarkably lower formation energies. The bismuth dopants are expected to be the dominant defects in M_2O_3 :Bi³⁺ phosphors. It is noted that the doped bismuth ions are mainly in the trivalent charge state; thus, the energy positions of the Fermi levels are hardly influenced by the doping concentration of Bi³⁺ ions. Furthermore, Figure 3 shows that the formation energies of Bi³⁺ dopants in the cation sites with S₆ symmetry are slightly

properties of the two cation vacancies, $V_M(S_6)$ and $V_M(C_2)$. In Figure 4, the thermodynamic charge transition levels $\varepsilon(+1/0)$ and $\varepsilon(0/-1)$ of Bi dopants were plotted to investigate the trap properties of M_2O_3 :Bi³⁺ in the four M_2O_3 states (M = Sc, Y, Gd and Lu).

lower $(-0.1 \sim -0.2 \text{ eV})$ than those with C₂ symmetry. This is similar to the formation energy

Figure 4. The thermodynamic charge transition levels of Bi³⁺ dopants, including $\varepsilon(+1/0)$ and $\varepsilon(0/-1)$ levels for Bi³⁺ ions in the two cation sites of M_2O_3 (M = Sc, Y, Gd and Lu), where the VBM is set as reference.

The Bi³⁺ dopants can act as both the electron and hole trap in the four M_2O_3 hosts. The hole trap positions provided by the Bi³⁺ dopants in the C₂ sites are 2.36 eV, 2.11 eV, 2.10 eV and 2.11 eV for M = Sc, Y, Gd and Lu, respectively. For the S₆ cation sites with higher symmetry, the corresponding hole trap positions are 2.21 eV, 2.09 eV, 2.09 eV and 2.04 eV for M = Sc, Y, Gd and Lu referring to the VBM, respectively. The electron trap positions provided by the Bi³⁺ dopants are 1.24 eV, 1.60 eV, 1.45 eV and 1.42 eV at the C₂ site for M = Sc, Y, Gd and Lu, respectively, while they are 1.45 eV, 1.78 eV, 1.65 eV and 1.67 eV at the S₆ site for M = Sc, Y, Gd and Lu, respectively. For all four M_2O_3 hosts, the thermodynamic charge transition levels of Bi³⁺ dopants at S₆ cation sites are slightly lower than those in the C₂ cation sites; however, the energy difference between $\varepsilon(+1/0)$ and $\varepsilon(0/-1)$ levels is similar for Bi³⁺ in the two cation sites of sesquioxide and is hardly influenced by the local symmetry. Our calculation results are in great agreement with the vacuum-referred binding energy diagram provided by P. Dorenbos, where the MMCT transition energies are used to locate the Bi³⁺ 6s ground state relative to the CBM. It is reported that the Bi³⁺ dopants

provide the hole trap and electron trap with depths around 2.0 eV and 1.0 eV, respectively, in both Y_2O_3 :Bi³⁺ and Sc₂O₃:Bi³⁺.

In order to investigate the electronic structure properties of Bi³⁺ dopants at the two cation sites, the PBE0+SOC calculated partial DOSs and the charge density distribution of 6s and 6p orbitals are plotted in Figure 5.

Figure 5. The PBE0+SOC calculated partial DOSs of 6s and 6p orbitals of Bi^{3+} dopants in the two cation sites for the ground state of $Y_2O_3:Bi^{3+}$, and the corresponding charge density distribution profiles.

As the selected series of materials have similar structural environments and similar luminescent properties, only the DOSs of Y_2O_3 :Bi³⁺ phosphors were provided. For the M_2O_3 :Bi³⁺ series, the 6s and 6p orbitals of Bi³⁺ dopants are always in the band gap, regardless of Bi³⁺ substituting the S₆ or C₂ cation sites. Due to the stronger crystal filed environment at the S₆ lattice site, the Bi³⁺ 6p orbital shows larger energy splitting than that at the C₂ lattice site. As shown in the charge density profile, the Bi³⁺-6s orbital contains substantial contributions from the p orbitals of the six oxygen ligands, and the corresponding distributions are similar for Bi³⁺-6s orbitals at both the C₂ and S₆ sites. The charge density distributions of Bi³⁺-6p orbitals are quite different. The Bi³⁺-6p orbitals mainly distribute along the one axis for the Bi³⁺ ions at C₂ sites; however, the charge density distributions of Bi³⁺-6p orbitals remain similar with the Bi³⁺-6s orbitals at S₆ sites, where the six oxygen ligands contribute uniformly to the Bi³⁺-6p orbitals due to the high symmetry. The geometric structure relaxation and the Stokes shift properties of Bi dopants are correlated with the electronic structure of the Bi 6s and 6p orbitals, which results in the different luminescence properties of the ³P_{0,1} excited state at the two cation sites.

3.3. The Luminescence Mechanism of M_2O_3 :Bi³⁺

As reported in experimental research [5.10], Bi^{3+} dopants in a series of M_2O_3 (M = Sc, Y, Gd, Lu) phosphors show similar excitation and emission characteristics, including a narrow-band absorption peak at 340–400 nm, corresponding to a strong emission in the 380–470 nm range, and a second localized band absorption in the 300–360 nm range, corresponding to a broad emission in the 360–600 nm range with low emission intensity. Table 1 shows the optical transition energies of Bi^{3+} ions in the four hosts, including the

results from DFT calculations and the experimental reports, where the calculated excitation and emission energies are in good agreement with the experimental data [10].

	ММСТ		СТ		A Band		Spectra Data ¹	
	Exc.	Emi.	Exc.	Emi.	Exc.	Emi.	Exc.	Emi.
$Sc_2O_3(C_2)$	4.70	3.53	6.10	4.31	3.57	2.33	3.70	2.46
$Sc_2O_3(S_6)$	4.88	3.56	5.71	4.39	3.35	3.08	3.35	3.05
$Y_2O_3(C_2)$	4.97	3.84	5.85	3.72	3.62	2.29	3.70	2.55
Y ₂ O ₃ (S ₆)	5.11	3.90	5.54	3.96	3.29	3.00	3.35	3.02
$Gd_2O_3(C_2)$	4.84	3.65	5.84	3.76	3.59	2.30	3.70	2.48
$Gd_2O_3(S_6)$	4.96	3.74	5.51	3.97	3.33	3.00	3.29	2.96
$Lu_2O_3(C_2)$	4.88	3.71	5.93	3.82	3.77	2.31	3.78	2.63
Lu ₂ O ₃ (S ₆)	5.11	3.90	5.58	3.97	3.47	3.09	3.34	3.05

Table 1. The calculated and measured excitation and emission energies of M_2O_3 :Bi³⁺ series.

¹ Refs. [10,11].

For M_2O_3 :Bi³⁺ phosphors, the *A* band transition dominates both the excitation and emission, and the CT and MMCT transitions require remarkably higher excitation energies. Our results support the *A* band assignment in previous research [5,10], where the broad excitation and emission bands were attributed to the Bi³⁺ dopants at C₂ sites, and the sharp excitation and emission bands originated from the S₆ sites. Except for the dominant *A* band optical transitions, G. Blasse reported a high-energy excitation band at 4.71 eV for Y₂O₃:Bi³⁺ [24], and Bordun observed similar excitation bands in Bi³⁺-doped Y₂O₃ and Sc₂O₃ ceramics [25]. R. K. Datta also reported that these are practically identical in both spectra, namely, a weak broad line around 4.70 eV and a slowly rising structure starting at 5.20 eV in Y₂O₃:Bi³⁺ [26]. Although prior studies assigned these bands to the *C*-band, P. Dorenbos agreed with the assignment of P. Boutinaud, who both suggested that these excitation bands should be assigned to the MMCT transition [27], and this is confirmed by our calculation results.

As listed in Table 1, there are slight differences (~0.3 eV) between the excitation energies of Bi³⁺ dopants being at the C₂ and S₆ sites, including the A band, CT and MMCT transitions. However, the emission properties of the A band transition are quite different for Bi³⁺ dopants at the two cation sites. In both of the experimental and calculation results, the Bi^{3+} dopants at C_2 sites exhibit a large Stokes shift in the range of 1.2–1.4 eV, while such values are remarkably smaller (at around 0.3 eV) for the Bi³⁺ dopants at S₆ sites. There were arguments that the main double-peaked green emission band centered around 3.7 eV should correspond to the crystal-field splitting of the low-excited levels in the low-symmetry C2 luminescent center [28]. However, the energy positions of the lowest Bi³⁺ 6p levels show slight differences between the two sites, as plotted in Figure 5. And the geometric relaxation difference in the ³P_{0,1} excited state results in a remarkably different Stokes shift at the two sites according to our calculations. Based on the relaxed equilibrium structures of the ground state and various excited states of Y2O3:Bi3+, a schematic configuration coordinate diagram (Figure 6) is constructed to show all the excited states, illustrating the luminescence process. For the M_2O_3 :Bi³⁺ series, the potential energy surface of the Bi⁴⁺ + e_{CBM} state intersects with that of (Bi³⁺) ³P_{0.1}, and non-radiative relaxation from the former to the latter can be bridged with the cooperation of phonons.

This relaxation also occurs from $Bi^{2+} + h_{VBM}$ to $Bi^{4+} + e_{CBM}$ and $(Bi^{3+}) {}^{3}P_{0,1}$. The dominant emission is expected to originate from the lowest ${}^{3}P_{0,1}$ excited state, and the Bi^{3+} dopants at C_2 site exhibit obviously larger geometric relaxation in emission processes. The Stokes shift properties of Bi^{3+} -doped phosphors are always considered as an important index to distinguish the emission band from the ${}^{3}P_{0,1}$ and charge transfer states, e.g., the broad yellow light of $Ba_2YGaO_5:Bi^{3+}$ peaking at 587 nm with full-width at half maximum (FWHM) of 135 nm was assigned as the MMCT transition due to the large Stokes shift (1.43 eV) [29]. Our calculations on the $M_2O_3:Bi^{3+}$ series imply that the A band transition

can also provide emission with large Stokes shift, and the detailed structure–activity relationship requires further studies.

Figure 6. The configuration coordinate diagrams of the potential surfaces of Bi³⁺ dopants substituting the cation sites with (**a**) C₂ symmetry and (**b**) S₆ symmetry for M_2O_3 :Bi³⁺ phosphors (M =Sc, Y, Gd and Lu), where ¹S₀ and ³P_{0,1} denote the ground and the lowest triplet 6s6p excited states of Bi³⁺, respectively, Bi⁴⁺ + e_{CBM} simulates Bi⁴⁺ with one electron at CBM, representing the lowest MMCT excited state, and Bi²⁺ + h_{VBM} simulates Bi²⁺ with a loose hole at VBM, representing the lowest CT excited state.

4. Conclusions

In this study, we employed first-principles calculations to elucidate the luminescence mechanisms underlying the dual emissions in the M_2O_3 :Bi³⁺ series (M = Sc, Y, Gd, Lu). Utilizing formation energy calculations, we confirmed the prevalence of trivalent bismuth ions in both cationic sites, with a slight preference for the M^{3+} sites with S_6 symmetry over the C_2 sites. The larger band gap of the M_2O_3 series, ranging from 6.1 to 6.5 eV, provides enough space to accommodate both the 6s and the lowest 6p orbitals of the Bi³⁺ dopants. Our calculated charge transition levels for Bi³⁺ dopants exhibit remarkable similarity in the two cationic sites of the M_2O_3 series, where Bi³⁺ ions can serve as deep electron traps (with depths around 1.0 eV) and hole traps (with depths around 2.0 eV). The dominance of the 6s-6p transitions of Bi³⁺ dopants in both cationic sites was affirmed, while the observed high-energy excitation band at approximately 4.7 eV was identified as the MMCT transition. Through an exploration of the variations in electronic and geometric structures during the luminescence kinetics processes, our calculations contribute to a comprehensive understanding and provide design principles for novel Bi³⁺-doped phosphors.

Author Contributions: Investigation, data curation and writing—original draft preparation, H.B.; conceptualization and methodology, B.L. and C.M.; investigation and data curation, M.S.K.; writing—review and editing, A.S., M.G.B. and J.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52161135110, 12274048 and 12304439). BL acknowledges support from the China Postdoctoral Science Foundation (Grant No. 2023MD744135) and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202200629). MSK appreciates support from the National Young Foreign Talents Plan (Grant No. QN2023035001L) and the 2021 Chongqing Postdoctoral International Exchange Program of China Postdoctoral Science Foundation (Grant No. YJ20210346). AS and MGB are thankful for support from the Overseas Talents Plan of Chongqing Association for Science and Technology (Grant No. 2022[60]) and the Polish NCN projects 2021/40/Q/ST5/00336.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Dang, P.; Liu, D.; Li, G.; Al Kheraif, A.A.; Lin, J. Recent Advances in Bismuth Ion-Doped Phosphor Materials: Structure Design, Tunable Photoluminescence Properties, and Application in White LEDs. *Adv. Opt. Mater.* **2020**, *8*, 1901993. [CrossRef]
- Wei, Y.; Xing, G.C.; Liu, K.; Li, G.G.; Dang, P.P.; Liang, S.; Liu, M.; Cheng, Z.Y.; Jin, D.Y.; Lin, J. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. *Light-Sci. Appl.* 2019, *8*, 15. [CrossRef] [PubMed]
- 3. Pan, D.; Yang, Y.; Yang, X.; Xu, T.; Cui, Y.; Sun, X.; Feng, H.; Liu, L.; Shen, Y.; Zhao, J.; et al. The effect of site occupation and valence state of Bi on the luminescence properties of Bi-activated oxysulfide *M*ZnOS (*M* = Ca; Ba) with layer structure. *J. Alloys Compd.* **2018**, 742, 1037–1045. [CrossRef]
- 4. Han, J.; Li, L.; Peng, M.; Huang, B.; Pan, F.; Kang, F.; Li, L.; Wang, J.; Lei, B. Toward Bi³⁺ Red Luminescence with no Visible Reabsorption Through Manageable Energy Interaction and Crystal Defect Modulation in Single Bi³⁺-Doped ZnWO₄ Crystal. *Chem. Mat.* **2017**, *29*, 8412–8424. [CrossRef]
- Khan, S.; Choi, H.; Lee, S.Y.; Lee, K.-R.; Ntwaeaborwa, O.M.; Kim, S.; Cho, S.-H. Unexpected Roles of Interstitially Doped Lithium in Blue and Green Light Emitting Y₂O₃:Bi³⁺: A Combined Experimental and Computational Study. *J. Inorg. Chem.* 2017, 56, 12139–12147. [CrossRef] [PubMed]
- 6. Liu, P.; Zhang, Y.; Li, B.; Han, L.; Xu, Y. Trap depth engineering in MgGa₂O₄:Bi³⁺ for muticolor dynamic anti-counterfeiting; encryption and optical temperature sensing applications. *Chem. Eng. J.* **2022**, *437*, 135389. [CrossRef]
- Jin, M.; Zheng, W.; Gong, Z.; Huang, P.; Li, R.; Xu, J.; Cheng, X.; Zhang, W.; Chen, X. Unraveling the triplet excited-state dynamics of Bi³⁺ in vacancy ordered double perovskite Cs2SnCl6 nanocrystals. *Nano Res.* 2022, 15, 6422–6429. [CrossRef]
- Lou, B.; Wen, J.; Ning, L.X.; Yin, M.; Ma, C.-G.; Duan, C.-K. Understanding the defect levels and photoluminescence in a series of bismuth-doped perovskite oxides: First-principles study. *Phys. Rev. B* 2021, 104, 115101. [CrossRef]
- 9. Lyu, T.; Dorenbos, P.; Li, C.; Li, S.; Xu, J.; Wei, Z. Unraveling electron liberation from Bi²⁺ for designing Bi³⁺-based afterglow phosphor for anti-counterfeiting and flexible X-ray imaging. *Chem. Eng. J.* **2022**, *435*, 135038. [CrossRef]
- 10. Zhang, Z.; He, X.; Wang, L.; Zhang, P. The ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ transition position shift of Bi³⁺ ion doped $Ln_{2}O_{3}$ (Ln = Lu; Gd; La) phosphors. *J. Lumin.* **2021**, 234, 117971. [CrossRef]
- 11. Babin, V.; Chernenko, K.; Lipinska, L.; Mihokova, E.; Nikl, M.; Schulman, L.S.; Shalapska, T.; Suchocki, A.; Zazubovich, S.; Zhydachevskii, Y. Luminescence and excited state dynamics of Bi³⁺ centers in Y₂O₃. *J. Lumin.* **2015**, *167*, 268–277. [CrossRef]
- 12. Ning, L.; Huang, X.; Huang, Y.; Tanner, P.A. Origin of green persistent luminescence of Eu-doped SrAl₂O₄ from multiconfigurational ab initio study of 4f⁷ → 4f⁶5d¹ transitions. *J. Mater. Chem. C* **2018**, *6*, 6637–6640. [CrossRef]
- 13. Kresse, G.; Furthmuller, J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **1996**, *54*, 11169–11186. [CrossRef] [PubMed]
- 14. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, *77*, 3865. [CrossRef] [PubMed]
- 15. Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [CrossRef]
- 16. Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. *J. Chem. Phys.* **2005**, *122*, 234102. [CrossRef]
- 17. Freysoldt, C.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Kresse, G.; Janotti, A.; Van Dewalle, C.G. First-Principles Calculations for Point Defects in Solids. *Rev. Mod. Phys.* 2014, *86*, 253–305. [CrossRef]
- 18. Durrant, T.R.; Murphy, S.T.; Watkins, M.B.; Shluger, A.L. Relation between image charge and potential alignment corrections for charged defects in periodic boundary conditions. *J. Chem. Phys.* **2018**, *149*, 024103. [CrossRef]
- 19. Awater, R.H.P.; Dorenbos, P. The Bi³⁺ 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds. *J. Lumin.* **2017**, *184*, 221. [CrossRef]
- Yang, W.; Meng, J.Z.; Jing, S.J.; Wang, K.W.; Bao, C.G.; Feng, Y.J.; Duan, Y.; Ma, J.P.; Gan, L.Y.; Zhou, X.Y. Origin of Bismuth-Rich Strategy in Bismuth Oxyhalide Photocatalysts. *J. Energy Environ. Mater.* 2022, 15, 12432.
- Seidl, S.A.; Kretz, B.; Gehrmann, C.; Egger, D.A. Assessing the accuracy of screened range-separated hybrids for bulk properties of semiconductors. *Phys. Rev. Mater.* 2021, *5*, 034602. [CrossRef]
- 22. Marques, M.A.L.; Vidal, J.; Oliveira, M.J.T.; Reining, L.; Botti, S. Density-based mixing parameter for hybrid functionals. *Phys. Rev. B* 2011, *83*, 035119. [CrossRef]
- 23. Chen, Q.; Liu, M.; Ma, C.-G.; Duan, C.-K. Mechanistic insights for regulating the site occupancy, valence states and optical transitions of Mn ions in yttrium–aluminum garnets via cooping. *Phys. Chem. Chem. Phys.* **2023**, *25*, 18808–18815. [CrossRef]
- 24. Blasse, G.; Bril, A. Investigations of Bi³⁺-activated phosphors. J. Chem. Phys. **1968**, 48, 217–222. [CrossRef]
- 25. Bordun, O.M. Luminescence of bismuth-activated ceramics of yttrium and scandium oxides. J. Appl. Spectrosc. 2002, 69, 67–71. [CrossRef]

- 26. Datta, R.K. Bismuth in Yttrium Vanadate and Yttrium Europium Vanadate Phosphors. J. Electrochem. Soc. 1967, 114, 1057. [CrossRef]
- 27. Boutinaud, P. Revisiting the spectroscopy of the Bi³⁺ ion in oxide compounds. *Inorg. Chem.* **2013**, *52*, 6028–6038. [CrossRef] [PubMed]
- Réal, F.; Vallet, V.; Flament, J.-P.; Schamps, J. Ab initio embedded cluster study of the excitation spectrum and Stokes shifts of Bi³⁺-doped Y₂O₃. J. Chem. Phys. 2007, 127, 104705. [CrossRef]
- 29. Ye, S.; Ding, J.; Wu, Q. MMCT-induced high-bright yellow light-emitting phosphor Bi³⁺-activated Ba₂YGaO₅ used for WLED. *Chem. Eng. J.* **2022**, *428*, 131238. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.