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Abstract: Attapulgite (APT) is widely used in wastewater treatment due to its exceptional adsorption
and colloidal properties, as well as its cost-effectiveness and eco-friendliness. However, low-grade
APT generally limits its performance. Here, a colloid mill-assisted ultrasonic-fractional centrifugal
purification method was developed to refine low-grade APT. This process successfully separated
and removed impurity minerals such as quartz and dolomite from the raw ore, resulting in a
refined APT purity increase from 16.9% to 60% with a specific surface area of 135.5 m2·g−1. Further
modifying of the refined APT was carried out through the hydrothermal method using varying
dosages of cetyltrimethylammonium chloride (CTAC), resulting in the production of four different
APT adsorbents denoted as QAPT-n (n = CTAC mole number) ranging from 0.5 to 5 mmol. Using
Congo red (CR) as the target pollutant, the QAPT-5 sample exhibited the best adsorption capacity
with the maximum quantity of 1652.2 mg·g−1 in a neutral solution at 30 ◦C due to the highest surface
charge (zeta potential = 8.25 mV). Moreover, the QAPT-5 pellets (~2.0 g adsorbent) shaped by the
alginate-assisted molding method removed more than 96% of 200 mL aqueous solution containing
200 mg·L−1 CR and maintained this efficiency in 10 adsorption–elution cycles, which exhibited the
promising practical application.

Keywords: attapulgite; purification; colloid mill; modification; Congo red

1. Introduction

Attapulgite (APT) is one kind of natural nanoscale magnesium-aluminosilicate clay
with the theoretical chemical formula Mg5Si8O20(HO)2(OH2)4·4H2O [1–3]. Here, H2O,
(OH2), and (OH) represent zeolite water, allotropic water, and tectonic water, respec-
tively [3]. In 1940, Bradley proposed a crystal structure model for attapulgite, which
consists of inversed silica-oxygen tetrahedral double chains and discontinuous octahe-
dral sheets [1]. The chain-layer units are connected by Si-O-Si bonds to form zeolite-like
pores with a size of 0.37 nm × 0.64 nm. APT exhibits a unique fibrous or rod-like mi-
crostructure with three levels: bar crystals, crystal bundles, and aggregates [4]. These
unique characteristics provide APT with excellent carrier performance, colloidal perfor-
mance, adsorption performance, and reinforcement performance [5]. In recent decades,
research on APT has primarily focused on modifying high-purity APT to achieved better
effects in pollution abatement [6], soil remediation [7], modern agriculture [8], chemical
additives [9,10], biomedicine materials [11–13], energy materials [14], electromagnetic
absorption materials [15], building materials [16], and other industries.
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China possesses more than 60% of the world’s reserves of APT, with Gansu Province
ranking at the top within the country for potential APT reserves [17]. APT in Gansu
Province is a product of the sedimentary metamorphism of salt-lake phases [18]. Essen-
tially, natural APT exists in the form of crystal bundles and aggregates alongside various
associated minerals like muscovite, chlorite, dolomite, and feldspar [19]. Historically, the
purification and dispersion of low-grade APT have been primarily addressed through the
modification of APT by different physical or chemical methods. Traditional techniques
such as grinding [20] and extrusion [21] are typically used for processing high-grade APT
to enhance its adsorption and colloidal properties. In a departure from these conventional
methods, high-pressure homogenization technology has been utilized to disaggregate
APT crystal bundles without damaging the rods for large-scale processing [22]. Further-
more, ultrasound has been employed to break up large agglomerates of APT rods into
smaller crystal bundles or rod crystals [23]. The integration of processes such as extrusion,
slurry, surface modification, and high-pressure homogenization has proven successful
in efficiently dissociating APT crystal bundles on an industrial scale [24]. Nonetheless,
while these methods effectively reduce the size of APT particles and enhance the disper-
sion of rod crystals, they are more suited for APT of higher purity, with less pronounced
effects on lower-grade APT. Colloid milling has been widely used in the production of
functional nanomaterials like layered double hydroxides [25], barium sulfate [26], and
boehmite [27] in both laboratory and industrial settings. Therefore, a combination of colloid
milling and ultrasound techniques may offer a viable approach to enhancing the purity of
low-grade APT.

Generally, APT has been widely investigated for cation removal, and it is limited for
anions due to its surface negative charge. Hence, natural APT is commonly utilized for the
adsorption of cationic dyes, such as methylene blue [28], methyl violet [29], and methyl
red [30], while exhibiting limited adsorption capabilities for anionic dyes. To overcome
this limitation, surfactant modification through adsorption or ion exchange has been
commonly utilized in clay minerals to enhance their adsorption properties. The quaternary
ammonium salt modification can alter the surface charge characteristics of APT, thereby
converting its negatively charged surface into a positively charged adsorbent material
suitable for the adsorption of anionic dye. In this study, we propose an innovative approach
for refining low-grade APT and producing organic APT using cetyltrimethylammonium
chloride (CTAC) for the adsorption of the anionic dye Congo red (CR). Our objectives
include investigating the efficiency of CR removal by the modified adsorbents, assessing
the recyclability of modified APT pellets for CR adsorption, and examining the adsorption
mechanism of the modified APT towards the CR.

2. Materials and Methods
2.1. Materials

The main raw material, APT, was obtained from the Gansu Western Attapulgite
Research and Application Institute in Baiyin, China, and sieved over a 200-mesh sieve. The
composition of APT varies depending on the difference in natural attapulgite deposits. The
APT (purity is 16.9%) comprised mainly 48.74%, 16.63%, 14.69%, and 5.64% of SiO2, Fe2O3,
Al2O3, and MgO, respectively, presented in Table 1. Tetrasodium pyrophosphate (Na4P2O7)
and cetyltrimethylammonium chloride (CTAC) were purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China). Congo red (CR) was obtained from
Xilong Scientific Co., Ltd. (Shantou, China). All the used reagents were analytical grade
and without further purification. Deionized water was used throughout.

Table 1. Chemical composition of APT and TAPT.

Samples SiO2/% MgO/% Al2O3/% Fe2O3/% P2O5/% CaO/% K2O/% Na2O/% TiO2/% Other/%

APT 48.74 5.64 14.69 16.63 0.19 4.47 7.18 / 1.35 1.11
TAPT 52.98 7.24 13.95 14.85 1.56 0.73 4.99 1.26 0.36 2.08
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2.2. Methods
2.2.1. Purification of Low-Grade Attapulgite

Firstly, 4.5 g of sodium pyrophosphate (Na4P2O7) dispersant was dissolved in 1.5 L
deionized water to prepare the dispersant solution. Subsequently, 150.0 g of APT powder
was introduced into the solution and uniformly dispersed through continuous mechanical
stirring for 30 min. The resulting homogeneous slurry was passed through a colloid mill
three times at 3000 rpm/min, maintaining a slit width of 0.1 mm. Following this, the APT
slurry was sonicated for 1 h with mechanical agitation. After the slurry stood for 2 h,
fractional centrifugation was conducted in two stages. The first stage involved centrifuging
at 2800 rpm for 30 min, followed by the second stage of separation at 3800 rpm for 5 min.
To break the emulsion at the beginning of the second centrifugation stage, a specific amount
of ethanol or dilute acid was added in the suspension. Finally, the precipitate was dried
at 70 ◦C for 12 h and then ground for further use. The obtained sample was designated
as TAPT.

2.2.2. Preparation of Modified Attapulgite

A specific amount of quaternary ammonium salt modifier CTAC was dissolved in
50 mL of deionized water. The solution was then ultrasonically dispersed and magnetically
stirred until it was uniformly mixed. Subsequently, 5.0 g of TAPT was added to the solution
while continuously stirring. After 30 min of stirring, the mixture was transferred to a
100 mL polytetrafluoroethylene reactor, and the reaction was carried out at 180 ◦C for 12 h.
Once the reaction was completed, the slurry was allowed to cool down to room temperature
before being centrifuged. The resulting material was washed with hot water until no Cl−

could be detected. After drying in an oven at 60 ◦C, quaternary ammonium salt-modified
attapulgite was obtained and ground for further use. The molar mass values of CTAC were
0.5, 1.0, 3.0, and 5.0 mmol, and the samples were named QAPT-0.5, QAPT-1.0, QAPT-3.0,
and QAPT-5.0 according to the molar mass of CTAC, respectively.

2.2.3. Preparation of Attapulgite Pellets

The QAPT powder was molded into attapulgite pellets using an alginate-assisted
molding method [31]. Initially, 0.1 g of sodium alginate (SA) was dissolved in 7.0 mL of
deionized water through magnetic stirring for 2 h at 50 ◦C, resulting in a uniform and
clear solution. Subsequently, 0.9 g of the QAPT-5 powder was dispersed in the SA solution
under vigorous stirring for another 2 h, yielding the SA/QAPT sol. The SA/QAPT sol was
then carefully dripped into a 50 mL solution of 3% (w.t.) CaCl2 using a 10 mL syringe and
a No. 5 needle. During this process, the droplets of SA/QAPT sol made contact with the
CaCl2 solution, forming gel pellets. After completion, the gel pellets were left in the CaCl2
solution for 12 h, followed by washing with deionized water until no Cl− was detected in
the rinse solution with 0.1 mol·L−1 AgNO3 solution. The pellets were then dried at 60 ◦C
for 12 h. The as-prepared attapulgite pellets, with diameters ranging from 2 to 3 mm, were
utilized in the construction of the Congo red adsorption column.

2.2.4. Congo Red Adsorption Capacities of QAPT

The adsorption kinetics experiments for Congo red (CR) on attapulgite adsorbents
were conducted by dispersing 25.0 mg of attapulgite in 100.0 mL of 200 mg·L−1 CR aqueous
solution. The resulting suspension was then shaken in a shaker at 20 ◦C for 24 h. Afterwards,
the samples were filtered through a 0.45 µm needle filter and the residual CR concentration
was promptly measured using a UV-vis spectrophotometer (Shimadzu UV-2600, Kyoto,
Japan) at λmax = 497 nm at specific time intervals.

To determine the adsorption isotherm of CR, 25.0 mg of adsorbent was initially mixed
with varying concentrations of CR solution (ranging from 200 to 1000 mg·L−1) in Erlen-
meyer flasks, each containing 100.0 mL of solution. These flasks were then shaken in
a thermostatic shaker for 24 h, and the equilibrium concentration of the adsorbent was
measured by UV-vis spectroscopy.
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All adsorption experiments were conducted in triplicate, and the average values were
utilized for analysis in this work.

2.2.5. Adsorbents’ Characterization

The chemical analysis of the samples was performed with a Shimadzu XRF-1800 spec-
trometer (Kyoto, Japan). The crystalline structure was determined through powder X-ray
diffraction analysis (PXRD) conducted on a Shimadzu XRD-6000 instrument (Kyoto, Japan)
with Cu Kα radiation (λ = 1.5418 Å), scanning at a rate of 5◦/2θ min−1 from 3 to 70◦/2θ.
Morphological characteristics were examined using a Zeiss Supra 55 scanning electron
microscope (SEM, Jena, Germany) at 20 kV. Specific surface area and pore properties were
calculated based on N2 adsorption–desorption isotherms recorded on a Quantachrome
3QDS-MP-30 (Boynton Beach, FL, USA) at 77 K. Fourier transform infrared (FT-IR) spectra
were collected on a Bruker Vector 22 spectrophotometer (Karlsruhe, Germany) employing
the KBr pellet technique (sample/KBr ratio of 1/99 by mass) across the range of 4000
to 400 cm−1, with a resolution of 2 cm−1. The TGA analysis of the nanoparticles was
performed with a Shimadzu DTG-60AH system (Kyoto, Japan), with heating at a rate of
10 ◦C/min under an N2 atmosphere with a flow rate of 50 mL/min. A 0.5% (w.t.) sample
suspension was prepared and dispersed through sonication for 10 min to evaluate the
zeta potential of the attapulgite samples on a Malvern ZEN 3600 Instrument (Malvern
Panalytical, Almelo, The Netherlands). X-ray photoelectron spectroscopy (XPS) spectra
were examined utilizing the Kratos AXIS SUPRA spectrometer (Manchester, UK) with Al
Kα radiation (1486.6 eV). The C 1s signal at 284.8 eV was utilized to calibrate the binding
energy scale. Deconvolution of the XPS results was performed using the XPSPEAK41
software (6.00.8450) with a mixed function of 20% Lorentz and 80% Gauss.

2.2.6. Statistical Method

The quantity of CR adsorbed by attapulgite at time t, qt (mg·g−1), was calculated
using the following equation:

qt =
(C0 − Ct)× V

m
, (1)

where C0 (mg·L−1) signifies the initial concentration of the CR solution, Ct (mg·L−1)
represents the CR concentration at time t; while V (L) and m (g) refer to the volume of the
CR solution and the mass of the adsorbent added, respectively.

To delve deeper into the adsorption behavior of CTAC-modified attapulgite sam-
ples on CR, three typical adsorption kinetic models were employed: the pseudo-first-
order (PFO) kinetic equation (Equation (2)) [32], the pseudo-second-order (PSO) equation
(Equation (3)) [33], and the intra-particle diffusion equation (Equation (4)) [34] for kinetic
analyses of the experimental data.

qt = qe

(
1 − e−k1t

)
, (2)

qt =
q2

e k2t
1 + k2qet

, (3)

qt = kp
√

t+C, (4)

where qt (mg·g−1) and qe (mg·g−1) are the amounts of CR uptake per mass of the APT
sample at any time t (min) and at equilibrium, respectively; k1 (min−1), k2 (g·mg−1·min−1),
and kp (mg·g−1·min−1/2) are the rate constants for the PFO equation, PSO equation, and
intra-particle diffusion equation, respectively; and C (mg·g−1) is a constant associated with
the boundary layer thickness.
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The adsorption isotherm data of samples to CR in water were subjected to fitting
and analysis using the Langmuir model (Equation (5)) [35] and Freundlich model
(Equation (6)) [36].

qe =
qmaxKLCe

1 + KLCe
, (5)

qe = KFCn
e , (6)

where qe (mg·g−1) and qmax (mg·g−1) represent the equilibrium and maximum adsorption
of CR by APT samples, respectively; Ce denotes the equilibrium concentration of CR in the
solution; KL and KF are Langmuir and Freundlich equilibrium constants, respectively; and
n signifies the trend of adsorption.

3. Results
3.1. Composition, Structure, and Morphology of TAPT

Figure 1 shows the XRD patterns of APT and TAPT. Here, the diffraction peaks of
APT at 2θ = 8.4◦, 14.1◦, 34.9◦, and 35.3◦are ascribed to the characteristic reflections of the
(110), (200), (102), and (161) crystalline planes of APT, respectively [37]. In addition, other
reflections are for quartz at 2θ = 21.1◦, 26.9◦, 28.2◦, 40.6◦, 42.7◦, 46.1◦, 50.4◦, 55.2◦, 60.3◦,
64.3◦, and 68.4◦ (JCPDS PDF card# 85-0865, 83-0542); dolomite at 2θ = 31.2◦ (JCPDS PDF
card# 36-0426); and muscovite at 2θ = 23.9◦ and 42.4◦ (JCPDS PDF card# 89-6216), indicating
the presence of associated minerals in the APT. After the purification, the characteristic
peaks of quartz and dolomite almost disappear, and the diffraction intensity for attapulgite
strengthens greatly, indicating that most of associated minerals were removed effectively.
This result is consistent with the chemical composition of the samples listed in Table 1. The
contents of CaO, K2O, and TiO2 decrease significantly, except for a slight increase in the
contents of P2O5 and Na2O, which result from the tetrasodium pyrophosphate dispersant
and the removal of impurity minerals such as quartz and dolomite. Finally, the purity of
TAPT reaches ca. 60%.
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Figure 1. Powder X-ray diffraction patterns of APT and TAPT.

In Figure 2a,b, the rod-like crystals and sheet-like particles occur in the SEM images of
APT, indicating the coexistence of attapulgite and associated minerals in APT. However,
plentiful rod crystals are observed obviously in the SEM images of TAPT, indicating that
the impurity minerals were almost removed. Figure 2c,d further illustrate a significant
decrease in the Ca content of the refined APT, suggesting the removal of dolomite, a finding
that aligns with the XRD analyses of the samples. Moreover, as a large number of impurity
minerals were separated and removed by the refining process, rod crystals became looser
and pore channels became more open, which aid in the increase in the specific surface area
of TAPT from 60.57 to 135.5 m2·g−1 and enlarge the average pore size from 3.42 to 17.67 nm
(Figure 3 and Table 2) compared with APT. The above results suggest that the colloid
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mill-assisted ultrasonic dispersion fractional centrifugal purification method is effective to
refine attapulgite.
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Figure 3. N2 adsorption–desorption isotherms (a) and pore size distribution (b) of APT and TAPT.

Table 2. BET analysis results for APT, TAPT, and QAPT adsorbents.

Samples SBET (m2/g) V tot (cm3/g) Dpore (nm)

APT 60.57 0.15 3.42
TAPT 135.5 0.50 17.67

QAPT-0.5 120.4 0.55 17.46
QAPT-1 100.3 0.51 17.62
QAPT-3 72.53 0.41 17.55
QAPT-5 71.29 0.43 17.43

3.2. Characteristics of QAPT Samples

Figure 4a displays the XRD patterns of the TAPT, QAPT-0.5, QAPT-1, QAPT-3, and
QAPT-5 samples. Here, all of the five samples exhibit the similar characteristic diffraction
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peaks of the ATP, and those of quartz, muscovite, and other impurity minerals are not
obvious. After the hydrothermal reaction, the intensity of the characteristic diffraction
peaks of attapulgite slowly weakens with the increasing amount of CTAC from 0 to 5 mmol,
especially the (110) crystal plane diffraction peak. This may indicate that the strong
interaction between the CTAC modifier and attapulgite mainly occurs in the direction of
the (110) crystal plane of the attapulgite, and the CTAC is only encapsulated or grafted on
the surface of the attapulgite and does not damage the crystal structure of the attapulgite.
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Figure 4. X-ray diffraction patterns (a) and FT-IR spectra (b) of QAPT samples.

Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of organic
components in the QAPT adsorbents. In Figure 4b, the FT-IR spectra of the QATP ad-
sorbents show symmetric and antisymmetric telescopic vibration peaks of -CH2 for the
absorption peaks at 2926 and 2851 cm−1, respectively, and the deformation vibration peaks
of the -CH2 group for the absorption peak at 1476 cm−1. Meanwhile, the intensity of these
absorption peaks is enhanced with the dosage increase in the modifier CTAC, and the inten-
sity of this absorption peak no longer increased when the CTAC dosage was 5 mmol. Before
and after the hydrothermal reaction, the characteristic absorption peaks of attapulgite do
not change significantly. Among them, the absorption peaks at 3619, 3544, and 3404 cm−1

are the telescopic vibrations of (Mg/Al/Fe)O-H, (Si)O-H, and zeolite water, respectively;
the absorption peak at 1654 cm−1 is the bending vibration peak of coordination water or
adsorption water; the absorption peaks at 1031 and 652 cm−1 are attributed to the stretching
vibrations of Si-O and inverted tetrahedral skeleton SiO4, respectively; and the absorption
peaks at 517 and 474 cm−1 are attributed to the stretching vibrations of Si-O-Si and O-Si-O
bending vibrations, respectively [37]. These results confirm the successful incorporation of
CTAC into QAPT, adsorbent through electrostatic, hydrophobic, intermolecular forces, and
hydrogen bonding [38].

Figure 5 displays the SEM images of the TAPT, QAPT-0.5, QAPT-1, QAPT-3, and QAPT-
5 samples. The SEM characterization reveals significant changes in sample morphology
with increasing CTAC molarity. For instance, when the CTAC molarity is 0, sample
TAPT exhibits a disordered rod stacking structure. However, in samples QAPT-0.5 and
QAPT-1, the rod crystals become dispersed and orderly, leading to a reduction in the
stacked firewood-like structure. Furthermore, as the CTAC molarity continues to increase
to 3–5 mmol, the rod crystals in the QAPT samples start to aggregate into bundles, and
even larger aggregates of rod crystals appear. These observations can be attributed to
the negative charge on the surface of TAPT, which attracts the positively charged CTAC.
Consequently, CTAC molecules wrap around the TAPT surface. With an increase in CTAC
content, more positive quaternary ammonium salt ions bind to the surface of the one-
dimensional nanorod crystals in TAPT, consequently leading to changes in the carbon and
hydrogen contents within the samples (Figure 5e–h). This enhances the attraction between
neighboring rod crystals, resulting in their initial agglomeration, the formation of more rod
crystal bundles, and even the emergence of aggregates of rod crystals [39].
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Figure 5. SEM images and EDX analysis for QAPT-0.5 (a,e), QAPT-1 (b,f), QAPT-3 (c,g), and
QAPT-5 (d,h).

Figure 6 illustrates the N2 adsorption and desorption curves and pore size distributions
at 77 K for samples TAPT, QAPT-0.5, QAPT-1, QAPT-3, and QAPT-5. In Figure 6a, all the
samples display the type IVa isotherm, indicating that the interaction between N2 molecules
and adsorbents is significant. The hysteresis loop corresponds to the typical H3-type,
suggesting the presence of slit pores formed by the stacking of lamellar particles [40,41].
These findings are consistent with the observations shown in Figures 2b and 5a–d. Figure 6b
shows that the pore size distributions of all five samples exhibit three distinct regions:
2~4 nm, 4~10 nm, and 10~200 nm. Moreover, the pore volume distributions within the
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10~200 nm range are similar among all the samples. However, notable differences arise in
the 2~4 nm and 4~10 nm ranges: an increase in the CTAC molar amount, especially when
the CTAC molar amount is ≥3 mmol, leads to a significant decrease in pore sizes below
4 nm. Additionally, the QAPT-5 sample exhibits a higher number of pores ranging from
10 to 200 nm compared to the QAPT-3 sample. Table 2 summarizes the results of the BET
analysis for TAPT, QAPT-0.5, QAPT-1, QAPT-3, and QAPT-5. As the CTAC molar amount
increases from 0 to 5 mmol, the specific surface area gradually decreases from 135.5 m2·g−1

to 71.29 m2·g−1. Meanwhile, the pore volume initially increases (from 0.50 cm3·g−1 to
0.55 cm3·g−1) and then decreases (to 0.43 cm3·g−1), and the average pore size gradually
decreases from 17.67 nm to 17.43 nm. These results indicate that the specific surface area of
the samples decreases, hindering the nanopore channels; however, the surface adsorption
sites increase after CTAC modification.
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Figure 6. N2 adsorption–desorption isotherms (a) and pore size distribution (b) of TAPT and QAPT
adsorbents.

The effect of CTAC modifier dosage on TAPT is further demonstrated by the TGA
curves of QAPT adsorbents. As depicted in Figure 7, when the molar amount of the
CTAC modifier ranged from 0.5 to 1 mmol, QAPT-1 exhibited a larger mass loss compared
with QAPT-0.5, but both were lower than or close to the loss mass of TAPT. On the other
hand, when the molar amount of CTAC ranged from 3 to 5 mmol, both QAPT-3 and
QAPT-5 displayed a higher mass loss than TAPT. This can be attributed to the successful
encapsulation of CTAC on the surface of the TAPT, effectively impeding the release of
adsorbed water, zeolite water, and allotropic water from the pore channels of the rod
crystals. Additionally, a lower amount of modifier led to a greater mass loss in the TAPT
sample in relation to QAPT-0.5 and QAPT-1. The decomposition of the organic species in
QAPT adsorbents mainly occurs within the temperature range of 200–650 ◦C, primarily
due to the oxidation of hydrocarbon and ammonium groups [42].
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3.3. Adsorption Property of QAPT Adsorbents for Congo Red
3.3.1. Adsorption Kinetics of QAPT Adsorbents for Congo Red

Figure 8 presents the results of the adsorption kinetics of TAPT, QAPT-0.5, QAPT-1,
QAPT-3, and QAPT-5 on CR (C0 = 200 mg·L−1, 20 ◦C). In Figure 8a, one can observe
that TAPT, QAPT-0.5, and QAPT-1 possess larger specific surface areas with a faster ad-
sorption equilibrium than QAPT-3 and QAPT-5. Interestingly, the equilibrium adsorption
amounts of QAPT-3 and QAPT-5, with smaller specific surface areas (qe values of 752.4
and 758.4 mg·g−1, respectively), are significantly higher than those of TAPT, QAPT-0.5,
and QAPT-1 (qe values of 198.8, 491.3, and 706.2 mg·g−1, respectively). Furthermore, while
the QAPT-3 has a slightly larger specific surface area than that of QAPT-5 (72.53 and
71.29 m2·g−1, respectively), QAPT-5 exhibits similar qe values and equilibrium time as
QAPT-3. Additionally, despite the smaller average pore size of QAPT-5 compared with
QAPT-3 (17.43 and 17.55 nm, respectively), QAPT-5 displays a faster adsorption rate. These
findings suggest that a larger specific surface area enhances the adsorption rate when the
modifier’s effect on the adsorption outcomes is not taken into account.
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To further explore the adsorption behavior of QAPT on CR, the PFO kinetic model,
PSO kinetic model, and the inter-particle diffusion model were employed for kinetic analy-
ses of the experimental data. The results derived from fitting each model are illustrated
in Figure 8a,b as well as summarized in Table 3. The results of the nonlinear fitting for
CR adsorption by all samples indicate a closer alignment with the PSO kinetic model,
suggesting a potential chemisorption process between the adsorbents and CR. This prefer-
ence stems from the fact that the correlation coefficient (R2) of the nonlinear fitting using
the PSO kinetic model is closer to 1 than that of the PFO kinetic model. Moreover, the
calculated equilibrium adsorption amount (qe, max) derived from the nonlinear fitting of the
PSO model better matches the experimental equilibrium adsorption amount (qe, exp). The
magnitude of the rate constant k2 in the PSO kinetic model signifies that the adsorption
rate of CR by each sample follows the order of TAPT > QAPT-0.5 > QAPT-1 > QAPT-5 >
QAPT-3. It is evident that samples with larger specific surface areas exhibit faster adsorp-
tion rates compared to samples with smaller specific surface areas. Similarly, samples with
similar specific surface areas but larger pore volumes demonstrate faster adsorption rates.
Therefore, sample QAPT-5 has the best adsorption performance for the CR solution.

Figure 8b depicts the fitted intra-particle diffusion model for CR adsorption by TAPT,
QAPT-0.5, QAPT-1, QAPT-3, and QAPT-5, revealing that the adsorption of CR by each
adsorbent manifests in three linear regions. This observation suggests that the adsorption
process is governed by a multi-step mechanism involving “film diffusion”, “intra-particle
diffusion”, and adsorptive attachment [43]. Notably, intra-particle diffusion emerges as
the primary rate-controlling step in the CR adsorption process. Furthermore, both TAPT
and QAPT-0.5 undergo shorter intra-particle diffusion processes and reach equilibrium
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earlier in relation to the other three samples. This expedited equilibrium attainment can be
attributed to their relatively larger specific surface areas.

Table 3. The fitting results of PFO and PSO adsorption kinetics of TAPT and QAPT samples for
CR adsorption.

Samples
qe, exp

(mg·g−1)

Pseudo-First-Order Model Pseudo-Second-Order Model

qe, cal
(mg·g−1)

k1·(min−1) R2 qe, cal
(mg·g−1)

k2·(g·mg−1·min−1) R2

TAPT 198.8 174.7 4.125 × 10−1 0.8342 179.6 3.890 × 10−3 0.8870
QAPT-0.5 491.3 437.4 1.362 × 10−1 0.8682 457.1 4.217 × 10−4 0.9368
QAPT-1 706.2 590.9 1.434 × 10−1 0.7820 624.9 2.778 × 10−4 0.8709
QAPT-3 752.4 642.1 3.773 × 10−2 0.7675 684.3 8.847 × 10−5 0.8650
QAPT-5 758.4 671.6 3.476 × 10−2 0.7942 693.8 1.223 × 10−4 0.8848

3.3.2. Adsorption Thermodynamics of QAPT-5 for Congo Red

The adsorption isotherm experiments of QAPT-5 for CR were conducted at various
temperatures (20, 30, 40, and 50 ◦C) for 24 h. Figure 9a illustrates the nonlinear results
following the Langmuir and Freundlich isotherms. Additionally, Table 4 lists the corre-
sponding fitting parameters. It is evident that the equilibrium adsorption capacity gradually
increases with the rise in equilibrium concentration from 2.14 to 624.4 mg·L−1. The adsorp-
tion behavior of QAPT-5 towards CR aligns more closely with the Freundlich isotherm
at higher temperatures (range from 30 to 50 ◦C) and with the Langmuir isotherm at low
temperatures (20 ◦C), indicating that heterogeneous surface adsorption occurs at high
temperatures and monolayer adsorption at low temperatures. The maximum adsorption
capacity (qmax) of CR displays a decreasing trend at higher temperatures from 30 to 50 ◦C,
with the qmax value of QAPT-5 at 30 ◦C being the largest (1652.2 mg·g−1). Furthermore,
thermodynamic studies are crucial for predicting adsorption mechanisms, including physi-
cal and chemical processes. The thermodynamic parameters can be calculated based on the
Freundlich constant KF using the following equations [44,45]:

KC =
KFρ

1000

(
106

ρ

)(1−n)

, (7)

∆G⊖ = −RT ln

(
KFρ
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(
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ρ

)(1−n))
, (8)

ln

(
KFρ

1000

(
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ρ

)(1−n))
=

−∆H⊖

R
× 1

T
+

∆S⊖

R
, (9)

where ρ represents the density of pure water (assumed as ~1.0 g·mL−1), R is the universal
gas constant (8.3144 J·(mol·K)−1), and T indicates the absolute temperature in Kelvin.

Table 4. Langmuir and Freundlich isotherm parameters for CR adsorption.

T/K
qmax, expl/
mg·g−1

Langmuir Model Freundlich Model

qmax, cal/mg·g−1 KL/L·mg−1 RL
2 KF/(mg·g−1)/(mg·L−1)n n RF

2

293 1447.2 1381.4 0.3238 0.9161 761.9 0.1027 0.9080
303 1652.2 1546.3 0.4547 0.9243 825.8 0.1119 0.9307
313 1630.2 1529.0 0.3632 0.8940 786.9 0.1192 0.9615
323 1500.0 1371.3 0.3337 0.8078 690.9 0.1222 0.9776
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The values of ∆G⊖, ∆H⊖, and ∆S⊖ in Table 5 are consistent with the experimental data
of the adsorption isotherms (Figure 9a). The negative ∆H⊖ indicates the exothermic nature
of the adsorption process, leading to a decrease in both the adsorption capacity (qe) and
the equilibrium constant (KC) at high temperatures. This exothermic nature suggests the
release of energy in the form of heat into the surroundings during the adsorptive process,
causing a shift in equilibrium in the opposite direction of the reaction. Additionally, the
negative values of ∆G⊖ at all temperatures suggest that the adsorption phenomenon
occurred favorably and spontaneously. As the temperature increases, the more negative
values of ∆G⊖ confirm that the accumulation of CR anions onto QAPT-5 is more favorable
at low temperatures. The positive value of ∆S⊖ suggests an increase in randomness and
disorder at the solid/solution interface during the adsorption of CR anions onto QAPT-5.
Furthermore, the (+∆S⊖) value shows that the adsorption process is entropy-driven rather
than enthalpy-driven. The low adsorption enthalpy (∆H⊖ < 10 kj·mol−1) supports the idea
that the adsorption process is physical adsorption by a weak interaction between the CR
and the surface of QAPT-5.

Table 5. Thermodynamic parameters calculated from the Freundlich constant.

T(K) KC
∆G⊖

(kj/mol)
∆H⊖

(kj/mol)
∆S⊖

(j/(mol·K))
Van ’t Hoff
Equation

293 12.12 −29.63 −9.77 67.77 y = 1175.2x + 8.1516
303 12.08 −30.31 R2 = 0.9356
313 11.93 −30.98
323 11.76 −31.66

Moreover, Table 6 summarizes the adsorption capacities of various recently reported
adsorbents for CR in the literature. Comparatively, the qmax of the QAPT-5 in this work is
the highest among the investigated adsorbents. That is to say, QAPT-5 exhibits promising
performance in the removal of CR from aqueous solutions.

Table 6. Comparison of the adsorption quantity for CR with different adsorbents.

Adsorbents qmax (mg/g) pH Value Ref.

Organo-attapulgite 189.39 7.0 [46]
TiO2/palygorskite 518.13 7.0 [47]

Fe2O3@CeO2-ZrO2/Palygorskite 118.75 3.4 [48]
CTA-QS-1.2 664.29 ± 3.92

7~8 [39]DTA-QS-1.2 684.01 ± 8.50
CTA-1.2 145.1 ± 3.61
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Table 6. Cont.

Adsorbents qmax (mg/g) pH Value Ref.

Pal@C 34.40
1–13 [49]ACNTs 467.97

Mg-Al-Fe MMO 1369 13 [50]
Palygorskite/MIL-88A(Fe) 1141.4 10 [51]

APTES/ATP/6 142.93 6.5 [52]
Amino-functionalized

SiO2-AlOOH 252.53 - [53]

Ashitaba waste activated carbons 632.1 7 [54]
Hyper-cross-linked resin 280.0 5.01~8.14 [55]

γ-Al2O3 fibers 781.25 neutral [56]
Boehmite 1298.3 neutral [27]
QAPT-5 1652.2 neutral This work

3.4. Adsorption Performance of Pellets in a Fixed-Bed Adsorption Column

A powdered adsorbent faces significant challenges in practical applications due to
the complex and costly separation process to remove the adsorbent from the adsorption
system [57]. Therefore, it is crucial to shape the powder into a pellet and utilize a fixed-
bed adsorption column [58]. Here, a small-caliber fixed-bed adsorption column was
constructed using SA/QAPT pellets, as depicted in Figure 10a. Figure 10b illustrates
the adsorption column, which has a length of 65 mm and an inner diameter of 25 mm,
filled with approximately 2.2 g of SA/QAPT pellets, including about 2.0 g of QAPT-5
powder. At room temperature (15 ◦C), a 200 mg·L−1 CR solution was introduced into
the adsorption column via an inlet of 200 mL and flowed through the column at a rate of
10 mL·min−1 using a peristaltic pump. The solution then recirculated back to the inlet. The
timing of the experiment started when the peristaltic pump was activated, and samples
were taken at different intervals to measure the remaining CR concentration using UV-Vis
spectroscopy. To assess the recyclability of the fixed-bed adsorption column, the pellets
were eluted with ethanol for 12 h. Ten cycles of adsorption–desorption experiments were
conducted, with each cycle taking 5 h. Figure 11a demonstrates the impact of the fixed
bed cycle time on the concentration of CR in the solution. It is evident that the removal
efficiency of a 200 mL solution is approximately 50% after 1 h of cycling. The removal
rate increases to 90% after 3 h of recirculation and ultimately surpasses 96% after 5 h of
cycling. The removal of CR during a single cycle time exhibits swift removal within the
first 3 h, followed by slower removal in the last 2 h. Figure 11b showcases the recyclability
of the pellets in the adsorption column after ten adsorption–elution cycles. Even after
10 cycles, the removal rate remains beyond 96% with the concentration of the remaining
CR at 7.7 mg·L−1, which is lower than the permitted limit set by the discharge standard
(GB4287-2012: the chromaticity is 80 with ca. 25 mg·L−1 CR) [27]. These results highlight
that the developed attapulgite is an exceptional adsorbent with practical applications for
the removal of CR in aqueous solutions.
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Additionally, the production cost of QAPT as an adsorbent material is much lower
compared to other materials. The cost of producing 1 ton of QAPT includes approxi-
mately CNY 1050 for attapulgite clay, CNY 216 for sodium diphosphate, and CNY 1152
for cetyltrimethylammonium chloride, so the calculated production cost of QAPT is ap-
proximately 2418 CNY/t, which is significantly lower than the average market price of
commercial adsorbents such as activated carbon (5000 CNY/t) and PPal (3000 CNY/t) [59].

4. Discussion
4.1. Exploration of Adsorption Mechanism

To further investigate the adsorption behavior towards CR, FT-IR and XPS analyses
were performed on QAPT-5 before and after the adsorption of CR (QAPT-5-CR) as well as
on CR alone. One can observe the stretching vibrations of (Mg/Al/Fe)O-H at 3615 cm−1

and (Si)O-H at 3544 cm−1 for QAPT-5. Additionally, in Figure 12a, several vibration bands
are evident for CR. For instance, peaks at 3433 cm−1 and 1630 cm−1 are attributed to
the stretching vibrations of -NH- and -N=N-, while those at 1241, 1196, and 1151 cm−1

correspond to the stretching vibration of S=O [27]. The peaks at 3016, 2926, 2851, and
1476 cm−1 are indicative of C-H vibration. Furthermore, the characteristic adsorption band
of attapulgite associated with the Si-O-Si bond, which connects two SiO4 tetrahedra on a
single pyroxene chain, is observed at approximately 1031 cm−1. A new vibrational peak
emerged around 1370 cm−1 in the infrared spectra of QAPT-5 after the adsorption of CR,
attributed to the skeletal bending vibrations of CR. Additionally, vibrational absorption
peaks within the fingerprint region, ranging from 697 to 758 cm−1, were identified as
out-of-plane bending vibrational peaks of aromatic hydrocarbons. These results confirm
the presence of CR on the attapulgite sample after adsorption.

In order to further investigate the potential interactions between QAPT-5 and CR
during the adsorption process, high-resolution XPS spectra of N, Si, and S were carefully
collected from the samples before and after adsorption. Interestingly, the peaks of N 1s
at 399.5 eV and 400.4 eV for QAPT-5-CR, which are assigned to amine (-NH2) and azo
(-N=N-), showed a slight shift towards higher binding energies compared with solo CR, as
illustrated in Figure 12b [60]. Additionally, the four Si 2p transitions at 101.4, 102.0, 102.5,
and 103.2 eV for QAPT-5 slightly moved to 102.0, 102.6, 103.3, and 103.9 eV for QAPT-5-
CR in Figure 12c, corresponding to Si(-O)1, Si(-O)2, Si(-O)3, and Si(-O)4, respectively [61].
Furthermore, the S 2p spectrum of CR at 168.8 eV (S 2p3/2) and 170.1 eV (S 2p1/2) displays
lower binding energies at 168.1 eV and 169.3 eV for QAPT-5-CR in Figure 12d, indicating
the presence of -SO3

2− from CR [62]. These findings suggest that there may be some
interactions occurring between QAPT-5 and CR during the adsorption process, consistent
with the thermodynamics analysis.
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Figure 13 illustrates the SEM micrographs of the sample post-CR adsorption by
QAPT-5 along with the outcomes of the EDX analysis. In Figure 13a, it is evident that
following CR adsorption, the sample experiences more severe agglomeration and a blocky
buildup. Furthermore, the EDX elemental analysis results indicate an increase in the C and
S elemental content of sample QAPT-5 post-CR adsorption, attributed to the adsorption of
CR onto the sample (Figure 13b).
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The zeta potential test results of the adsorbent samples further reveal a gradual
increase in zeta potential as the molar mass of CTAC increased (Table 7). The zeta potential
of the adsorbent samples changed from negative to positive when the molar mass of
CTAC reached 3.0 mmol. The highest zeta potential value of 8.25 mV was recorded at a
molar mass of 5.0 mmol. This pattern in zeta potential is found to be consistent with the
adsorption capacity of the samples for CR. After the adsorption of CR, the zeta potential
of adsorbent QAPT-5 dramatically dropped from 8.25 mV to −24.8 mV. These findings
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indicate that the adsorption mechanism of CR by the adsorbent QAPT primarily involves
electrostatic interactions.

Table 7. Zeta potential of different attapulgite samples.

Sample Zeta Potential/mV

TAPT −31.27 ± 0.32
CAPT-0.5 −17.47 ± 0.40
CAPT-1 −16.63 ± 0.31
CAPT-3 5.22 ± 1.51
CAPT-5 8.25 ± 1.56

CAPT-5-CR −24.8 ±1.95

In summary, as revealed by IR analysis, the predominant adsorption sites on the
surface of QAPT-5 are primarily (Mg/Al/Fe)O-H, (Si)O-H, and quaternary ammonium
positive ions. The adsorption mechanism of CR on the QAPT-5 surface primarily involves
two types of interactions: strong interactions such as electrostatic attraction and hydro-
gen bonding, and weak interactions including van der Waals forces and n-π interactions.
The zeta potential of QAPT-5 indicates that negatively charged CR molecules are readily
attracted to positively charged QAPT-5, representing a pivotal interaction between the
dye molecule and the adsorbent surface. The adsorption mechanism also encompasses
hydrogen bonding interactions between hydrogen atoms on the surface of QAPT-5 and
the SO3− groups within the structure of the CR dye. Additionally, the delocalization of the
lone pair of electrons from the O atom to the π-orbital of the dye’s aromatic ring arises from
n-π interactions. Collectively, these observations elucidate the adsorption of the CR dye
onto the QAPT-5 surface (Figure 14).
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4.2. Perspectives about Refinement and Application of Low-Grade Attapulgite

While purification technologies for attapulgite have made notable advancements over
the years, most efforts have been on refining medium-to-high-grade attapulgite and sepa-
rating bar crystals. This is because of the complexity of associated mineral species, which
presents a major obstacle in purifying low-grade attapulgite, especially impurity miner-
als that have similar physical and chemical properties to attapulgite, such as muscovite
and montmorillonite. Through the process of colloidal mill-assisted ultrasonic-fractional
centrifugation, a substantial removal of impurity minerals like quartz and dolomite is
achieved, increasing the purity of the refined attapulgite to 60%. However, the content of
muscovite, an associated mineral, shows minimal change before and after the purification
of the raw ore. Therefore, future endeavors in purifying low-grade attapulgite may focus on
addressing associated minerals with similar physical and chemical properties to attapulgite.
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5. Conclusions

Here, a colloidal mill-assisted ultrasonic-fractional centrifugation method has been
developed to purify low-grade attapulgite clay. The refined attapulgite (TAPT) has signifi-
cantly improved in purity from 16.9% to 60%, specific surface area from 60.57 m2 g−1 to
135.5 m2 g−1, and pore volume from 3.42 mL g−1 to 17.67 mL g−1 in relation to natural ore.
Further, TAPT undergoes hydrothermal modification by CTAC from negative charge to
positive and then exhibits promising adsorption performance towards Congo red in both
types of powder and pellets. The kinetics follow the PSO model, primarily controlled by
a multi-step mechanism involving film diffusion, intra-particle diffusion, and adsorption
attachment, and the isotherms follow the Langmuir model at 20 ◦C and the Freundlich
model at high temperatures (30, 40, and 50 ◦C), with the maximum qmax of 1652.2 mg·g−1

at 30 ◦C. Therefore, this work opens a new way to the high-value utilization of low-grade
attapulgite clay in practical applications.
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