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Abstract: Surface residual stresses in welded specimens significantly influence properties such as
fatigue resistance, fracture toughness, and the superplasticity of joints. In this study, we employed
friction stir welding, a well-established joining method, to weld dissimilar titanium alloys. By
combining two distinct titanium alloys, we aimed to harness their unique properties when subjected
to cyclic loading, impact, or superplastic forming processes. Utilizing X-ray diffraction, macroscopic
surface stresses were assessed in dissimilar titanium alloys (Ti-6242 standard grain (SG) and Ti-
54M) welded via friction stir welding, assuming a linear lattice distortion. The study accounted
for misalignment, significant distortion, and grain refinement in the stir zone. Macroscopic surface
residual stresses were quantified on the weld surface and at a depth of 1.5 mm beneath it within a
square cross-section (1 × 1 mm2) by oscillating the specimen in the (X-Y) direction. The sin2φmethod,
implemented through the LEPTOS® (v7.8) software, was employed for residual stress measurement.
The analysis of the results was conducted with respect to different rotation and traverse speeds. It was
noted that at the center (CEN) of the weld, commonly referred to as the weld nugget, approximately
50 MPa of tensile stress was observed under the lowest values of both tool rotation speed and
traverse speed. Tensile residual stresses were evident at the boundaries and within the stir zone. No
discernible pattern was observed at the specified locations. Notably, the resultant values of residual
stress, influenced by rotation and traverse speeds, exhibited asymmetry.

Keywords: friction stir welding; dissimilar titanium alloys; residual stress; X-ray diffraction

1. Introduction

Since its establishment in 1991, friction stir welding, along with numerous other
variations of solid-state joining, has emerged as a dominant force in the realm of joining
technologies across various industries, notably in aerospace [1,2]. Despite having matured
and been refined over nearly three decades, the design and structural integrity of friction
stir-welded (FSWed) metallic parts require considerations that extend beyond mere alloy
selection and processing parameters. These components require thorough metallurgical
and mechanical analyses to understand the intricate and hierarchical nature of evolving
microstructures. Significant efforts have been dedicated to determining the processing win-
dow (rotation and transverse speed) for friction stir welding of similar titanium alloys [3].
A wealth of information, including microstructure analysis and mechanical properties such
as tensile strength, fatigue resistance, hardness, and residual stress, is readily available
for friction stir-welded similar titanium alloys [4]. However, scarce data exist regarding
residual stress values in friction stir-welded dissimilar titanium alloys. In the FSW of
dissimilar titanium alloys, migrating elements are anticipated to exert significant influence
on crystallographic orientation and lattice strain. Moreover, the severe plastic deformation
induced by the tool shoulder (at the weld surface) and pin (within and around the stir zone)
must be considered when assessing residual stresses [4].
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Residual stresses, whether compressive or tensile, can significantly influence fatigue
crack growth. Limited research has been conducted on residual stress measurements and
their impact on fatigue crack growth in friction stir-welded titanium alloys [5–8]. In a study
by John et al. on 6 mm thick Ti-6Al-4V sheets subjected to FSW, compressive residual
stresses (500 MPa) were found at the root, and tensile residual stresses (approximately
100 MPa) were observed in the center of the weld nugget [7]. Prime et al. have presented
contour maps depicting residual stresses on the transverse cross-section of FSWed Ti-6Al-4V
sheets [9]. The stress profiles bore a closer resemblance to those observed in fusion welding
than the typical two-peak stress distribution reported for FSW in aluminum alloys [10].
Within the stir zone, or nugget, residual tensile stress was evident. A single peak of tensile
stresses exceeding 400 MPa was noted just below the surface, corresponding to the tool
shoulder. The stress distribution was asymmetric, with higher stresses observed on the
advancing side of the weld. The elevated compressive stresses observed at the edge of
the plate on the advancing side were likely anomalous and probably resulted from the
machining of the original plates [9]. In a research study conducted by Pasta et al., residual
stresses in 2 mm thick Ti-6Al-4V sheets were measured using the cut compliance method.
The study revealed the presence of high tensile stresses (200 MPa) in the weld nugget (WN),
which were counterbalanced by compressive stresses in the adjacent base material [6].
Furthermore, a numerical validation of the residual stress and subsequent fatigue crack
propagation (FCP) analysis was performed using AFGROW software v3.0. The results
of fatigue tests indicated that the life expectancy for cracks propagating perpendicular
to the friction stir-welded (FSW) joint was longer than that for a stress-free base metal
specimen [6]. Steuwer et al. investigated the residual stresses in 3-mm Ti-6Al-4V friction
stir welds (FSWs) as a function of tool travel speed [11]. They observed that increasing
weld traverse speed resulted in a narrower and higher residual stress profile. A 3D thermal-
mechanical finite element model for the analysis of FSW of Ti-62A has also been developed
with a focus on conventional, stationary shoulder, and bobbin tools [12]. Edwards et al.
conducted a study on surface residual stresses using the Hole-Drilling Strain-Gage Method
in Ti-6Al-4V sheets welded with thicknesses of 6, 9, and 12 mm [8]. They discovered tensile
residual stresses in the longitudinal direction and compressive stresses in the transverse
direction. Residual stress profiles were found to be similar for welds of 3 mm, 6 mm,
and 9 mm thicknesses, indicating that surface residual stresses developed during welding
are independent of thickness. However, the 12 mm weld showed discrepancies with the
concurrent results, prompting further investigation to either confirm or challenge existing
understanding within the scientific community.

Considering the pursuit of achieving superplasticity in welded panels and addressing
parts subjected to varying thermal and mechanical loads, it becomes essential to develop
solutions that establish the relationship between fundamental processing parameters (tra-
verse and rotation speed) and the presence of residual stresses in the weld. Furthermore,
these solutions must operate within the realms of precision and cost-effectiveness of mate-
rials. While mechanical techniques such as hole drilling and methods utilizing nonlinear
elastic modulus (such as ultrasonic and magnetic techniques) are effective under certain
assumptions regarding the nature of the residual stress field and sample geometry, their
spatial depth and resolution capabilities fall orders of magnitude short compared to those
of X-ray diffraction.

It is widely acknowledged that compressive residual stresses enhance fatigue resis-
tance under tensile loading conditions, whereas tensile residual stresses offer advantages
under compressive loading. However, the literature regarding residual stress measurement
in dissimilar titanium alloys is scarce. Therefore, it is crucial to conduct research that can
benefit industries, particularly in aerospace, automotive, and biomedical implant applica-
tions. By advancing research in the joining of dissimilar titanium alloys, we can facilitate
further improvements in these critical sectors.

Over the year, a limited effort has been made to measure the values of the residual
stresses in the FSWed similar titanium alloys [8–11]. However, there is no information



Materials 2024, 17, 1482 3 of 22

available on the residual stress measurement for FSWed dissimilar titanium alloys. Hence,
in this article, we have expanded upon the existing knowledge of friction stir welding (FSW)
of similar titanium alloys and presented the surface residual stress in FSWed dissimilar
titanium alloys on two different surfaces.

Computer-aided design (CAD), coupled with numerical methods and several other
experimental methods to measure the residual stresses in metallic alloys, has transformed
product development in numerous industries, enabling engineers to validate and analyze
complex systems with unprecedented precision and efficiency. This paper explores the
XRD sin2φ method to analyze and mitigate residual stresses, demonstrating its efficacy
through comprehensive data analysis and experimental validation. Residual stresses,
stemming from factors like non-uniform cooling rates and phase transformations during
fabrication, are analyzed using sin2φ methods that incorporate key parameters such as
material properties (elastic modulus, Poisson’s ratio, and undeformed lattice spacing), man-
ufacturing process details (tool rotation and traverse speed), geometric features, boundary
conditions, and environmental factors.

We have emphasized the crystallographic sensitivity of the results, considering the
fluorescence associated with titanium alloys and the use of Cu − Kα radiation [13]. Fur-
thermore, we discuss the location of diffraction peaks, their intensity and 2θ axis shifts,
broadening, and the presence of doublet peaks (Kα and Kβ), all in the context of Miller
indices (hkl) and the influence of sample geometry [14]. We have included details of this
novel data analysis approach to elucidate the methodology, particularly in relation to the
peaks observed at 102◦ and 109◦ corresponding to (203) and (211) reflections, respectively.

2. Materials and Methods

The 5 mm thick as-milled sheets of Ti-5Al-4V M (on the retreating (RET) side) and
Ti-6Al-2Sn-4Zr-2Mo standard grain (SG) (on the advancing (ADV) side) as provided by
The Boeing Company were welded using three rotation speeds (225, 275, and 325 rpm) and
traverse speeds (100, 125, and 150 mm/min) to produce a panel measuring 250 × 300 mm2.
Frictional heat-assisted softening, deformation, and eventual solid-state linkage between
these two sheets were facilitated by a tapered W-La (tungsten-lanthanum) tool, the di-
mensions of which are proprietary to The Boeing Company (Seattle, WA, USA). The FSW
machine’s automation, placement of the backing anvil, tool insertion, and a 2◦ tilt on the
retreating side, along with controlled argon (Ar) flow, were meticulously managed to
ensure defect-free and flashless welds.

While the production of welded panels was graciously facilitated by The Boeing
Company, all experiments and analyses were conducted at the University of Washington,
Seattle, WA, USA. Specimens were labeled according to the following notation, as shown
in Table 1.

Table 1. Specimen notation followed in this study.

Specimen Rotation (rpm) Traverse (mm-min−1)

P1 275 125
P2 275 150
P3 325 125
P4 275 100
P5 225 125

Figure 1 illustrates the nomenclature used in the manuscript under the consideration
of rotation per minute (rpm) and traverse speed (mm/min).
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Figure 1. Nomenclature of specimens with respect to rpm and mm/min. For more details about
specimens (P1–P5) please refer to Table 1.

Figure 2 shows the macroscopic images of the welded samples. For relevant informa-
tion please refer to Table 1. The color represents increasing traverse speed and rotation
speed on the x and y axes.
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Figure 2. Macrographs of transverse cross-sections of friction stir-welded dissimilar alloys: Ti-54M
(RET) and Ti-6242-SG (ADV).

The microstructures in the center of the weld are shown in Figure 3. With Ti-54M being
an α− β alloy and Ti-6242 being a near α alloy, the microstructure consisted of a typical
combination of equiaxed β grains that decorated grain boundary α, and equiaxed β grains
were interspersed with α laths. For a more detailed analysis of the microstructures at
multiple locations, readers are recommended to refer to [15].
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Figure 3. Microstructures in the center of the transverse cross-section of welded samples.

To determine the impact of rotation and traverse speed in friction stir welding, we
conducted experiments on five distinct specimens to assess residual stress. For each
specimen, we measured residual stresses both at the top of the weld and across its transverse
cross-section, as depicted in Figure 4. Utilizing the X-ray diffraction (XRD) sin2φmethod,
residual stresses were assessed for two distinct diffraction peaks, (203) and (211). A
total of 60 stress tensors were analyzed, culminating in the presentation of Von Mises
stress (σV) values specifically for the (203) peak in this study [16].
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3. Residual Stress Measurement

Surface residual stresses were assessed on the transverse cross-section of the weld, as
depicted in Figure 4. Three key points—(1) at the ADV boundary, (2) at the weld center,
and (3) at the RET boundary—were selected for analysis. For the top surface, σyy is zero,
and for the transverse surface, σzz is zero.

Utilizing diffraction data from area detectors, stress measurement followed conven-
tional methodologies such as the sin2φ method or other algorithms originally developed
for conventional diffractometers equipped with point or line detectors. The diffraction
profiles resulting from γ-integration were treated similarly to those obtained from a line
detector or scanning point detector, as illustrated in Figure 5, which showcases an ex-
perimental instance. The residual stress measurement was conducted using a GADDS™
(Bruker, Billerica, MA, USA) microdiffraction system.
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Figure 5. Experimental example of the sin2φmethod with an area detector. The instructional label
behind the epoxy is white and is irrelevant to the content of this manuscript.

For stress measurement in cases (203) and (211), the diffraction ring of the α phase
was utilized. The laser video sample alignment system positioned the inside surface of the
spring accurately. Figure 6 demonstrates that the laser beam passing through the spring
pitch forms a bright spot on the weld’s surface. Figures 5 and 6 indicate that aligning
the sample surface to the instrument center was achieved by overlapping the laser spot
with the crosshair. The methodology for stress analysis with XRD involves configuring the
diffraction system, planning data collection, correcting data frames, and integrating stress
calculations from processed data points. Many concepts and strategies developed for stress
analysis with conventional diffractometers are still relevant for XRD.

Stress measurements are primarily conducted on polycrystalline metal parts, typically
focusing on high-angle peaks where diffraction intensities may not be very high. Photon
counting detectors like multiwire proportional chambers (MWPC) and microgap detectors
offer high sensitivity with minimal noise, making them suitable for stress measurement
systems using laboratory sources such as sealed X-ray tubes or rotating anode generators.
For stress measurements on ferrous metals, Cr or Co radiation is commonly used to prevent
fluorescence, and in such cases, multiwire area detectors are preferred. When employing a
Mo X-ray source or synchrotron beam, CCD detectors are preferable due to their capability
to handle high-energy X-rays and high count rates. Spatial resolution requirements are
contingent upon the Full Width at Half Maximum (FWHM) of the diffraction profile. In
practice, a FWHM with three to six times the spatial resolution is usually adequate for
accurately determining peak positions, provided there are enough counts on the profile.
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Further reduction in spatial resolution does not necessarily enhance peak position accuracy,
as diffraction peak widths for stress measurement are typically broad.
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The choice of goniometer and sample stage depends on factors such as sample size,
weight, and the stress or stress tensor components to be determined. For instance, a large
XYZ stage on a goniometer with two main axes is preferable for handling one normal stress
component on a large sample. Co-scanning can be achieved through two main axes in either
the θ− 2θ or θ− θ configuration. In a vertical θ− θ configuration, co-scanning is achieved
by moving the primary beam and detector while keeping the sample stationary, which is
advantageous for large samples. The vertical ω−ω configuration requires both the X-ray
source and detector to move for the ψ scan. The horizontal θ− 2θ configuration offers the
advantage of not needing to move the X-ray source, which is particularly convenient for a
rotating anode generator. Additionally, moving a heavy 2D detector in horizontal rotation
is easier. In 2D stress measurement, the data collection scan can replicate iso-inclination
and side-inclination as in conventional methods. The two main axes can provide only
the iso-inclination scan (ω scan), while the ψ axis is necessary for the side-inclination
scan (ψ). In the conventional method, the ψ scan typically exhibits less variation in the
incident angle, resulting in a relatively consistent penetration depth within an interval
typically ranging from 5◦ to 30◦. This consistency allows for more uniform and reliable
measurements compared to theω scan. However, despite its advantages, the ψ scan also
has limitations. One limitation is that it may not capture detailed information about the
microstructure or specific crystallographic orientations within the material. Additionally,
the ψ scan may require longer measurement times compared to other techniques, which
can impact productivity, especially in high-throughput settings. Moreover, interpretation
of the data obtained from the ψ scan may be challenging in complex material systems or
when analyzing samples with non-standard geometries. These limitations underscore the
importance of selecting the most appropriate scanning technique based on the specific
requirements of the analysis. An XYZ stage is crucial for locating the measurement point
on the sample and collecting data for stress mapping. A sample alignment device, such
as a laser video system, is desired for accurately aligning the measurement spot to the
instrument center.

To grasp the sensitivity and identify potential sources of error associated with the
measurements, the top of the weld surface was closely examined. The fundamentals of
X-ray diffraction and its application in measuring residual stresses are well documented in
the literature [17]. Any alteration in the lattice spacing, denoted as d, induces a shift along
the 2θ axis. Tensile and compressive residual stresses shift the diffraction peaks to a lower
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and higher angle, respectively. To assess stress in various directions, the specimen was
rotated at three different angles of ψ. For example, when ψ = 0 and tensile stress is present
in the specimen, it reduces the lattice spacing (thus, slightly increasing 2θ). Conversely,
rotating the specimen by known angles ψ increases the lattice spacing beyond the stress-
free state, resulting in a decrease in 2θ. Consequently, alterations in the angular position
of the diffraction peaks for a given ψ enable the calculation of the stress present on the
sample surface lying within the plane of diffraction, which encompasses both the incident
and diffracted X-ray beams. Although the incident beam’s diameter was 800 µm, the
specimen was oscillated in the X−Y direction, covering a 1× 1 mm2 area at the boundaries
and within the stir zone. This approach aimed to capture the crystal orientations of as
many α laths (in the stir zone), refined equiaxed α grains (on the advancing side), and
refined bimodal grains (on the retreating side) as possible, minimizing errors associated
with the fluorescence of titanium alloys.

The residual stress measurement system utilized in this study is the Bruker Gen-
eral Area Detector Diffraction System (GADDS), an X-ray diffraction (XRD) system. The
system offers two approaches for residual stress measurement: the conventional ap-
proach and the two-dimensional (2D) approach. Measurements were conducted with
the following configuration: Cu − Kα radiation (wavelength of 0.1545049 Å), genera-
tor power set at 40 kV/120 mA, and a 0.8 mm collimator with a front pinhole only.
For each stress measurement, 24 frames were captured at ω = 55◦,ψ = 0◦, 20◦,40◦,
and ϕ = 0◦, 45◦, 90◦, 132.4◦, 180◦, 217◦, 265◦, 315◦. The data collection time per frame
was 120 s, resulting in a total time of 48 min for one stress measurement.

The methodology employed for characterizing the residual stresses observed on the
advancing (ADV) and retreating (RET) sides of the weld is outlined in Table 1. Specific
stress measurement parameters for a peak observed at 2θ0 = 86◦(202) are detailed in
Table 2.

Table 2. Recipe for residual stress analysis using X-ray diffraction.

Number of
Runs ω (in ◦) Ψ (in ◦) Angle Coverage

(in ◦)
Number of

Frames Time (s)

1 55 0 45 8 120
2 55 20 45 8 120
3 55 40 45 8 120

The calculated frames underwent processing using LEPTOS® (v7.8) software. Particu-
lar attention was paid to determining peak location and detecting three monochromatic
high-intensity lines: Kα1, Kα2, and Kβ. Given that Kα doublets are commonly utilized
for residual stress measurement, higher-angle peaks (such as (203)104◦ or (211)110◦ ) were
selected to ensure that the data reduction capabilities of Pearson VII distribution func-
tions and a five-point least square parabolic fit fell within the integration limits built
into LEPTOS® [18]. For any given peak, such as (202)86◦ , the following parameters were
provided by LEPTOS® and are shown in Table 3 [14].

Table 3. Residual stress parameters for a specific peak (202) observed at 2θ0 ≈ 86◦.

Material hkl Wavelength 2θ(in◦) Poisson Ratio (ν) Young’s Modulus
(E) (MPa)

→
S1 0.5∗

→
S2

Ti 202 0.1540549 Å 86.73 0.33 111.982 −2.95 × 10 −6 1.19× 10 −5

At the top of the weld, the stress component σyy along the XEC direction
→
S2 is zero.

Similarly, for the lateral cross-section of the weld, as depicted in Figure 4 or Figure 7, the

stress component σzz along the XEC direction
→
S3 is zero. Details of the remaining stress

tensor values for the (203)102◦ peak are provided in the table below.
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Figure 7. Schematic representation of a specimen goniometer for the sin2φmethod.

Despite our selection of the peak with the least scattering (202), a few sub-regions fell
outside the integration range, resulting in significant error values in our calculation [13].
Additionally, the sensitivity of the measurement and the scattering caused by the absorption
of the X-ray beam by the detector and the attenuation of the X-ray beam as it penetrates the
specimen (expressed by I(x) = Ioe−µx, where Io is the initial intensity and µ is the linear
absorption coefficient) affect the lattice spacing (d) for the corresponding peak considered
for residual stress measurement. Peaks (203) and (211) constitute the primary constituents
of the diffraction pattern in terms of intensity, as depicted in Figure 8. Therefore, residual
stress measurements were conducted only for these two peaks. A comparison of stress
values (σxx and σyy) has been performed for these two peaks across all five specimens
(P1–P5).

To illustrate the variability in the datapoints, we have only included the σxx (or σ11)
in the following discussion. Readers are encouraged to refer to ref. [15] for σyy (or σ22)
and further details. Figure 9 presents a comparison of residual stresses for σxx measured
at two distinct peaks, illustrating the relational variations within the data. As depicted in
Figure 8, a notable disparity in scattering between these two peaks can be observed on the
ADV, CEN, and RET sides of the welded sample. To address such occurrences, employing
a scandium (Sc) foil as a filter for Kβ peaks separate from corresponding Kα peaks can
prevent additional integration of the peaks within specified sub-regions and the selected
step size 0.01.

While scandium is indeed an expensive metal, its use as a filter offers distinct advan-
tages in X-ray diffraction analysis. One advantage is the high atomic number of scandium,
which enables efficient absorption of low-energy X-rays while allowing higher-energy
X-rays to pass through. This selective absorption helps in reducing background noise and
enhances the signal-to-noise ratio, resulting in improved peak resolution and sensitivity in
the diffraction pattern. Additionally, scandium foils are known for their uniform thickness
and high purity, ensuring consistent and reliable performance in filtering X-rays. While
foils made from basic metals could serve as filters, they may not offer the same level of
efficiency and precision as scandium foils, especially in applications where high sensitivity
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and accuracy are crucial. Another reason is the sensitivity of the results, particularly for
peaks observed at higher peaks (211)102◦ and (211)109◦ .
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description of P1–P5 can be found in Figure 1 and Table 1. Here, ADV = advancing, CEN = center,
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As illustrated in Figure 9, it is evident that the residual stress values measured by
selecting these two peaks [(203) and (211)] are clustered with a significant amount of error
for all five specimens (Ti-6242SG and Ti-54M) [14]. However, upon examining the trend in
residual stress values, it becomes apparent that, with the exception of specimens P2 and P4,
the remaining three specimens follow a consistent profile. Specimens P2 and P4, on the
other hand, exhibit an opposite trend in residual stresses compared to the other three. Addi-
tionally, an intensity analysis for the two peaks ((203) at 2θ = 102◦ and (211) at 2θ = 109◦)
is presented in Figure 8. It is noteworthy that the peak observed for Ti-6242SG and Ti-54M
P1 (275/125) on the retreating (RET) and advancing (ADV) sides exhibits slightly higher in-
tensity values, along with the presence of Kβ with a peak (211). Referring to the sensitivity
analysis, it can be inferred that residual stresses measured for this specimen at locations
RET and CEN are more reliable with peak (203). Similarly, for location ADV, as depicted in
Figure 4, it can be noted that since some amount of Kβ is observed on both peaks, neither of
the measurement schemes provides a discrete value for the residual stresses in the absence
of an appropriate fluorescence absorption filter (such as scandium foil for titanium and its
alloys). Other peaks [(202), (104), and (210)] mentioned in Table 4 do not exhibit sufficient
intensity to ensure reliable measurements; hence, all measurements were conducted solely
for (203) and (211).

Henceforth, in our calculations, parameters such as step size and peak rejection were
meticulously chosen after numerous trials and errors to ensure that integration points on
the intensity profiles (as observed in GADDS) align within the integration limits of 2θ.
The designated locations chosen for measurements for the five specimens considered in
this study are depicted in Figure 4. Results for both the top of the weld and at a depth of
1.5 mm below the top surface on the transverse cross-section are presented individually in
this section. A somewhat similar trend was observed in the case of σyy(or σ22) as well as
measured from the LEPTOS® (v7.8) software [15].
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Table 4. Intensity versus 2θ plot for the observed peaks during measurement.

Peak Number Angle d(Å) I%(f) (h k l) θ(◦) 1/(2d) 2π/d

1 87.576 1.1132 1.8 (2 0 2) 43.788 0.4492 5.6445
2 93.25 1.0597 1.4 (1 0 4) 46.625 0.4718 5.929
3 103.304 0.9822 3.2 (2 0 3) 51.652 0.5091 6.3971
4 107.132 0.9574 1 (2 1 0) 53.566 0.5222 6.5625
5 110.43 0.9379 5.6 (2 1 1) 55.215 0.5331 6.6992

Considering the variability in the datapoints, for two XRD peaks (203) and (211),
obtained at 102◦ and 109◦, respectively, 10 sub-regions with a step size of 0.01 and a peak
rejection threshold of 20% were utilized to measure stresses using LEPTOS® (v7.8) software,
as shown in Figure 10. Based on the values of stresses in the stress tensor as measured
from LEPTOS® (v7.8) software, the values of σV were calculated and are included in the
following sections using the LEPTOS® (v7.8) software at the University of Washington, and
a methodology is presented in the sections below.

Materials 2024, 17, x FOR PEER REVIEW 14 of 25 

Sensitivity of Analysis 
At high angles, diffraction patterns tend to exhibit a notable amount of scattering in 

the intensity of reflected beams. Among the five X-ray diffraction peaks observed within 
the range of (86°-112°; as detailed in Table 4), two peaks, (203) and (211), prominently 
feature significant volume fractions in friction stir-welded dissimilar titanium alloys [19]. 
A sensitivity analysis regarding the associated Kஒ  shift between these two peaks, i.e., (203) and (211), has been conducted and is presented in the following section.

A description of terms used throughout the manuscript is shown in Table 5.

Table 5. Description of terms used in the manuscript. 

Term Descriptionθ Angle of incidence or diffraction d Spacing between crystal lattice planes I Intensity of the diffracted X-ray beam (hkl) Miller indices of crystallographic planes within a material φ Angle of tilt or rotation of the sample around a specific axis relative to the incident X-ray beam 

Figure 10. Measurement scheme for residual stresses for peaks (203) and (211).



Materials 2024, 17, 1482 13 of 22

Sensitivity of Analysis

At high angles, diffraction patterns tend to exhibit a notable amount of scattering
in the intensity of reflected beams. Among the five X-ray diffraction peaks observed
within the range of (86◦–112◦; as detailed in Table 4), two peaks, (203) and (211), promi-
nently feature significant volume fractions in friction stir-welded dissimilar titanium al-
loys [19]. A sensitivity analysis regarding the associated Kβ shift between these two peaks,
i.e., (203) and (211), has been conducted and is presented in the following section.

A description of terms used throughout the manuscript is shown in Table 5.

Table 5. Description of terms used in the manuscript.

Term Description

θ Angle of incidence or diffraction
d Spacing between crystal lattice planes
I Intensity of the diffracted X-ray beam

(hkl) Miller indices of crystallographic planes within a material

φ
Angle of tilt or rotation of the sample around a specific axis relative to the
incident X-ray beam

ψ
Represents the angle of rotation around the sample surface normal, also known
as the azimuthal angle

ω Represents the angle of the sample with respect to the incident X-ray beam
E Elastic modulus
ν Poisson’s ratio

→
S1,

→
S2,

→
S3, Direction of σ in x, y, and z directions

φR Rotation axis for φ
ψR Rotation axis for ψ
ωR Rotation axis forω

A typical measurement scheme for peak (203) is shown in Figure 11. For more details
about the software analysis and the training module, please refer to [20,21].

The sensitivity of the analysis depends significantly on the step size. From these
frames, peaks (203) and (211) have been selected based on peak intensity for further
analysis. In our discussion, we have focused on the (203) peak due to its significantly
higher intensity and minimal presence of the Kβ doublet. This doublet, observed in the
X-ray emission spectrum of elements with atomic numbers greater than 30, arises from
transitions involving the K shell and indicates variations in X-ray diffraction intensities due
to spin-orbit coupling effects in titanium atoms. These effects, stemming from relativistic
phenomena in heavy elements like titanium, split X-ray transition energy levels into distinct
states. While subtle, the presence of a Kβ doublet in titanium peaks offers valuable insights
into the electronic structure and bonding environment within the crystal lattice, aiding
material characterization. Moreover, we have elaborated on measurement techniques
to underscore how the choice of peak, whether (203) or (211), impacts the sensitivity of
the analysis. This emphasis on differentiation within the context of XRD, LEPTOS®, and
observed values is crucial for a comprehensive understanding and interpretation of our
findings. A complete analysis along with 30 stress tensors (five specimens, two peaks, and
three locations) for the measurement scheme as shown in Figure 11 can be found here [15].
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4. Results and Discussion

Figure 12 illustrates the intensity profile for three locations on the transverse cross-
section of the weld, situated at a depth of 1.5 mm below the top surface of the weld, as
designated in Figure 4. The advancing (ADV) side, indicated in red, exhibits shifted and
slightly lower intensities of diffraction peaks, suggesting an increase in lattice parameters.
Moreover, upon comparison with the texture of this specimen, where (101)α contributes the
most to lattice straining in comparison with (203)≈103

◦ and (211)≈109
◦, even a minor change

in lattice spacing (and thus 2θ) should signify a peak shift on the ADV side. Visualizing
the rotation and traverse in the weld nugget, it becomes apparent that on the retreating
(RET) side and in the center of the weld, the material is subjected to greater compression
compared to the ADV side. Conversely, on the ADV side, a solid-state linkage exists
between the relatively softer (Ti-54M) and harder (Ti-6242 SG) materials. Depending on the
processing parameters, especially traverse speed, the stress values and the proportion of
Ti-54M present on the ADV side can change significantly.
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Figure 12. Diffraction patterns for ψ = 0◦, 20◦, 40◦ (from top). Red curve corresponds to advancing
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Based on the shift in the peak intensity profiles observed on the advancing (ADV) side
(Figure 12) of the transverse cross-section of the weld, it can be inferred that the ADV side
leads to a more uniformly strained lattice compared to the center (CEN) and retreating
(RET) sides [22]. To ensure clarity and minimize errors in residual stress measurements,
an enlarged view of the inset window (depicted in the ADV frame in Figure 8 (ADV)) is
presented in Figure 13 for two different scenarios.

Building upon our earlier discussion regarding the associated Kβ shift in the peaks, we
conducted numerous trials by employing various step sizes and integration limits (utilizing
Pearson VII distribution functions and a five-point least squares parabolic fit) to achieve
convergence. However, for the purpose of discussion, the residual stresses measured for
the two peaks, (203) and (211), are presented in the following section.

For specimen P1, an identical comparison of these two peaks was conducted on the top
surface of the weld, as depicted in Figure 13b. An intriguing observation in Figure 13b is the
positioning of the advancing (ADV) (red), center (CEN) (green), and retreating (RET) (blue)
peaks in contrast to Figure 13a. A notably distinct profile is evident on the top surface of the
weld. Here, in Figure 13b, we observe a similar pattern between the ADV and CEN sides on
the top surface of the weld. The ADV side on the top surface of the weld and the ADV side
boundary predominantly consist of Ti-6242 SG, while the RET side remains of the same
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material (Ti-54M) in both cases. Considering the variation in hardness between the base
materials Ti-54M and Ti-6242 SG (with Ti − 54MHV > Ti − 6242 SGHV), and the associated
shearing and deformation on the top of the weld ADV side (with Ti-6242 SG positioned
atop the weld on the ADV side), it appears to undergo more uniform straining (attributed
to the peak shift for ADV and CEN consisting of Ti-6242 SG). Ti-54M on the top surface
of the weld experiences relatively uneven straining [23]. Additionally, it is noteworthy
that the top surface of the weld undergoes primarily tool rotation, traversing, and shear
forces imparted during tool movement. Transformational characteristics seem to play a
negligible role in determining the parameters of the strained lattice due to the free surface
being exposed to Argon (Ar) gas and temperatures dissipating rather rapidly from the top
of the weld. In contrast, on the transverse cross-section, not only deformation but also
transformation, dynamic recrystallization, and the appearance of streaks (adiabatic bands)
(in shape and size) play a significant role in understanding the variation in residual stress.
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Hence, to mitigate measurement errors, peaks (203) and (211) were selected alongside
suitable absorption filters, and regression schemes provided in LEPTOS® were utilized.
This peak (203) at angle 102◦ exhibits significantly higher intensity and minimal presence
of Kβ doublet, including (202), (104), and (210), along with (211)[17]. Given that these
welded specimens are subjected to multiaxial stress states during loading or unloading
in real-world applications, it becomes crucial to characterize their stress states in terms of
equivalent uniaxial stresses. Thus, Von Mises principal stresses (σV) were employed to
facilitate comparison of XRD results. The ensuing discussion presents the results of the
equivalent σV corresponding to the peak (203) [24].

Stress Tensor for the top of the weld =

σxx τxy τxz
τxy 0 τyz
τxz τyz σzz



Stress Tensor for the transverse cross section of the weld =

σxx τxy τxz
τxy σyy τyz
τxz τyz 0


The exact values of general and principal stresses and corresponding error values for

a total of 30 different tensors can be found in ref. [20].
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From principal stresses, the σV can be calculated as follows:

σV =
1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

The corresponding values of σV (in MPa) depicting the impact of rotation speed on the
top of the weld are displayed in Table 6 below, with the data also illustrated in Figure 14.

Table 6. σV (in MPa) on the top of the weld with varying rotation speeds.

Sample/Location P5 P1 P3

ADV 43.70435 47.73144 38.84315
CEN 39.50076 29.44503 30.57172
RET 44.52628 34.50043 37.82076
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Figure 14. Residual stress distribution on the top surface of the weld for varying rotation speeds.

Table 7 below displays the corresponding values of σV (in MPa) illustrating the in-
fluence of rotation speed on the transverse cross-section of the weld, with the data also
depicted in Figure 15.

Table 7. σV (in MPa) on the transverse cross-section of the weld with varying rotation speeds.

Sample/Location P5 P1 P3

ADV 25.0054 42.74904 49.72112
CEN 72.16779 31.27795 33.73411
RET 27.74869 33.01651 40.45776
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The corresponding values of σV (in MPa) depicting the impact of traverse speed on the
top of the weld are displayed in Table 8 below, with the data also illustrated in Figure 16.

Table 8. σV (in MPa) on the top of the weld with varying traverse speeds.

Sample/Location P4 P1 P2

ADV 34.11803 47.73144 62.78208
CEN 63.58168 29.44503 34.3
RET 37.96999 34.50043 31.78506

Materials 2024, 17, x FOR PEER REVIEW 20 of 25 
 

 

Table 7. σ୚ (in MPa) on the transverse cross-section of the weld with varying rotation speeds. 

Sample/Location P5 P1 P3 
ADV 25.0054 42.74904 49.72112 
CEN 72.16779 31.27795 33.73411 
RET 27.74869 33.01651 40.45776 

 
Figure 15. Residual stress distribution on the transverse cross-section of the weld at a depth of 1.5 
mm from the top of the weld surface for varying rotation speeds. 

The corresponding values of σ୚ (in MPa) depicting the impact of traverse speed on 
the top of the weld are displayed in Table 8 below, with the data also illustrated in Figure 
16. 

Table 8. σ୚ (in MPa) on the top of the weld with varying traverse speeds. 

Sample/Location P4 P1 P2 
ADV 34.11803 47.73144 62.78208 
CEN 63.58168 29.44503 34.3 
RET 37.96999 34.50043 31.78506 

 
Figure 16. Residual stress distribution on the top surface of the weld for varying transverse 
speeds. 

Table 9 below displays the corresponding values of σ୚ (in MPa) illustrating the in-
fluence of traverse speed on the transverse cross-section of the weld, with the data also 
depicted in Figure 17. 

Table 9. σ୚ (in MPa) on the transverse cross-section of the weld with varying traverse speeds. 

Sample/Location P4 P1 P2 

Figure 16. Residual stress distribution on the top surface of the weld for varying transverse speeds.

Table 9 below displays the corresponding values of σV (in MPa) illustrating the in-
fluence of traverse speed on the transverse cross-section of the weld, with the data also
depicted in Figure 17.

Table 9. σV (in MPa) on the transverse cross-section of the weld with varying traverse speeds.

Sample/Location P4 P1 P2

ADV 36.02097 42.74904 32.79954
CEN 26.62536 31.27795 29.00827
RET 18.11408 33.01651 19.78181
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4.1. Effect of Rotation Speed (rpm)

The distribution of residual stresses (σV) as influenced by rotation speed on the top
surface of the weld and at a depth of 1.5 mm below the top surface of the weld, as observed



Materials 2024, 17, 1482 19 of 22

on the transverse cross-section, is depicted in Figures 14 and 15, respectively, focusing
solely on the peak (203) observed at approximately 102◦ [16]. Analysis of the stress profile
on the top of the weld surface (as illustrated in Figure 14) reveals minimal changes in
stresses from the advancing (ADV) to center (CEN) to retreating (RET) regions. However,
among all three specimens considered, the stresses are relatively higher in the case of the
lowest rotation speed. Additionally, stresses on the ADV side are relatively elevated for all
three specimens.

At the top surface of the weld, where plunging forces (given that the automation of
FSW was displacement-controlled) vary, it is plausible to have higher plunging forces for
the lowest rotation speed (P5). Since all measurements were conducted on parts in an equi-
librium regime, any asserted vibrations and inhomogeneity in force data were negligible.
Consequently, this specimen (P5) likely experienced higher forces on the advancing (ADV)
side compared to P1 and P3. As rotation speed increases from 225 (P5) to 275 (P1), stresses
in the center (CEN) of the weld decrease significantly compared to the reduction from 275
(P1) to 325 (P3). Notably, β transus temperatures for Ti-6242 SG (ranging between 845 ◦C
and 875 ◦C; 1553 ◦F to 1607 ◦F; located at the top of the weld) were not attained at the lowest
rotation speed (225), resulting in higher flow stress in P5’s underlying α phase compared
to P1 and P3, where temperatures are closer to the β transus temperature of Ti-6242 SG. On
the retreating (RET) side, temperatures are around the β transus temperature for Ti-54M
(995 ◦C to 1005 ◦C (1823 ◦F to 1841 ◦F)) for all three rotation speeds, thus the variation in
residual stresses for P1 and P3 is minimal. However, on the RET side, stress is relatively
higher for the lowest rotation speed compared to P1 and P3. As the specimen was oscillated
0.5 mm in the x and y directions, the X-ray beam diffracted from both transformed Ti-54M
and untransformed Ti-6242 SG present on the RET side at the top of the weld surface.

Stress values at a depth of 1.5 mm from the top surface of the weld in the transverse
cross-section exhibit an indeterminate trend. While stress values on the advancing (ADV)
and retreating (RET) sides increase with higher rotation speeds, the trend is reversed in
the center (CEN) of the weld. In the CEN, the lowest rotation speed yields the highest
stress values. Moreover, the variation between P1 and P3 is relatively lower compared
to P5, which could be attributed to the different phases present in the weld nugget. For
temperatures exceeding the β transus temperature of both alloys, varying thicknesses of
α laths are likely to form (depending on the cooling rate), resulting in different residual
stresses in the weld nugget [25]. The higher values of stresses in the CEN for the lowest
rotation speed suggest the presence of phases with higher flow stress, such as the α phase,
predominantly derived from untransformed Ti-6242 SG. On the ADV and RET sides, a
similar trend of residual stresses is observed: as rotation speed increases, residual stress
values increase. This phenomenon can be explained by the prevailing temperatures: as
rotation speed increases, temperatures rise, leading to an accelerated cooling rate. Conse-
quently, the emerging α laths exhibit increasing aspect ratios from P5 to P1 to P3, providing
greater resistance to deformation and resulting in higher residual stresses with increasing
rotation speed.

4.2. Effect of Transverse Speed (mm-min−1)

The distribution of residual stresses (σφ) as affected by traverse speed on the top
surface of the weld and at a depth of 1.5 mm below the top surface of the weld, observed
in the transverse cross-section, is illustrated in Figures 16 and 17, respectively, focusing
solely on the peak (203) observed at approximately 102◦. Upon comparing Figures 15–17,
an intriguing observation emerges: the impact of traverse speed is more pronounced on
the top surface of the weld, while the effect of rotation speed is more prominent at a depth
of 1.5 mm below the top surface of the weld.

Examining the residual stress variations on the top surface of the weld, as depicted in
Figure 16, reveals that as the traverse speed increases, the stresses on the advancing (ADV)
side also rise. Since the rotation speed remains constant, it is likely that the advance per
revolution (APR, v/ω) is lowest in the case of P4. Consequently, the spacing between two
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consecutive tool marks is relatively narrower for P4 compared to P1 and P2. Consequently,
the evolving residual stresses are more confined for P4 on the ADV side compared to P1
and P2. Additionally, the morphology of tool marks merits consideration: while tool marks
are evenly spaced for P2, rather irregular tool marks are observed for P4. Hence, besides
the attenuation of the X-ray beam and fluorescence of titanium, geometric errors in the
measurements need to be addressed to enhance the quality of the results.

On the retreating (RET) side and in the center (CEN), a somewhat opposite trend is
observed compared to the ADV side. On the RET side (where rpm = 275), the effective
flow stress provided by the phases is nearly equivalent (since temperatures are uniform),
so variation in residual stress values on the RET side is minimal. Conversely, in the CEN
of the weld, relatively higher values of residual stresses are noted for P4 compared to P1
and P2. Presently, the cause of this behavior remains uncertain. It is anticipated that the
location of the measurement may have been impacted by geometric errors associated with
the advance per revolution. To ensure accuracy, the specimen was intentionally marked by
the tool marks to capture genuine residual stresses without introducing additional stresses
from machining. These geometric irregularities could be attributed to the positioning of
the laser spot between tool marks, as depicted in Figure 6 of our manuscript.

Another potential explanation for this phenomenon is that the lower transverse speed
causes a greater portion of the plasticized material from the advancing side (ADV) to
accumulate in the weld nugget without the formation of adiabatic shear bands, as observed
in Figure 2.

At a depth of 1.5 mm from the top surface of the weld, as observed in the transverse
cross-section, residual stresses are depicted in Figure 17. An intriguing aspect is that in the
case of P1, the stresses are relatively higher at all three locations compared to P4 and P2.
On the advancing (ADV) side, as the traverse speed increases, the amount of Ti-54M (in
terms of streaks) also increases, resulting in a higher fraction of α laths in the case of P2
(the highest traverse speed). However, due to the oscillatory setup of the goniometer, it
can be inferred that the grains diffracting the X-ray beams are not entirely composed of
Ti-54M. Hence, despite the highest resistance provided by the α laths, the residual stress
values are relatively lower for P2. In the case of P1, where the traverse speed is moderate,
there is likely to be more diffraction from Ti-54M streaks than Ti-6242 SG. Conversely, in
the case of P4, with the lowest traverse speed, no streaks of Ti-54M are observed on the
ADV side. However, since temperatures exceed the β transus temperature on the ADV side
for Ti-6242 SG (due to rpm = 275), the aspect ratio of α laths and the presence of equiaxed
α grains are likely to be higher compared to P2.

At the center of the weld nugget, the primary constituent of the microstructure is
Ti-54M, with some cross-linked Ti-6242 SG present. Depending on the oscillation scheme,
only minor variations in residual stresses are observed for all three specimens. On the
retreating (RET) side, the highest residual stresses are observed for moderate traverse
speeds. Although the shearing forces are not clearly evident at this location, it is expected
that there would be a higher exposure time (for evolving temperatures at rpm = 275)
in the case of P4. Consequently, the resultant recrystallization of the refined bimodal
microstructure on the RET side is highest for P4 compared to P1 and P2. Once again,
according to our reasoning, the stresses should have been highest in the case of P2 on the
RET side; however, at this point, we are uncertain about the observed values.

5. Conclusions

In this study, surface residual stresses on both transverse and longitudinal surfaces of
friction stir-welded dissimilar titanium alloys were investigated using X-ray diffraction.
The alloys involved were Ti-54M (on the retreating side) and Ti-6242 SG (on the advancing
side), welded at three different rotation and traverse speeds. By analyzing the intensity
profiles from the General Area Detector Diffraction System (GADDS) and considering
associated errors such as fluorescence and Kα2, Kβ doublets, two prominent peaks were



Materials 2024, 17, 1482 21 of 22

selected for measuring residual stress values in the higher 2θ regime: (203) at 102◦ or (211)
at 109◦.

Key findings and conclusions drawn from our analysis of the residual stresses, partic-
ularly for peak (203), include:

1. On the advancing side, where higher temperatures prevail due to the rotational and
transverse vectors being in the same direction, more uniform strains were recorded,
as indicated by a shift in the peak on the 2θ axis.

2. Peaks (203) and (211) were chosen for residual stress measurement due to their
significantly higher intensity compared to other peaks like (202), (104), and (210). To
mitigate the effects of fluorescence produced by titanium alloys when using Cu −
Kα, a collimator corresponding to the peak with the least Kβ shift was adopted for
measurement, ensuring consistent error levels across all cases. In each case, a peak
(203) at approximately 103◦ was selected to ensure consistency in error considerations
and to accurately track the pattern of residual stress variation.

3. Rotation variation notably influenced residual stresses, particularly in the center of
the weld (at a depth of 1.5 mm from the top surface on the transverse cross-section).
Traverse speed had a more pronounced effect on residual stress variation at the top
surface of the weld.

4. Tensile residual stresses were observed at all locations investigated. The presence of
evolving phases, the advance per revolution, and the β transus temperature of each
alloy had significant effects on the residual stresses observed.

Given the significant fluorescence in the diffraction patterns for titanium with Cu −
Kα X-ray beams, it is recommended to adjust for Kα2 and Kβ doublets and to employ
proper filters during analysis.
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