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Abstract: This study aimed to investigate the efficiency of a geopolymer binder of the type of Na-
poly(ferro–silico–aluminate) as a matrix for the stabilization of heavy metals along with their effect
on the development of structural performances. The artificial contamination of soil with ions was
carried out and used to prepare an alkali-activated iron-rich lateritic soil binder. Further, various
microstructural analyses were carried out to explain the stabilization mechanism. The stabilization
efficiency was assessed by leaching tests in de-ionized water and hydrochloric acid (0.1 M, HCl). Then,
the physical properties were determined to evaluate the impact of heavy metals on the structural
performance of the binder. Results demonstrated that the prepared geopolymer binder has the
lowest stabilization capacity in an acidic medium (low pH) than in water with high pH. However,
the stabilization of Cu ions was effective at 99%, while the Cd ion is barely retained in the matrix.
Firstly, the mechanism consists of chemical bonds through ion exchange with sodium of the Na-
poly(ferro–silico–aluminate) network. Secondly, through physical interaction with the pore network
of the matrix, the heavy metals induced structural deterioration in the geopolymer matrix with a
decrease in the compressive strength and bulk density and an increase of both apparent porosity and
water absorption.

Keywords: iron-rich laterite; solidification/stabilization; heavy metals; geopolymer; structural
performance

1. Introduction

Heavy metal-contaminated wastes or soils cause severe environmental pollution
issues that need to be addressed urgently to reduce their impact on wildlife [1,2]. The
valorization of such soils for the manufacturing of construction and building materials has
been developed as an effective and efficient route for the sustainable mitigation of their
environmental impacts [3,4]. Alkaline or acid activation of aluminosilicate, also known
as geopolymerization, is a process that has been used in recent years for the valorization
of contaminated solid wastes or soils in construction and building [5–7]. Geopolymer is
a semi-crystalline compound consisting of a three-dimensional network of silico–oxide
(-Si-O-Si-O-), silico–aluminate (-Si-O-Al-O-), ferro–silico–aluminate (-Fe-O-Si-O-Al-O) or
alumino–phosphate (-Al-O-P-O-) [8,9]. It is one of the building materials that has become
more popular in recent years because of its lower CO2 emission during the manufacturing
process [10]. The nature of the binder chemistry depends on the type of solid raw materials
used, which greatly affect the final properties. This generally consists of mineral waste
materials (fly ash, slag, mine tailings, bottom ash, phosphogypsum, etc.) or natural raw
materials (clay, lateritic soils, volcanic ash, etc.) [11–15]. The stabilization mechanism in
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geopolymer materials can differ significantly depending on the type of heavy metals and
the nature of the aluminosilicate used.

Cadmium and copper are two heavy metals that may adversely affect the reproductive
health of humans, especially male fecundity, after exposure [16]. It was shown that Cu2+

immobilization in metakaolin-based geopolymer consists of chemical incorporation into
the geopolymer matrix and was pH dependent as a large amount of Cu2+ was precipitated
in the form of gerhardtite (low pH) or tenorite and spertiniite (high pH) [17]. Cadmium
(Cd) immobilization is effective at high pH and mainly occurs through precipitation as
Cd(OH)2 [18]. However, it can also balance the negative charge of Al tetrahedrons in
the geopolymer framework. The literature reports that the host matrices investigated to
immobilize solid waste containing heavy metals are mainly low or iron-free aluminosil-
icate consisting of fly ash, blast furnace slag, metakaolin, or a combination of at least
two of them [3,17,19–21]. In a geopolymer binder that consists of (Ca, Na, K)-poly(silico–
aluminate) or polysialate (Ca, Na, K)-(Si-O-Al-O), the Si/Al molar ratio controls the extent
of geopolymerization and the solidification/stabilization efficiency of heavy metals [22].
The iron-rich aluminosilicate gives rise to a binder chemistry of type (Ca, Na, K) poly(ferro–
silico–aluminate), where iron plays a similar role to aluminum [23–25]. Thus, such a matrix
is worth investigating for the solidification/stabilization of heavy metals. The interaction of
heavy metals with a geopolymer matrix depends on many factors, including the type and
composition of the precursor used. Therefore, this work aims to assess the stabilization effi-
ciency of copper (Cu) and cadmium (Cd) on a novel geopolymer matrix based on iron-rich
lateritic soil. Specifically, it consists of the assessment of the leaching behavior in various
environments (water and hydrochloric acid), the use of the microstructural analysis to
explain the reaction mechanism of the stabilization, and their effects on the resulting binder
chemistry. Further, it stresses the effect of those metals on the development of structural
performance and microstructure of geopolymer.

2. Experimental Methods
2.1. Materials

The laterite soil used as aluminosilicate was collected at Emana in the center region of
Cameroon. It has been characterized by the authors in their previous works and showed
that its mineralogy is composed of kaolinite (34%), illite (2%), quartz (25%), anatase (1%),
goethite (29%), hematite (8%), and gibbsite (2%) [25]. The major oxides in laterite are
SiO2 (33.18 wt.%), Al2O3 (17.89 wt.%), and Fe2O3 (35.33 wt.%). The minor oxides are TiO2
(1.08 wt.%), MnO (0.56 wt.%), MgO (0.23 wt.%), CaO (0.09 wt.%), K2O (0.05 wt.%), and
P2O5 (0.34 wt.%), with a loss on ignition of 11.84 wt.%. Laterite was calcined in a pro-
grammable electric furnace for 4 h with a heating/cooling rate of 5 ◦C/min at 700 ◦C.
The alkaline solution was prepared by mixing an amount of sodium hydroxide solution
(10 M) with sodium silicate solution having a silica modulus of three. The final activating
solution consists of a mass ratio of Na2SiO3/NaOH of 2.4. The metal salts are CdCl2·H2O
(201.32 g·mol; 99%) and CuSO4·5H2O (249.68 g·mol; 99%).

2.2. Preparation of Geopolymer Samples with Metals

The details of the different mixes are given in Table 1. Each geopolymer was prepared
by first mixing calcined laterites with the alkaline solution and stirring for 3 min. Then, the
paste was mixed with solid heavy metal salt for 5 min at 200 rpm. The resulting viscous
paste obtained was cast into a 40 × 40 × 40 mm mold. The sample was left at room
temperature for 24 h before demolding. The obtained geopolymers were sealed in plastic
bags for 28 days before performing characterization.
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Table 1. Mix compositions of reference and contaminated geopolymer matrix.

Sample Code Calcined Laterite (g) Ratio
Liquid/Solid

Metal Salt Content
(g)

Gref 300 0.6 0
GCd 300 0.6 3
GCu 300 0.6 3

GCd/Cu 300 0.6 1.5/1.5
Gref is the reference geopolymer without metals; GCd, GCu, and GCd/Cu are the contaminated geopolymers
with the respective metals.

2.3. Stabilization Efficiency on Iron-Rich Lateritic Soil-Based Geopolymer

The stabilization efficiency was assessed by performing the leaching behavior of the
contaminated geopolymers in distilled water (pH = 6.96) and hydrochloric acid (HCl) with
a concentration of 0.1 M (pH = 1.08) as a leaching medium. The previously prepared
40 × 40 × 40 mm samples were cut into small pieces of 40 × 40 × 2 mm to carry out
the leaching tests. The samples were immersed in the leaching solution and stirred for
24 h on a shaking table. Then, the mixture was vacuum-filtrated to remove all particles
in the solution. The latter was analyzed by ICP-OES (IRIS Intrepid II XSP, Thermo Fisher,
Waltham, MA, USA). The pH and conductivity were measured using a Mettler Toledo pH
meter (SevenGo Duo Pro, Waltham, MA, USA).

2.4. Characterization of Geopolymer Samples

Compressive strength was performed after 28 days using a compression testing
machine (Toni Technik, Berlin, Germany) according to EN 196-1:2016 described in [26].
The water absorption, porosity, and density were conducted according to the ASTM C–
642 method and the Archimedes principle, respectively. Crystalline phases of all sam-
ples were determined by X-ray diffraction on an Empyrean PANalytical diffractometer
(Malvern Panalytical Ltd., Malvern, UK) with a Ni filter transmitting the CuKα radiation
(λkα1Cu = 1.540598 Å) produced at 40 mA and 40 kV. The infrared spectra curves were
recorded in the range of 400–4000 cm−1 using an ATR method on Spectrum Two from
(Buckinghamshire, UK), operating with a resolution of 4 cm−1. The microstructure was
observed on a backscattered electron-scanning electron microscope (SEM) coupled with
energy-dispersive X-ray spectroscopy (EDX) (Zeiss Gemini SEM 500 NanoVP microscope,
Oberkochen, Germany), operating in low-vacuum mode with 15 kV acceleration voltage.

3. Results and Discussion
3.1. Stabilization Efficiency and Mechanism on Iron-Rich Laterite-Based Geopolymer

• Leaching of Cd and Cu from iron-rich lateritic soil-based geopolymer.

The potential for the leaching of Cd and Cu from the contaminated geopolymer matrix
in different aqueous mediums, including water and hydrochloric acid and their effect on
the binder chemistry, was carried out, as reported in Table 2. The results show that the
type of aqueous medium in which the geopolymer is exposed affects the leachability of
the metals. Indeed, the leached concentration of Cd and Cu in an acidic medium is higher
than in water. The leached concentration of Cd is higher (>1 mg/L) in an acidic medium,
which is beyond the threshold maximum recommended by the standard, while the leached
concentration of Cu measured complies with regulation (100 mg/L for Cu and 1 mg/L
for Cd) [6]. This can be related to the type of cadmium salt used since highly soluble salts,
such as CdCl2, are easily dispersed throughout the geopolymer matrix, while sparingly
soluble salt, such as CuSO4, remains segregated from the bulk of the binder [27]. Further,
these observations also indicate that the mechanism of Cd solidification is through its
precipitation as Cd(OH)2, knowing that its solubility at low pH is high [27]. Elsewhere, it
is observed that the leached concentration of Al and Fe decreases from the contaminated
geopolymers as compared to Gref. While for The presence of heavy metals, such as Na
and Si, increases their concentration in both media. This observation is an indication of
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the stabilization mechanism occurring in iron-rich laterite-based geopolymer. The higher
leached concentration of Na+ in contaminated geopolymers indicates that there is at least
an ion exchange between heavy metals and Na+ in the geopolymer network to balance
the negative charge due to the substitution of silica by alumina during the reaction [17].
Furthermore, the decrease of the leached concentration of Al and Fe from contaminated
geopolymers, regarding the reference geopolymer, is proof of an efficient solidification of
the heavy metals in this matrix. This means that the heavy metals formed chemical bonds
with Al-O- and Fe-O- during geopolymerization and increased the strength of these bonds,
reducing their depolymerization potential in leaching media [28].

Table 2. Leaching test results in water and hydrochloric acid solution.

Heavy Metals

Leaching in Water Leaching in HCl

Concentration (mg/L)

Gref GCd GCu GCd/Cu Gref GCd GCu GCd/Cu

Al 2.95 1.63 2.16 2.95 491.70 28.63 361.30 382
Fe 0.36 0.17 0.17 0.16 0.78 0.55 0.48 0.50
Na 222.2 367.70 247 220.90 786.30 2377 1014 865.50
Si 20.44 23.10 31.09 21.60 7.12 37.66 56.18 58.85

Cd 0 0.017 0 0.024 0 51.68 0 17.31
Cu 0 0 0.03 0.03 0 0 19.89 7.49

• pH and conductivity of solutions after leaching tests.

Figure 1 presents the pH of the leachate obtained in distilled water (pHw) and hy-
drochloric acid (pHs). The pHw ranges from 11.47 to 11.63, and the pHs from 3.76 to 4.30.
pHw and pHs are higher than the pH of the initial water (6.96) and hydrochloric acid (1.08)
used. This is likely due to the leaching out of the alkali from the geopolymer in water,
while in the acidic medium, it is linked to the acid–base reaction between the alkali from
the geopolymer and protons (H+) from the acid solution. The pH of the leachate from
the contaminated geopolymer GCu is higher, and the GCd is lower than the reference
geopolymer in water. This can be explained by the sparse solubility of the copper salt
(CuSO4·5H2O) in water as compared to CdCl2·H2O, which has contributed to keeping
the pH high. However, in an acidic medium, the effect of the common ion effect in the
case of GCd (since Cl− is also issued by the HCl) would have reduced the solubility of
the salt and fostered the acid–base reaction to increase the pH significantly. Thus, in the
leachate containing Cu and Cd, one can assume that the pH change is mostly affected by
the solubility of copper salt. This explains its high pH compared to GCd and lower pH
than the GCu leachate obtained in water, while in the acid leachate, the pH from GCd is
higher than GCd/Cu and GCu.

It can be observed in Figure 2 that, independently of the leaching media, the con-
ductivity of the leachate from GCd is highest, followed by GCd/Cu > GCu > Gref. The
conductivity indicates the mobility of different ions contained in the solution and can be
correlated with the total dissolved ions available in the leachate [29]. So, the higher the
conductivity, the higher the content of ions in the solution. This confirms the statement on
the high solubility of the cadmium salt as discussed earlier, which increased the conduc-
tivity of the resulting leachate. Moreover, the conductivity of the leachate obtained in an
acidic medium is higher than the one in water. This result agrees with the data reported in
Table 2, which shows a higher concentration of ions in acid solution than in water.
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3.2. The Effect of Heavy Metals on the Mineralogy of Geopolymer

The XRD pattern of the reference geopolymer and the contaminated ones are presented
in Figure 3. There are three major phases in all geopolymers, including hematite, quartz, and
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anatase. All the minerals present in Gref are still observed in the contaminated geopolymers.
This infers that the heavy metals do not affect the mineralogy of the geopolymer and
indicates that heavy metals are likely inserted in the amorphous geopolymer [28]. This
also holds for the mineralogy after leaching in HCl and water (not shown here), where no
considerable changes have been identified. The FT-IR spectra of the samples are depicted
in Figure 4. The main change is observed in the band at around 1007 cm−1, corresponding
to the stretching vibration of Si-O-T bonds (T = Si, Al, Fe), characteristic of the geopolymer
binder. As observed, the intensity of that band is high in the contaminated geopolymers
as compared to the reference geopolymer. This may be taken as being indicative of the
effect of the heavy metal ions on the structure of the geopolymer network [27]. This
change is more prominent in the spectrum of GCd than in GCu and GCd/GCu. This
implies that the incorporation of cadmium affects the geopolymer structure significantly
more than copper [30]. The absorption bands appearing at 3519 cm−1 and 1660 cm−1

are related to the stretching vibration of the O-H bond and the bending vibration of the
H-O-H bond from water, respectively. The high intensity of the band at 3519 cm−1 in the
contaminated geopolymers can also be an indication of the presence of the precipitated
cadmium hydroxide and copper hydroxide since they are likely to be formed in the present
system, as reported in previous work [31]. The band at 1371 cm−1 corresponds to the
asymmetric stretching vibration of the C-O bonds of CO3

2− due to atmospheric carbonation
on the geopolymer sample.
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3.3. Hardened Characteristics of Contaminated Geopolymers

• Compressive strength and physical properties.

The compressive strength and bulk density of geopolymer samples are presented in
Figure 5. The values obtained for compressive strength are 20.3, 14.3, 18.5, and 14.5 Mpa
for Gref, GCu, GCd, and GCd/C, respectively. It is observed that the addition of Cd and
Cu decreased the 28-day compressive strength. The same observation is performed for the
bulk densities, where the values are: 1.9, 1.55, 1.63, and 1.6 g/cm3. This indicates that the
heavy metals were integrated with the geopolymer network and created structural defects
that led to a strength decrease. However, for Cd-contaminated geopolymer, the decrease
observed is most likely related to the type of salt added. Since a report demonstrated that
the addition of other salts, such as Cd(NO3)2, did not change the compressive strength [27].
Further, it was demonstrated that the strength decrease in CdCl2 might be attributed to the
effects of the chloride contamination of the geopolymerization [32]. The highest strength
decreases observed with Cu-contaminated geopolymer can be due to the way copper salt
interacts during geopolymerization. Early in this work, it was reported that the heavy
metal stabilization in this matrix also involves their precipitation as metal–hydroxide. The
decrease of alkalinity due to the precipitation reaction likely hinders the dissolution rate
of Si, Fe, and Al. Consequently, this slows down the growth of the geopolymer network
skeleton, which reduces the compressive strength of the geopolymer [33]. This has also
been emphasized in recent work, where it was demonstrated that the addition of ZnO
during the synthesis of metakaolin-based geopolymer hinders the reaction and limits
strength development [34]. The effect of these heavy metals on compressive strength can
also be correlated with the trend of bulk density, which evolves Gref > GCd > GCu/Cu. The
apparent porosity and water absorption presented in Figure 6 also agree with the evolution
of compressive strength. In fact, the addition of heavy metals increased both the apparent
porosity and the water absorption. The results yield 24, 34, 17, and 41% of porosity for Gref,
GCu, GCd, and GCd/C, respectively, with water absorption of 12.5, 19.5, 17.5, and 20%.
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• Capillarity water absorption.

To explain the potential of a monolith geopolymer to resist leaching out of the stabilized
heavy metals, the water penetration through a capillary pore has been carried out and
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reported in Figure 7. It can be observed that the curve is characterized by two trends,
with the first one consisting of fast water penetration, while the second phase is steadily
and mainly governed by the entrapped air diffusing out after the water saturation is
reached. However, for all the samples, the water penetration rate is lower (0.1356, 0.1683,
0.1923, and 0.1872 mg/cm2·min0.5 for Gref, GCd, GCu, and GCd/Cu, respectively). This
means that when exposed to an aggressive environment liable to leach out the stabilized
contaminant, this process will happen very slowly over time. The tendency of the rate of
water penetration observed among the reference and contaminated geopolymers agrees
with the evolution of the porosity.
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3.4. Microstructure

The microstructure of samples Gref, GCd, and GCu and the representation of the
different elements in the samples are highlighted in Figures 8 and 9. The reference geopoly-
mer shows a dense microstructure with shapeless phases. When heavy metals are added,
the microcracks are more represented, which somehow explains the compressive strength
decrease and porosity increase, as discussed earlier. The literature stated that the pres-
ence of more cracks with the addition of heavy metals in the structure of geopolymer can
explain the effective solidification/stabilization of those heavy metals in the matrix [35].
The mapping of the distribution of all the elements present has been used to identify the
behavior of heavy metals and to distinguish different features in the microstructure. In
Figure 8, the brightest features of silicon and iron maps are identified as the non-reacted
particles of quartz (Q) and hematite (H), respectively, whereas the non-bright area contains
a homogeneous distribution of all the elements and corresponds to the binder. They have
an average Si/Al atomic ratio < 2 and Si/Fe ranging from 2 to 7, which corresponds with
Na-poly-ferro-sialate siloxo binder [25]. The microstructure and elemental maps of the
contaminated geopolymers are shown in Figure 9. It is observed that Cu is uniformly
distributed in all the areas of different samples constituting the binder. The microstructure
also shows unreacted phases (hematite and quartz) along with cadmium, which appears as
a bright part of the mapping. The presence of both metals simultaneously does not show
any specific changes in their distribution within the binder, as observed in Figure 10. The
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presence of heavy metals in the binder shows that they have chemically reacted during
geopolymerization. The analysis of the EDX composition of more than 40 spots through
each contaminated geopolymer helped to identify the chemical composition of the binder
and the changes brought by the addition of the heavy metals. Figures 11 and 12 show
that the composition of the reacted phases (binders) is modified by the presence of heavy
metals. Initially, the main composition identified is Na-poly-ferro-sialate siloxo, which is
present in all mixes and consists of the reaction of the iron-rich laterite with sodium silicate.
This nomenclature means that the basic unit of the polymer is composed of iron, alumina,
silica, and sodium. When Cu and Cd are added, either separately or simultaneously,
the new binder chemistry is composed of (Cu,Na)-poly-ferro-sialate siloxo, (Cd,Na)-poly-
ferro-sialate siloxo, and (Cu,Cd,Na)-poly-ferro-sialate siloxo, respectively. This indicates
that Cu and Cd have chemically reacted during geopolymerization through the ion ex-
change process with sodium, which ascertains the stabilization mechanism stated earlier in
this section.
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4. Conclusions

In this work, iron-rich laterite-based geopolymers were prepared successfully from the
alkaline activation process for the stabilization of heavy metals (Cd(II) and Cu(II)). It was
found that the compressive strength and bulk density decrease with the addition of heavy
metals when the apparent porosity and water absorption increase. Through the study
of the leaching test, it was concluded that the stabilization efficiency of heavy metals is
higher, and some factors, such as pH and conductivity, have a great influence. The leaching
increases in an acidic medium and decreases in water. The FTIR and XRD realized on
geopolymer indicated that the addition of heavy metals does not affect the crystal phases.
The SEM observation shows a good distribution of heavy metals within the geopolymer
matrix, suggesting a chemical and physical stabilization mechanism.
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