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Abstract: Microstructure evolution in metal additive manufacturing (AM) is a complex multi-physics
and multi-scale problem. Understanding the impact of AM process conditions on the microstructure
evolution and the resulting mechanical properties of the printed component remains an active area
of research. At the meltpool scale, the thermo-fluidic governing equations have been extensively
modeled in the literature to understand the meltpool conditions and the thermal gradients in its
vicinity. In many phenomena governed by partial differential equations, dimensional analysis
and identification of important dimensionless numbers can provide significant insights into the
process dynamics. In this context, we present a novel strategy using dimensional analysis and
the linear least-squares regression method to numerically investigate the thermo-fluidic governing
equations of the Laser Powder Bed Fusion AM process. First, the governing equations are solved
using the Finite Element Method, and the model predictions are validated by comparing with
experimentally estimated cooling rates, and with numerical results from the literature. Then, through
dimensional analysis, an important dimensionless quantity interpreted as a measure of heat absorbed
by the powdered material and the meltpool, is identified. This dimensionless measure of absorbed
heat, along with classical dimensionless quantities such as Péclet, Marangoni, and Stefan numbers,
are employed to investigate advective transport in the meltpool for different alloys. Further, the
framework is used to study variations in the thermal gradients and the solidification cooling rate.
Important correlations linking meltpool morphology and microstructure-evolution-related variables
with classical dimensionless numbers are the key contribution of this work.

Keywords: additive manufacturing; dimensionless numbers; finite element method; linear regression;
cooling rates

1. Introduction

Additive manufacturing (AM) has proven to be a path-breaking manufacturing
paradigm with the potential to disrupt many traditional reductive-type manufacturing
processes [1]. A wide variety of AM techniques, suitable for printing metals, glasses, ce-
ramics, and polymers [2], are in use today and an optimal AM technique can be selected
depending on the material, part complexity and design considerations [3]. Laser Powder
Bed Fusion (LPBF) AM process is the focus of this work. This technique is widely employed
to print metallic components with intricate geometry to their near-net shape. Compo-
nents printed using the LPBF process have the potential to exhibit improved material
properties as compared to the traditional manufacturing process. In particular, additively
manufactured hierarchical stainless steels are not limited by strength–ductility trade-off
unlike traditionally manufactured stainless steel [4]. Tensile and fatigue properties of addi-
tively built Ti-6Al-4V were shown to be superior to mill-annealed Ti-6Al-4V [5]. However,
the properties of the printed components are very sensitive to the LPBF process parameters
selected and the execution of the printing process. Realizing the full potential of AM cannot
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be achieved unless optimized process parameters can be identified for various alloys used
in laser-based additive manufacturing [6].

The LPBF manufacturing technique is a multi-stage process. Initially, a moving blade
of polymer edge (recoater) spreads a metal powder forming a layer of uniform thickness.
A high-energy laser moves over a powder layer bed in a predefined path. This results in
a localized melting of the powder metal followed by rapid cooling and fusion of melted-
powder material on the previously built part. A new layer of the powder is then deposited
and the process repeats until the desired part is printed in a layer-by-layer fashion [2]. This
multi-stage additive printing process involves melting and solidification of the material,
formation of the localized meltpool, convection cells inside the pool, keyhole formation,
improper fusion of the powder, accumulation of residual stresses, and sometimes unwanted
material deformation, etc. [7]. Existing literature is focused on understanding the effects of
additive process parameters on the properties of experimentally printed components such
as the surface roughness of overhang structures [8], bead geometry and microstructure [9],
tensile strength [10], width and penetration depth of single scan track [11], etc. In addition
to experimental studies, various LPBF processes, especially meltpool behavior [12], build
layers [13], and laser heat source [14] effects have been analytically studied. Hybrid
modeling that combines analytical models and machine-learning-based models is useful in
estimating desirable meltpool dimensions and optimized process variables [15].

On the modeling front for LPBF, extensive literature has been published focused on
the modeling of the rich multiphysics aspects of the process. Abolhasani et al. [16] studied
the effect of reinforced materials on the cooling rates and meltpool behavior of AlSI 304
stainless steel using finite element method simulations. Ansari et al. [17] developed a 3D
finite-element method-based thermal model using a volumetric Gaussian laser heat source
to model the thermal profile and meltpool size in selective laser melting process. The heat
diffusion models were reinforced by considering localized dynamic and unsteady fluid flow
inside the meltpool. Dong et al. [18] considered phase transformation, thermo-physical
properties, heat transfer, and meltpool dynamics in their finite element model to investigate
the effect of laser power and hatch spacing on the meltpool. A similar multiphysics model
accounting for heat diffusion and fluid flow was presented by Ansari et al. [19] to study
the effect of laser power and spot diameter on meltpool temperature in the LPBF process.
Gusarov et al. [20] focused on heat transfer and radiation physics in their numerical model.
More comprehensive numerical models of the LPBF consider temperature-dependent
properties, powdered layer, fluid flow, laser scanning, etc. Mukherjee et al. [21] used
comprehensive LPBF numerical models to simulate fluid flow and heat diffusion dynamics
for most commonly used alloys. Khairallah et al. [22] provided richer insights into LPBF
printing of stainless steel using various continuum numerical models. Wang et al. [23]
coupled finite volume, discrete element, and volume of fluid methods to rigorously model
power spreading, powder melting, and multi-layer effects during LPBF AM of Ti-6Al-4V
alloy. In trying to capture all the important aspects of the LPBF process in a numerical
model, challenges exist in terms of numerous variables, process parameters, and their
complex interactions, and these are outlined in the work of Keshavarzkermani et al. [24]
and Fayazfar et al. [25].

Physical processes involving many independent parameters can be analyzed and
investigated using dimensional analysis. Traditional areas of physics and engineering,
especially fluid mechanics and heat transfer have used dimensional and scaling analysis
extensively [26]. Researchers in AM-related problems have recently started incorporating
dimensional analysis in their work. Van Elsen et al. [27] provided a comprehensive list
of dimensionless quantities that are relevant for the additive and rapid manufacturing
process. They justified the usability of the dimensional analysis to investigate complex
additive processes such as LPBF. Dimensionless numbers were shown to assist in choosing
previously unknown process parameters for the LPBF process to print Haynes 282, a nickel-
based superalloy [28]. Weaver et. al. [29] demonstrated the application of universal scaling
laws to study the effect of process variables such as laser spot radius on the meltpool depth.
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Rankouhi et al. [30] in their experimental work applied the Buckingham-π theorem in
conjunction with Pawlowski matrix transformation to present dimensionless quantities
that correlate well with the density or porosity of the built component. Their proposed
non-dimensional quantity is shown to be applicable across different material properties
and machine variables, thereby achieving desirable scaling. Another widely applicable
dimensionless quantity, referred to as Keyhole number, was proposed by Gan et al. [31].
They made use of dimensionless analysis in conjunction with multiphysics numerical
models and high-tech X-ray imaging in their discovery. Keyhole number provides useful
insights into the aspect ratio of the meltpool and the transformation of the meltpool from a
stable to a chaotic regime. Wang and Liu [32] proposed four sets of dimensionless quantities
combining process parameters and material properties. Their experimental analysis shows
that these numbers can effectively characterize phenomena such as the continuity of the
track and its size and the part porosity. Noh et al. [33] showed that normalized enthalpy
and relative penetration depth in the vertical direction can provide reliable process map for
printing single-track 3D geometries using selective laser melting process.

The published literature surveyed for this work either uses experimental or numerical
methods to propose new dimensionless quantities that are specific to the AM process
and are not always related to classical dimensionless numbers used in the fields of fluid
mechanics and heat transfer. Classical dimensionless numbers such as the Péclet number
can provide a good understanding of the impact of process variables on the printed com-
ponents. Nusselt, Fourier, and Marangoni numbers provide a good understanding of the
mode of heat transport inside the meltpool for varying laser power and scan speed [34,35].
Cardaropoli et al. [36] provided a map for Ti-6Al-4V alloy linking dimensionless quantities
with the porosity of built parts. Mukherjee et al. [37] used their established numerical mod-
els of the LPBF process to simulate the building of different materials with varied process
variables. Using a known set of dimensionless numbers representing heat input, Péclet,
Marangoni, and Fourier numbers, they made sense of the impact of process parameters on
important output variables such as temperature field, cooling rates, fusion defects, etc.

Similar to the meltpool in the LPBF process, the traditional welding process also in-
volves the formation of a weldpool which is the site of various multiphysics interactions and
processes. Literature on the use of dimensional analysis to understand the flow patterns in
the weldpool offers relevant insights to AM. This includes work by Robert and Debroy [38]
where they highlighted the importance of dimensionless numbers such as Prandtl, Péclet,
and Marangoni in understanding the aspect ratio of the weldpool. Using the numerical
models to predict the weldpool shape for a range of materials, they presented the insightful
role of these numbers in shaping the weldpool morphology. Similarly, Lu et al. [39] also
discuss the role of Marangoni convection in affecting the aspect ratio and shape of the
weldpool. Their analysis shows that the effect of welding process conditions on the weld
part can be understood by analyzing the non-dimensional numbers such as Péclet and
Marangoni. Wei et al. [40] showed that the formation of a wavy fusion boundary is linked
with the critical values of the Marangoni and Prandtl numbers. Fusion boundaries and
shapes have a significant impact on the microstructure of the material. Asztalos et al. [41]
applied dimensional analysis to study the polymer additive manufacturing processes.

As can be seen from the literature review presented, the use of dimensionless numbers
to understand the complex interaction of physical processes is gaining attention. However,
among the proposed dimensionless quantities, few are universally applicable. Some of them
remain applicable only in the context of a specific study or alloy. A universal dimensionless
variable or normalized graph can facilitate the comparison of results between different
studies using different materials [42]. This leaves room for the development of novel
approaches to characterize the LPBF process using dimensional analysis. Our goal in
this work is to perform such a dimensional analysis and investigate the relation between
meltpool morphology and to a lesser degree, microstructure evolution, and the underlying
dimensionless quantities naturally manifested by the thermo-fluidic governing equations
of the LPBF process. In this context, a novel numerical strategy is herein presented, where
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the data generated using numerical simulations of the thermo-fluidic model for different
alloys and different process parameters were used, along with linear regression analysis,
to characterize meltpool morphology in terms of the dimensionless numbers relevant to
the meltpool heat and mass transport.

The outline of the paper is as follows: Section 2 introduces the governing equations
of the LPBF process in their dimensional and non-dimensional forms, along with the
corresponding numerical formulation suitable to be solved using the Finite Element (FE)
method. Section 3 covers the validation of our FE-based implementation of the LPBF
thermo-fluidic model with experimental results and numerical results from the literature.
In Section 4, an empirical analysis based on linear least-squares regression is described
to identify an important dimensionless quantity that is interpreted as a measure of heat
absorbed by the powdered material and the resulting meltpool. An important relationship
is then identified relating the measure of heat absorbed by the meltpool and classical
dimensionless quantities relevant to the thermo-fluidic governing equations of the LPBF.
This is followed by a presentation of simulation results in Section 5, including a discussion
on the effects of the dimensionless quantities on the meltpool morphology and the resulting
microstructure. Lastly, concluding remarks are provided in Section 6.

2. Governing Equations of the LPBF Process
2.1. Thermo-Fluidic Model of the LPBF Process

A discussion of the physical processes underlying LPBF that are relevant to the thermo-
fluidic model is outlined in this section. The schematic in Figure 1 shows an outline of
the LPBF process. In LPBF, a recoater spreads a metal-powder layer on top of the powder
bed or partially built part that is enclosed in an inert environment. A high-intensity laser
scans over this powder layer, causing localized melting and fusion of the melted powder
on top of the partially built part. At the macro-scale or part-scale, this laser irradiation
of the metal powder results in the formation of a meltpool (also referred to as molten pool
or melting pool in the literature) of the liquified metal, that subsequently solidifies. This
solidification of the meltpool is driven from the mesoscale, where the liquid melt undergoes
a phase transformation to a solid phase, but the solidification is spatially heterogeneous and
leads to the formation of dendritic structures and eventually the grain-scale microstructure.
The formation of dendrites, their morphology, and the related numerical models were
extensively investigated by the authors in a recent publication [43].

Recoater

(Blade)

Powder Moving laser

Powder layer

Moving 

platform

Meltpool - 

with convection

Solidified region

Build part

Figure 1. Schematic depicting the part-building process in Laser Powder Bed Fusion (LPBF). Laser
irradiation on the powdered material causes localized melting and fusion of the metal powder on
top of the partially built part. The localized melting results in a small pool of liquified metal referred
to as the meltpool. Shown in the inset figure are the state of the powder under the laser—with the
newly solidified region and a meltpool with convective flow of the liquified metal, and this region
comprises the computational domain (Ω) of the numerical model presented in this work.
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In this work, the part-scale and thermo-fluidic processes that are relevant in the meltpool and
its immediate vicinity are considered. The processes modeled, with varying fidelity, include
the movement of the laser-powered heat source, powder melting, convective flow in the
meltpool, heat diffusion, and convective and radiation losses. These processes and their
thermo-fluidic effects can be captured by coupled partial differential equations solving for
the thermal distribution and the velocity distribution in the meltpool [21].

The governing equations of heat transfer are as follows:

ρc
∂T(x, t)

∂t
+ ρ(ν.∇)T(x, t) = ∇ · k

(
∇T(x, t)

)
+ Sφ + Sp, x ∈ Ω (1)

Equation (1) is solved for thermal conduction over the domain Ω (see Figure 1). T and
ν are the temperature and velocity, respectively, and are the primal fields of the governing
equations. All through this work, vector quantities such as velocity and the gradient
operator,∇, are shown in bold to distinguish them from other scalar quantities.

Sp is the heat input from the laser and Sφ is the latent heat released by the metal. ρ,
c, k represent density, specific heat capacity, and the thermal conductivity of the material,
respectively, and these can be constant or temperature dependent. Melting of the metal pow-
der consumes latent heat, which is represented by source term, Sφ = −ρ(ν.∇)φ− ρL( ∂φ

∂t ).
Here the liquid fraction, φ, determines the state of the material. φ = 0 represents the
solidified region, φ = 1 represents the liquid, and 0 < φ < 1 represents the mushy zone
region [44]. The liquid fraction is a function of the temperature of the material and is
given by the hyperbolic function: φ = eξ

eξ+e−ξ , where ξ = λ(T−Tm)
Tl−Ts

and Tm = 1
2 (Tl + Ts). λ

is a constant that represents the solid–liquid interface thickness, Ts, and Tl are the solidus
and the liquidus temperature of the material, respectively. The shape of the laser beam
is modeled as an axisymmetric Gaussian profile, and the moving laser power is modeled

using a source term, Sp = α f P
πr2

p lp
e

(
− f (x−νpt)2

r2
p

− f y2

r2
p
− f z2

l2p

)
, where P is the laser power, α is the

absorptivity, f is the distribution factor, rp is the laser spot size, lp is the powder layer
thickness, and νp is the laser scan speed.

Effectively, thermal conduction, powder melting due to the moving laser, and the
formation of a liquid meltpool are modeled. Inside the meltpool, heat diffusion, along with
the advection and convection effects of the fluid flow are considered. Convection inside the
meltpool is a result of the competition between the surface tension and the buoyancy effects,
but the surface tension driven flow dominates inside the meltpool [45]. The governing
equations for the fluid flow, accounting for the conservation of mass and momentum, are
given by,

ρ
∂ν(x, t)

∂t
+ ρ(ν(x, t).∇)ν(x, t) = −∇p + βg(T − Ts) +∇.

(
µ∇ν(x, t)

)
− 180µ

d2
φ

(1− φ)2

φ3 + δ
ν(x, t) (2)

∇.ν(x, t) = 0, x ∈ Ω (3)

This equation also accounts for advective and diffusive transport, buoyancy-induced
flow, and the pressure drop due to the mushy zone (modeled as a porous zone) [44]. Here,
β is the expansion coefficient, Ts is the solidus temperature, µ is the dynamic viscosity, dφ is
the characteristic length scale of the porous mushy region, and δ is a very small parameter
to avoid division by zero when φ = 0 (solid region). Integral form of governing equations
introduced in Section 2.2 are given by Equations (4) and (5). As will be seen in the integral
form, the surface integrals therein also account for the surface tension-induced flow and
losses to the inert surroundings. This is captured by the inclusion of the convective and
radiation heat losses, Marangoni convection from the top surface of the domain, Ω. At the
bottom surface, temperature is fixed to a preheating temperature value that is above the
ambient temperature. To limit the modeling complexity, in this otherwise highly coupled
multiphysics environment, mechanical deformation of the solidified region and keyhole
formation is neglected.
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2.2. Non-Dimensional Formulation of the Governing Equations

In this section, a dimensionless framework is constructed that exploits the powerful
idea of the Buckingham-π theorem. The LPBF process consists of several process param-
eters and the thermo-fluidic model that helps us build an understanding of the complex
interaction between several of these process parameters. The dimensionless framework
facilitates combining several of these dimensional parameters into fewer dimensionless
independent quantities. These dimensionless parameters then present key details of the
complex additive process such as LPBF in fewer numbers of variables. The classical
Buckingham-π theorem [46] provides a mathematical basis for reducing the parameter
dimensionality of the equations and helps group the parameters in the governing equations
into a fewer number of non-dimensional and distinct quantities. This reduction follows
from the application of the Rank-Nullity theorem [47,48]. Further, as will be discussed
in later sections, the Finite Element Method (FEM) is employed to solve the governing
equations considered in this work. FEM is a widely used numerical method that solves
partial differential equations posed in their weak formulation (integral formulation). Thus,
the dimensionless version of the governing equations that results from the application of
the Buckingham-π theorem is also considered in its weak form and solved using FEM.

Weak Formulation

In this section, the process of non-dimensionalization of the governing equations given
by Equations (1)–(3) is discussed. For the process of non-dimensionalization, the laser scan
velocity, νp is chosen as the characteristic velocity in the system, and the non-dimensional
velocity in the meltpool is then given by ν̃ = ν

νp
. The thickness of the powder layer, lp,

is chosen as the characteristic length, and this leads to the characteristic time, given by
tp =

lp
νp

. Now, the non-dimensional time and length are given by t̃ = t
tp

and x̃ = x
lp

,

respectively. Further, the non-dimensional temperature is chosen to be T̃ = T−T∞
Tl−T∞

, where
Tl and T∞ are the liquidus temperature of the metal and the ambient temperature of the
inert surroundings, respectively. The characteristics value of the pressure is chosen to be
ρν2

p. A list of the dimensionless variables used in this model are summarized in Table 1.
Using these scaled quantities, the dimensional strong (differential) form of the governing
equations given by Equations (1)–(3) are converted into their corresponding dimensionless
weak (integral) form. Following the standard variational procedure of deriving the weak
formulation of the governing equations from their strong form [49], the following weak
formulation is obtained:

Find the primal fields, {T̃, ν̃}, where,

T̃ ∈ ST , ST = {T̃ ∈ H1(Ω) | T̃ = T̃′ ∀ x ∈ ∂ΩT
D},

ν̃ ∈ Sν, Sν = {ν̃ ∈ H1(Ω) | ν̃ = ν̃′ ∀ x ∈ ∂Ων
D}

such that,

∀ ωT ∈ Vu, VT = {ωT ∈ H1(Ω) | ωT = 0 ∀ x ∈ ∂ΩT
D},

∀ ων ∈ Vφ, Vφ = {ων ∈ H1(Ω) | ων = 0 ∀ x ∈ ∂Ων
D}

and satisfies,

∫
Ω

ωT

(
∂T̃
∂t̃

+ (ν̃.∇̃)T̃

)
dΩ +

∫
Ω
∇ωT .

[ 1
Pe

]
∇̃T̃dΩ +

∫
Ω

ωT

[ Tc
Ste

](
(ν̃.∇̃)φ̃ +

∂φ̃

∂t̃

)
dΩ

−
∫

Ω
ωT

α f
πr̃2 l̃

[
Q
]

exp(x̃, ỹ, z̃)dΩ +
∫

∂ΩT
N

ωT

([ Bi
Pe

]
T̃ +

[ ts

Bo

]
T̃
)

ndS = 0 (4)
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∫
Ω

ων

( ∂ν̃

∂t̃
+ ν̃ · ∇̃ν̃

)
dΩ−

∫
Ω

ων

[RaPr
Pe2

]
(T̃ − T̃s)dΩ−

∫
Ω
∇̃.ων P̃dΩ +

∫
Ω

ων

[ Pr
DaPe

]
ν̃dΩ

+
∫

Ω

[Pr
Pe

]
(∇̃ων.∇̃ν̃)dΩ +

∫
∂Ων

N

ων

(
P̃−

[MaPr
Pe2

]
∇̃T̃
)

ndS = 0 (5)

here, n is the unit outward normal vector at the surface boundary. ∂ΩT
N and ∂Ων

N are the
boundaries for the temperature and velocity Neumann boundary conditions, respectively,
and ∂ΩT

D and ∂Ων
D are the boundaries for the temperature and velocity Dirichlet boundary

conditions, respectively. ωT and ων are standard variations from the space H1(Ω)—the
Sobolev space of functions that are square-integrable and have a square-integrable deriva-
tives. In these equations, the relevant dimensionless numbers are grouped inside square
brackets. These dimensionless numbers, along with their physical interpretation, are listed
in Table 2. The surface boundary condition in Equation (4) represents the nondimensional
form of the convective and radiation heat losses to the inert surrounding, and the boundary
condition (on the top surface) in Equation (5) represents the Marangoni flow induced by
the surface tension gradient.

Table 1. List of the scaling variables used in the non-dimensionalization of Equations (4) and (5).

Parameter Expression Physical Interpretation

l̃ lp
lp

Dimensionless powder layer thickness
r̃ rs

l Dimensionless laser spot radius
t̃ tνp

lp
Dimensionless time

T̃ T−T∞
Tl−T∞

Dimensionless temperature
ν̃ ν

νp
Dimensionless velocity

p̃ p
ρν2

p
Dimensionless pressure

∇̃ 1
lp
∇ Dimensionless gradient operator

Table 2. Symbols, expressions and their physical interpretation for the dimensionless quantities
considered in Equations (4) and (5).

Parameter Expression Physical Interpretation

Prandtl (Pr) ν
α Ratio of momentum to thermal diffusivity

Grashof (Gr) gl3 β(Tl−T∞)
ν2 Ratio of buoyancy force to viscous force

Darcy (Da) κ
d2

φ
Ratio of permeability to the cross-sectional area

Marangoni (Ma) dγ
dT

lp∆T
µα Ratio of advection (surface tension) to diffusive transport

Péclet(Pe) lpνp
α Ratio of advection transport to diffusive transport

Stefan (Ste) c(Tl−Ts)
L Ratio of sensible heat to latent heat

Power (Q) P
ρc(Tl−T∞)νp l2p

Dimensionless power with velocity dependence

Radiation measure ( ts
Bo )

σ(Tl−T∞)3

ρcνp
Measure of radiation contribution to the heat transfer

Biot (Bi) hlp
k Ratio of resistance to diffusion and convection heat transport

2.3. Computational Implementation

As stated earlier, the above weak formulation of the governing equations is solved
using FEM, and as model inputs, realistic process parameters and material properties of
common LPBF alloys are chosen, and these are discussed in Section 4.1 and in the Supple-
mentary Information. FEM implementation is done in an in-house, scalable, finite element
code framework written in C++ language with support for adaptive meshing and various
implicit and explicit time-stepping schemes, and is built on top of the deal.II open-source
Finite Element library [50]. Standard FEM constructs are adopted, and for all simulations
presented in this work, linear and quadratic Lagrange bases are used for pressure and other
field variables such as temperature and velocity, respectively. The coupled Navier–Stokes
equations are solved using Chorin’s projection method [51]. Following the standard prac-
tice in our group to release all research codes as open source [43,52–55], the complete code
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base for this work is made available to the wider research community as an open-source
library [56]. A representative schematic of the computational domain and the relevant
boundary conditions are shown in Figure 2. The important boundary conditions such as
convective and radiations losses and shear stress on the top surface expressed as surface
tension gradient with temperature is visible in the surface integral terms in Equations (4)
and (5). The initial temperature and temperature at the bottom surface of the material
are assumed to be fixed at 353 K. The ambient temperature was taken as 301.15 K. These
temperatures were scaled to a dimensionless form in the computational implementation.
The minimum and maximum dimensionless mesh sizes in an adaptive meshing scheme are
taken to be ∆x = 0.8 and ∆x = 6.0 along the x, y, and z directions. A uniform dimensionless
time step size of ∆t = 1.0 is used for running test cases. The small factor in Equation (2),
δ = 1.0× 10−5 is used in all the simulations. The interface parameter (λ) used in our
simulation is in the range λ = [0.1, 1.0].

Laser scan path

Adaptive mesh at 

heat source

Fixed temperature on 

the bottom surface

Convection and 

radiation losses 

from sides

 Marangoni convection 

(surface tension gradi-

ent) on the top surface

Dimensionless 

temperature 

Fused material 

Meltpool 

location

Meltpool 

shape

Liquid fraction

z

y

x

Figure 2. Schematic of the 3D finite element (FE) computational domain indicating the laser scan
path and the relevant boundary conditions. Shown also is the underlying adaptive mesh that evolves
with the location of the heat source. Representative dimensionless temperature profile and location
of the meltpool obtained from the FE simulation of SS316 alloy AM are shown. The numerical
parameters and material properties used in this simulation are given in Section 2.3 and in the
Supplementary Information.

3. Experimental and Numerical Validation

In this section, a validation of the numerical formulation and the FEM-based computa-
tional framework is presented. This computational framework solves the thermo-fluidic
governing equations of the meltpool described in Section 2. Further, a comparison is
given between the simulation results with experimentally observed cooling rates (made
available to us by our experimental collaborators), and with predictions of other numerical
models from the literature. Variables such as the cooling rates during the solidification,
material temperature, velocity of fluid inside the pool, and meltpool geometry can be
used as a yardstick to gauge the capability of our numerical model towards simulating
the LPBF process. For this validation study, the temperature and velocity distributions,
the cooling rates, and the maximum velocity in the meltpool are obtained from our FEM
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implementation. The cooling rate estimates from our simulations are compared with the
cooling rates estimated from experimental data of the LPBF process that were obtained from
Bertsch et al. [57]. Further, our simulation results are compared with the corresponding
material temperature distribution and meltpool velocity values obtained from numerical
modeling data in Shen et al. [58]. Simple thin-walled pseudo-2D plates and 3D cuboidal
geometries made of stainless steel (SS316 alloy) using the LPBF process are considered
in this validation study. The printed geometries consists of 13 × 0.2 × 13 mm3 thin wall
plates and 50 × 10 × 4 mm3 cuboids. The schematic of the printed 2D plates and 3D
cuboidal geometries can be found in Bertsch et al. [57]. These geometries are subsequently
referred to as the 2D walls and 3D cuboids. The powder layer thickness used was 0.02 mm
in both cases. Experimental details, AM technical specifications, and the post-processing
methods used to measure cooling rates can be found in the publications of our experimen-
tal collaborators, Bertsch et al. [57] and Rankouhi et al. [59]. The experimental cooling
rates were estimated by our collaborators, through post-processing of the microstructure
morphology, particularly the secondary dendrite arm spacing (λ2) at a distance of 6.5 mm
and 2 mm from the base for the 2D walls and 3D cuboids, respectively. The dendritic arm
spacing in the printed parts was analyzed by our collaborators using a scanning electron
microscope (SEM) following standard post-processing techniques. The cooling rates for
the alloy SS316 were obtained using the relation λ2 = 25ε̇−0.28 [60], where λ2 is measured
from SEM images.

For obtaining the numerical results, temperature-dependent material properties of the
SS316 stainless steel alloy are considered separately for the powdered, fused, and liquid
state of the material. The temperature and velocity distributions inside the meltpool were
obtained from the FE model. The cooling rates are given by the expression |∇T|νp, where
|∇T|2 is a measure of the average temperature gradient in the meltpool, and νp is the laser
scanning speed. For the 2D plates, the cooling rate was measured at a location 6.5 mm from
the base, both in the experiments and the FE model. Similarly, for the 3D cuboids, cooling
rate estimates were obtained at a location 2 mm from the base, both in the experiments
and the FE model. As can be seen from Figure 3, the cooling rates obtained from the
FE model are close to the experimentally reported values. The cooling rates are used for
comparison with experiments in this work, as they are of immense practical interest due
to their influence over the evolution of the microstructure (dendritic growth and grain
growth) that then dictates the mechanical properties of the printed part.
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Figure 3. Dependence of cooling rates obtained from experiments and the FE model on the en-
ergy density, P

νp
. The average cooling rate from the FE model was estimated using the relation:

Ṫ = Gνp = |∇T|νp. Laser power (W) and scan speed (mm/s) combinations used for this study were
(P, νp) = (90, 575), (90, 675).

Further, the temperature distribution and maximum velocity values in the meltpool
obtained from the FE model were compared against the reference test cases given in
Shen et al. [58]. These cases represent the simulation of an LPBF process with a laser power
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of 100W and 200W used to print AZ91D magnesium alloy parts. As shown in Figure 4a–c,
the point temperature as a function of time and the maximum meltpool velocity values
obtained from our numerical model closely matches the trend reported in the literature.
These comparisons provide a good validation of our FE-based numerical formulation and
its computational implementation.
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Figure 4. Validation of the FE model results by comparing with corresponding values reported in the
literature. (a) Variation in point temperature with time for the case P = 200 W. (b) Variation in point
temperature with time for the case P = 100 W. (c) Variation in maximum pool velocity with time for
the case P = 100 W [58].

4. Empirical Analysis of the Energy Absorbed by the Meltpool

In this section, the rationale behind the construction of a model of the energy absorbed
by the meltpool is discussed. Numerical modeling of the AM process, in general, solves
governing equations of heat conduction, fluid flow, mechanical deformation of the solidi-
fied region, etc., that is in terms of “local” field quantities such as temperature, velocity,
displacement, etc. However, our goal in this work is to arrive at estimates of the “global”
response of the system at the meltpool-scale, i.e., measures such as the meltpool morphol-
ogy (size and shape), average temperature distribution, average velocity distribution, etc.
The intention is to propose and validate a “global” model of the energy absorbed by the meltpool in
terms of various process variables, material properties, and output variables, and thus determine
the important quantities, from amongst these dependencies, that have the most direct impact on
meltpool evolution.

Towards proposing a linear model of the heat energy absorbed by the meltpool, vari-
ous non-dimensional quantities are chosen that appear in Equations (4) and (5). These are
the input quantities made up of material properties, processing conditions, and surround-
ing environment variables. The general procedure used to estimate a linear model is as
follows: Û, the dimensionless measure of the heat absorbed by the meltpool, and modeled
as linearly dependent on the input non-dimensional quantities. Such a model can be math-
ematically expressed as Û = ∑n

i=0 aiπi. where n, πi, and ai denote the number of inputs,
the dimensionless numbers considered and their corresponding coefficients, respectively.
The merits and demerits of choosing various input non-dimensional quantities to charac-
terize the model are evaluated using physics-based and statistical arguments discussed
in the subsequent sections. Broadly, a method of least squares numerical approach is
implemented to estimate the coefficients, ai, corresponding to each dimensionless number,
πi, considered as a potential variable influencing the heat absorbed by the meltpool. It is
the relative magnitude of these coefficients that inform us about the significance or insignif-
icance of each dimensionless quantity towards the model of the heat absorbed. Further, it
is understood from prior knowledge that a system with higher Û can potentially correlate
to a rise in some measure of the meltpool temperature. The maximum temperature of the
material is arguably higher if the heat received Û is higher. Thus, as a first-order argument,
there exists a phenomenological relation Û ∝ T̃max. This reasoning permits us to use T̃max
as a measure of the Û, and the value of T̃max is obtained by solving thermo-fluidic model
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described by Equations (4) and (5) on different alloy materials and processing conditions
listed in the Tables S1 and S2 provided in the Supplementary Information. Having obtained
T̃max, the coefficients, ai are estimated, using the method of linear least squares approach
and an explicit form Û in terms of various dimensionless numbers, πi is obtained. Once
the linear model of the heat absorbed by the meltpool, Û, is determined, it is linked with
the several output variables of interest, namely the temperature gradient in the meltpool,
the solidification cooling rate (Gνp), a measure of the advection heat transport due to
the surface tension gradient, and finally the meltpool morphology (aspect ratio( lm

wm
) and

volume (lmwmdm)). Important correlations between the relevant output variables and
nondimensional input numbers are discussed at length in Section 5.

4.1. Process Variables, Material Properties, and Output Variables

In this section, the process variables such as laser characteristics, the material prop-
erties of the alloy, and the output variables obtained from the thermo-fluidic model are
discussed. The powder layer thickness lp = 0.02 mm and laser spot radius rp = 0.1 mm are
taken for all the cases. The simulation domain geometry, Lx ×Wy × Hz = 3× 0.5× 0.5 mm3,
is fixed for all the cases. The movement of the laser is modeled as a single scan on the
centerline of the top surface. The temporal and 3D spatial variations of the temperature and
velocity of the material in the meltpool are obtained from the FE model. Due to the laser
heat source, the temperature of the material increases past the liquidus melting temperature
and results in the formation of a liquid meltpool. In the simulations, five commonly used
LPBF alloy materials are considered, namely stainless steel (SS316), a Titanium alloy (Ti-
6Al-4V), a Nickel Alloy (Inconel 718), an Aluminium alloy (AlSi10Mg), and a Magnesium
alloy (AZ91D) [21,22,58]. To limit the complexity of the analysis by making dimensionless
quantities independent of temperature, constant material properties (non-varying with
temperature) are chosen. The numerical values of the input material properties for each of
the alloys considered are provided in the Supplementary Information.

The process variables considered are the laser power value (P) and laser scan speed
νp, a laser distribution factor, f = 2.0, is fixed for all the cases. For a given alloy, twelve
(4× 3) combinations of the process variables were chosen to simulate a range of process
conditions that are relevant to the LPBF process. The numerical values of the input process
properties for each of the alloys considered are provided in the Supplementary Information,
under Tables S1 and S2. In the thermo-fluidic model, the heat transfer coefficient (h) and
the Stefan-Boltzmann constant (σ) are associated with the surrounding inert environment.
σ = 5.67× 10−8 W/(m2K4) is a known constant. The effect of varying the heat transfer
coefficient is found to have a negligible impact based on our preliminary simulations,
so the heat transfer coefficient is taken as h = 10 W/m2K. This is due to the relatively
minimal convective and radiation losses to the environment, as compared to conduction of
heat through the base plate. In total, we perform about 60 (5× 4× 3) LPBF simulations
considering different process variables and material properties. At a fixed non-dimensional
time t̃ = 100, the maximum value of the magnitude of the temperature gradient G = |∇T|
is recorded. The temperature gradient value in the meltpool region is significant but
relatively small outside this region. The temperature gradient is an important variable
that controls the microstructure evolution in the additively printed material. The cooling
rate, given by Gνp, where νp is the speed of the solid–liquid interface is also an important
output variable for understanding the microstructure evolution. Further, the maximum
temperature, Tmax, and maximum velocity, νmax, in the meltpool, is tracked along with a
measure of the maximum extent of the meltpool length (lm), width (wm) and depth (dm)
that characterize the meltpool morphology.

4.2. Parametrization in Terms of the Dimensionless Quantities

The use of an empirical approach to estimate Û is described in this section. The most
appropriate set of dimensionless input parameters that explain variation in the measure
of the heat absorbed is chosen. As stated earlier, Û is considered proportional to T̃max.
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In total, 60 correlations of the form (Π, T̃max) are generated from our simulations, where
Π represents the set of the dimensionless input quantities considered. The unknown
coefficients, (ai) are determined through the standard method of linear least-squares
regression. The data for the regression analysis are obtained from the finite element
simulations of the LPBF process. Here, multiple regression attempts were made to arrive at
a linear characterization of Û in terms of the most relevant dimensionless input quantities.
While many combinations of the dimensionless input quantities were considered, three
such attempts as representative of our regression analysis are presented here. The first two
attempts result in correlations that are weak and hence discarded, before converging onto
an acceptable correlation between Û and the relevant dimensionless input quantities in the
third attempt.

First attempt of the regression analysis:

The following set of independent variables: Π = { 1
Pe , Q, Tc

Ste , Bi
Pe , ts

Bo} are considered.
The hypothesized linear relationship is shown below. Here ε is the error—the difference
between the expected and true value of Û.

Û = a0 + a1Q + a2Pe−1 + a3
Tc
Ste

+ a4
Bi
Pe

+ a4
ts
Bo

+ ε (6)

The values of the coefficients resulting from the least-squares regression are given
in Table 3. The condition number for this analysis is 8.11× 107, which is very high. This
indicates that there exists strong collinearity in the assumed input set Π. The collinearity
can be understood in terms of the primary variable as follows: On close inspection of the

dimensionless expressions for Q = P
ρc(Tl−T∞)νp l2

p
, 1

Pe = α
νp lp

, Bi
Pe = hlα

νp lp
, and ts

Bo = σ(Tl−T∞)3

ρcνp
,

it is observed that laser scan velocity is accounted for in all the four variables, and this can
potentially reduce the linear independence of these physical quantities. Further, the role
of inert environment variables is limited in our analysis. Considering the regression
coefficients, Bi/Pe and ts/Bo are dropped from our next regression attempt.

Table 3. First attempt of the regression analysis to estimate the coefficients, ai, using the linear
least-squares approach. Asterisk (∗) indicates the statistical significance of the coefficient using a t-test
with a 95% confidence interval. Other statistics: R2 = 0.65, Adjusted R2 = 0.61, F-statistic = 20.12,
P(F) = 0.0. Condition number = 8.11× 107.

Parameter Intercept Q Pe−1 Tc
Ste

Bi
Pe

ts
Bo

ai 1.45 ∗ 0.0053 ∗ −0.1719 ∗ −0.7076 ∗ 300.3 −18,200 ∗

Second attempt of the regression analysis:

In the second iteration, the chosen independent set is Π = {E, Pe, Tc
Ste}. The hypothe-

sized linear relationship is given by the following relation.

Û = a0 + a1E + a2Pe + a3
Tc
Ste

+ ε (7)

Further, considering the details of the regression analysis, the expression for the
variable dimensionless power, Q, that had a velocity dependence is modified to a new
variable, E = P

k(Tl−T∞)
= PeQ. This new variable is a modified dimensionless power and

is independent of the laser scan velocity. Now, the laser scan speed parameter is only
represented in the Péclet number, Pe. The fourth term Tc

Ste is purely dependent on the
material properties. Note the least-squares solution yields the coefficients given in Table 4.

The least-square solution obtained from this model is an improvement over the pre-
vious model. This can be realized from the improvement in the accuracy of the fit given
by the variable R2. The adjusted R2 improves from 0.65 to 0.75 with the less number of
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variables in the set Π. The condition number is still high but better than the previous model.
Thus, the non-significant variable is dropped from the set, Π, in our third attempt.

Table 4. Second attempt of the regression analysis to estimate the coefficients, ai, using the linear
least-squares approach. Asterisk (∗) indicates the statistical significance of the coefficient using a t-test
with a 95% confidence interval. Other statistics: R2 = 0.763, Adjusted R2 = 0.750, F-statistic = 55.95,
P(F) = 0.0. Condition number = 1.12× 103.

Parameter Intercept E Pe Tc
Ste

ai 0.6938 ∗ 0.0087 ∗ −0.1677 ∗ 0.1521

Third attempt of the regression analysis:

Π = {E, Pe} and the hypothesized linear relationship is given by the following relation.

Û = a0 + a1E + a2Pe + ε (8)

The least-square solution is summarized in Table 5. The condition number is greatly
improved. The probability that all ai = 0 at the same time is negligible as seen from the
probability of F-statistic. All the coefficients are statistically significant, i.e., the hypothesis
that individual ai = 0 can be safely discarded.

Table 5. Third attempt of the regression analysis to estimate the coefficients, ai, using the linear
least-squares approach. Asterisk (∗) indicates the statistical significance of the coefficient using a t-test
with a 95% confidence interval. Other statistics: R2 = 0.746, Adjusted R2 = 0.737, F-statistic = 83.61,
P(F) = 0.0. Condition number = 422.

Parameter Intercept E Pe

ai 0.8146 ∗ 0.0082 ∗ −0.1654 ∗

Now, the linear model given by Equation (8) is interpreted in light of the physics of the
additive process. The heat received by the material is defined by a quantity Û. The higher
the heat received, the greater the temperature reached by the system. This Û is related
to the various material properties and process parameters. Using the non-dimensional
analysis, several parameters were combined into a bunch of non-dimensional numbers.
These numbers are associated with and are responsible for several physical phenomena.
Using the linear model and the available data, the variation in Û was explained using a
linear combination of constant, E and Pe. A more complete dependence can potentially be
highly non-linear, but this also can be analytically intractable.

5. Results

In the previous section, a linear least-squares regression approach was used to arrive at
a relation for the dimensionless heat energy absorbed, Û. The regression analysis resulted
in a relation for Û in terms of the dimensionless power, E, and the Péclet number, (Pe). In
the following sections (Sections 5.1–5.3), relation for Û is used to investigate the advective
transport occurring inside the meltpool for different alloys and then to characterize their
meltpool morphology (aspect ratio and volume) using the Marangoni number and the
Stefan number. In Section 5.4, Û is used to characterize microstructure evolution using the
temperature gradients and the cooling rates in the solidified region.

5.1. Influence of Péclet Number on Advection Transport in the Meltpool

In this section, the extent of advection transport observed in the meltpool in different
alloys during the LBPF process is discussed. The goal is to analyze the macroscopic
geometric features of the meltpool, such as its aspect ratio and volume. In trying to explain
the variation of these macroscopic features, a measure of advection in the meltpool using
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the relevant dimensionless quantities are critically investigated. Figure 5 describes the
variation of the Péclet number, Pe∗ = Peνmax, with the non-dimensional quantity MaÛ. It
is to be noted that the Péclet number with an asterisk, Pe∗ = Peνmax =

lpνp
α

νmax
νp

, is defined
using the maximum velocity in the meltpool, and is a measure of the advective transport
relative to the diffusion transport in the meltpool. A larger value of Pe∗ denotes a larger
circulation of heat inside the meltpool due to the fluid motion. The dimensionless quantity
Ma∗ = MaÛ is a measure of heat transport caused by the fluid flow induced due to the
surface tension gradient. As seen from Figure 5, for the alloy shown, Pe∗ increase with the
Ma∗. This correlation implies the overall movement of fluid in the meltpool is greater if
the advection transport due to surface tension force is greater. Each point in these plots
represents a single simulation result for the relevant quantities plotted and is obtained
from the FEM framework. Another key information conveyed in Figure 5 is that for some
alloys such as AlSi10Mg, advection due to surface tension forces is minimal, as can be seen
from the numerical values of the total advection (Peνmax) shown on the Y-axis. On the
other hand, alloys such as Ti6Al4V show a higher value of advection transport due to
surface tension forces. These observations are important correlations between advection
measure Pe∗ = Peνmax, Marangoni number, Péclet number, and the dimensionless power
(MaÛ = a0Ma + a1MaE + a2MaPe), and will be used below to make connections to the
meltpool morphology.
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Figure 5. Measure of total advection measured as Peνmax vs. surface tension based advection
MaÛ = a0 Ma + a1 MaE + a2 MaPe on a log–log scale for (a) AlSi10Mg, (b) SS316, (c) Ti6Al4V
alloys. Corresponding plots comparing IN718 and AZ91D alloys, and a comparison of all the five
alloys considered in this work can be found in Figures S1 and S2 of the Supplementary Information,
respectively. The advection measure corresponds to the degree of fluid flow inside the meltpool.
Each point in these plots represent a single simulation result for the relevant quantities plotted, and is
obtained from the FEM framework.

5.2. Influence of Marangoni Number on the Meltpool Aspect Ratio

In this section, the geometric characteristics of the meltpool, particularly the aspect
ratio is discussed. The meltpool aspect ratio is defined as the ratio of its maximum length
to its maximum width ( lm

wm
). To understand aspect ratio in terms of the input process

parameters, dimensionless quantity MaÛ is useful. For characterizing the meltpool shapes,
correlations were found between MaÛ = a0Ma + a1MaE + a2MaPe and the aspect ratio
of the meltpool for different alloys, and different process parameters. The rise in Û is an
indication of enough heat received by the material to cause melting during the additive
process. The aspect ratio of the meltpool is related to the fluid flow induced inside the
meltpool. As shown in the previous section, in Figure 5, AlSi10Mg alloy has a low advection
measure, Peνmax, and Ti6Al4V alloy has a high advection measure. This information is
relevant here to understand the meltpool shapes of these materials. Figure 6a shows the
variation of the aspect ratio ( lm

wm
) plotted as a function of non-dimensional quantity MaÛ

for Ti6Al4V alloy material. The aspect ratio increases with MaÛ. The aspect ratio with
MaÛ if visualized in a combined plot for all the three alloys considered in this work, it
is instructional to see the separations of materials into three clusters—each for one alloy,
as seen in Figure 6b. From this clustering, it can be seen that Ti6Al4V almost always
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produced an elongated or elliptical-shaped meltpool whose aspect ratio is far from one.
The alloy AlSi10Mg produces a meltpool that is relatively less elongated and has an aspect
ratio closer to one. The advection in the fluid flow causes the meltpool to expand along the
direction of the higher temperature gradient. From this discussion, insightful observations,
relating the aspect ratio of the meltpool with MaÛ, can be made that help us characterize
the meltpool shapes potentially produced by different alloys.
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l m w
m

Ti6Al4V
SS316

AlSi10Mg

(b)

Figure 6. Correlation of the aspect ratio with MaÛ = a0 Ma + a1 MaE + a2 MaPe, plotted on a
log–log scale, for (a) Ti6Al4V alloy, and for (b) three alloys (Ti6Al4V, SS316 and AlSi10Mg) shown in
a single plot to demonstrate clustering. A combined plot demonstrating this clustering for all the
five alloys (Ti6Al4V, SS316, AlSi10Mg, IN718 and AZ91D) considered in this work can be found in
Figure S3 of the Supplementary Information. Each point in these plots represent a single simulation
result for the relevant quantities plotted, and is obtained from the FEM framework.

5.3. Influence of Stefan Number on Meltpool Volume

In this section, a relation between the input non-dimensional numbers and the volume
of the meltpool is presented. The volume of the meltpool is the volume of the localized
region where the heat received by the material resulted in the melting of the material. The
pool volume is identified using the liquid fraction, φ, which is a variable that we track in
the model at all time instances and all spatial points in the domain. To completely melt the
material, the material needs to absorb enough power to raise the temperature above the
liquidus temperature and to overcome the latent heat barrier. The dimensionless power
absorbed by the material is associated as a form of latent power, PL = Ωm

l3
p

Tc
Ste . Since Tc

Ste

is constant for a given material, PL is proportional to the volume of the material melted
(Ω̃m). One can expect, as a first-order argument, that more material will melt if Û is
higher. Thus, one can expect PL = Ω̃m

Tc
Ste to increase with Û. This understanding helps us

anticipate that the meltpool volume for different alloys, Ω̃m, increases with SteÛ
Tc , and this

can indeed be seen in Figure 7a–c. The numerical range of the meltpool volumes across
the data points is similar, but for a given alloy, the meltpool volume increases with Ste

Tc Û.
With this analysis, an important correlation is obtained between the meltpool volume and
the quantity Ste

Tc Û = a0
Ste
Tc + a1

SteE
Tc + a2

StePe
Tc .
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Figure 7. Correlation of the meltpool volume (lmwmdm) with SteÛ
Tc

= a0
Ste
Tc + a1

SteE
Tc + a2

StePe
Tc ,

plotted on a log–log scale, for (a) AlSi10Mg, (b) SS316, and (c) Ti6Al4V alloys. Corresponding plots
comparing IN718 and AZ91D alloys, and a comparison of all the five alloys considered in this work
can be found in Figure S4 and S5 of the Supplementary Information, respectively. Each point in these
plots represent a single simulation result for the relevant quantities plotted, and is obtained from the
FEM framework.

5.4. Influence of the Heat Absorbed on the Solidification Cooling Rates

In this section, a discussion on characterizing the microstructure of the solidified
region is presented. To support this discussion, Û is used to explain the variation in the
output variables such as the temperature gradient, G, and the cooling rate, Gνp, where νp is
the laser scan speed. These variables are traditionally understood to have a direct influence
on the microstructure in the solidification literature. Û = a0 + a1E + a2Pe, has a strong
linear correlation with the temperature gradient, G, as shown in Figure 8a–c. Considering
the correlations observed in these figures, it can be inferred that the non-dimensional
temperature gradient is proportional to the value of Û. Further, this relation is expressed
entirely in terms of input material properties and process parameters.
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Figure 8. Dimensionless temperature gradient (G) with the Û for different alloys. Plots corresponding
to IN718 and AZ91D alloy material can be found in Figure S6 of the Supplementary Information.
Each point in these plots represent a single simulation result for the relevant quantities plotted, and is
obtained from the FEM framework.

In the LPBF process, the laser scan speed controls the speed of movement of the
solidification interface. The laser scan speed used in the simulations is assumed to be
equal to the maximum solid–liquid interface velocity (ν = νp [61,62].) The variation of
the cooling rates, Gνp are observed with Û by increasing dimensionless laser power, E,
but keeping the Péclet number fixed. The dimensionless temperature gradient, G̃max, will
increase with Û. as seen in Figure 8. It is also instructional to see that the cooling rate, Gνp,
increases with Û, as shown in Figure 9a. There exists a well-known correlation between a
microstructure size, λ2, and the cooling rate, Gνp, in the solidification process, and is given
by the relation λ2 = 25(Gνp)−0.28 [60]. Using this relation, it can be seen that the size of
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the microstructure will get finer as we increase Û, which can be achieved by increasing E.
Thus, the size of the microstructure correlates with the input non-dimensional quantity
given by Û = a0 + a1E + a2Pe.
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Figure 9. (a) Variation of the dimensional cooling rate, Gνp, with Û = a0 + aaE + a2Pe, plotted on a
log–log scale. Here, Û is changed by changing E, but keeping Pe fixed for SS316 alloy, (b) Variation
of dimensional cooling rate, Gνp, with Û = a0 + aaE + a2Pe, plotted on a log–log scale. Here, Û is
changed by changing Pe, but keeping E fixed for SS316 alloy.

The effect of Û on the cooling rate is studied due to a change in the Péclet number,
Pe, but keeping the dimensionless laser power, E, fixed. Û decreases with increase in Pe
and E fixed. From Figure 8, it is known that the dimensionless temperature gradient, G,
and its dimensional counterpart, both decrease if we decrease Û. Thus, the cooling rate,
Gνp, decreases with increase in Û, as seen in Figure 9b. This decrease is solely due to an
increase in the value of Pe. Using this information, a correlation is identified between the
change in the size of the microstructure and the Péclet number, i.e., increasingly coarser
microstructural features can be observed with a decrease in the cooling rate.

6. Conclusions

In this work, the meltpool dynamics of the laser powder bed fusion (LPBF) process are
numerically modeled and connections are drawn to important dimensionless quantities in-
fluencing the thermo-fluidic evolution of the meltpool and its morphology. Processes such
as the interaction of the moving laser power source with the powdered metal, formation
of the meltpool, its subsequent solidification, etc., make LPBF a highly coupled multi-
physics process. To investigate the multiphysics interactions, the thermo-fluidic governing
equations relevant to the LPBF process are numerically modeled using a Finite Element
Method (FEM) framework. The simulation predictions were validated by comparing with
available results from the literature and with experimental observations of the cooling
rates available from our experimental collaborators. Using the classical Buckingham-π
theorem and a careful choice of relevant characteristic quantities, the governing equations
were reduced to their dimensionless form. Using the dimensionless form and the FEM
simulations, an important dimensionless quantity, interpreted as the heat absorbed by the
metal powder and the meltpool, is identified. Around 60 different cases of the LPBF process
were simulated by varying the alloy type and process conditions, and the simulation data
were used to obtain an explicit form of the dimensionless heat absorbed in terms of the
input dimensionless numbers using the method of linear least-squares regression. Using
physics-based and statistical arguments, a linear model showing dependence of the heat
absorbed on the Péclet number and the dimensionless power is established.

The measure of advection inside the meltpool is quantified in terms of the Péclet and
the Marangoni numbers and it is found that materials such as Ti-6Al-4V show greater
advection, represented by Pe∗, and an elongated elliptical meltpool. Materials such as
AlSi10Mg show the least advection and whereas SS316 shows moderate amount of ad-
vection. It was found that the meltpool volume of materials such as Ti-6Al-4V, SS316,
and AlSi10Mg increases with the product of Stefan number and dimensionless measure of
heat absorbed. Solidification cooling rates decrease with the measure of heat absorbed if the
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Péclet number is reduced while keeping dimensionless power fixed. This characterization
of the meltpool morphology using classical dimensionless numbers and the impact of
dimensionless power and Péclet number on the solidification cooling rates presents a novel
contribution of this work.

In a future work, potential extension of this dimensional analysis framework to
investigate meltpool characteristics such as keyhole formation and microstructural features
such as grain morphology in the solidified meltpool region will be explored.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16010094/s1, Table S1: Average material properties for alloys.
Table S2: Process conditions for alloys. Figure S1: Measure of total advection measured (Peνmax) vs
surface tension based advection MaÛ for IN718 and AZ91D. Figure S2: Measure of total advection
measured (Peνmax) vs surface tension based advection MaÛ for all materials in a combined plot.
Figure S3: Correlation of the aspect ratio with MaÛ for all alloys in a combined plot. Figure S4:
Correlation of the meltpool volume with SteÛ

Tc
for IN718 and AZ91D. Figure S5: Correlation of the

meltpool volume with SteÛ
Tc

for all alloys in a combined plot. Figure S6: Dimensionless temperature
gradient (G) with the Û for IN718 and AZ91D alloy.
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