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In the field of tissue engineering and regenerative medicine (TERM), the use of tra-
ditional biomaterials capable of integrating the host tissue to promote the healing and
regenerative process while it degrades has become less and less a focus of inspiration.
The current trend is to increase the complexity of the host materials in order to better
emulate the extracellular microenvironment of heathy and disease tissues [1]. Thus, the
combination of materials engineering with other emerging fields, such as nanotechnology,
cell and molecular therapy, and precision medicine, can allow for the development of
innovative biopolymer-based scaffolds for specific biomedical approaches [2–5]. New and
recent insights in bioprinting, reverse engineering, and image acquisition are an asset for
advanced scaffolds design and biofabrication. Moreover, it has been recognized that the
emulation of biological and mechanical diversity of in vivo tissues can be best achieved by
the exploitation of natural and/or synthetic biopolymers combined with these emerging
technologies [6,7].

This Special Issue covers the abovementioned subjects with the main goal of collecting
significant contributions related with biopolymer-based materials applied in biomedicine
and TERM, as well as the emerging scaffolding strategies and manufacturing techniques
used for biomaterials processing. Nano-tools for biopolymers functionalization and
materials-cells interactions were also explored. The current concerns related to the use of
sustainable polymer sources and processing techniques allowed us to increase the research
studies in this field (especially when designed for biomedical applications). Thus, we
can state that our efforts were quite successful, and the proposed multidisciplinary topic
resulted in six published papers briefly summarized below.

An injectable thermosensitive hydrogel was produced by Youn et al. [8] as a drug and
cell delivery system. The composite hydrogel matrix was prepared by mixing pluronicTM

F-127 (PF) and silk fibroin (SF) in an aqueous solution and testing the mixture at different
ratios. The PF provided a platform for the entire hydrogels’ support, whereas SF enhanced
the structure by the intermolecular interactions promoted by the physical cross-linking. Au-
thors showed that at proper amounts, SF improved the mechanical strength and decreased
the degradation rate of the hydrogels improving the drug release rate of hydrophobic drugs.
Moreover, the presence of SF also reduced the cytotoxicity of the hydrogels induced by the
PF. Thus, authors confirmed that the injectable PF-SF hydrogels are promising for future
tissue regeneration applications.

The synergistic effect of human interferon α2 (IFNα2) and thymosin α1 (Tα1) proteins,
commonly used for the treatment of viral infections and cancer, were innovatively explored
by Aslam et al. [9] by genetic fusion of IFNα2–Tα1 genes in a single molecule. The
recombinant IFNα2–Tα1 exhibited elevated anticancer and antiviral activities as compared
to IFNα2 alone used as control. These results were confirmed by in vitro analysis, in which
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the IFNα2–Tα1 was genotoxic and more efficient in inhibiting cell growth as compared to
IFNα2 alone. Molecular analysis revealed that IFNα2–Tα1-treated cells expressed higher
levels of proapoptotic genes and HCV replication inhibitor genes as compared to the
IFNα2-treated cells. Despite the fact that in vivo trials are needed to further explore the
pathways responsible for the combined antiviral and anti-cancer activity of IFNα2–Tα1,
the present findings confirmed the synergistic effect of IFNα2 and Tα1 and their potential
as combined therapies.

Su et al. [10] tested the wear rate of different materials typically used for the femoral
head and acetabular liner in hip joint prothesis. A hip joint simulator was used for testing
the wear rate between different friction pairs in order to determine the suitable pros-
thesis according to different processing technologies and costs. Different materials had
distinct wear rate efficacies. However, the combination of cobalt-chromium-molybdenum
alloy (CoCrMo) femoral head with highly cross-linked polyethylene (XLPE) liner showed
superior wear resistance and cost-effectiveness as hip prosthesis as compared to other
contact materials.

RGD peptide-conjugated chitosan (CT) hydrogels were proposed by Chen et al. [11]
as an alternative to the endobarrier medical device used in the small intestines for the
treatment of type 2 diabetes and obesity. The RGD-CT hydrogels were demonstrated to
be highly biocompatible and non-cytotoxic in vitro and were effectively retained in the
small intestine of rats, inducing a significant decrease of body weight while the blood
and hematic biometrics were maintained at normal levels. The authors also consider the
RGD-CT gels as patient-specific anti-obesity therapies, due to the possibility of adjusting
the oral intake of the RGD’s according to patients’ needs.

Novel cell-penetrating peptides (CPPs) were investigated by Liu et al. [12] in order to
enhance the endosome escaping ability of CPPs promoted by histidine. Previously, authors
showed that a CPP peptide called RALA (arginine-rich) presented suitable transfection
efficacy and potential clinical use. However, RALA peptide contains only one histidine in
each chain, which led the authors to develop these new peptides named HALA with an
increased histidine ratio. Transfection results revealed superior outcomes for the HALA
peptides. Moreover, multiple pathways led to a mechanism of endocytosis being revealed
by pDNA nanocomplexes, wherein caveolae played the main role. All combined, a novel
peptide-HALA2 was discovered with high cellular transfection efficacy which ultimately
can be applied for gene therapy.

Finally, Hao et al. [13] presented a new type of electroprobe made in biocompatible nat-
ural materials for neuronal tissue engineering applications. The neuroelectrode-associated
conductive biomaterials presented good biocompatibility and a gradient microstructure for
cell viability, growth, and neurons bonding in vivo. Moreover, the developed bio-electro
probe presented an elastic modulus closer to that observed for natural brain barrier and
a superior conductivity as compared to metal electrodes. The study represents the first
research line for long-term studies of neural electrodes implantation in cortical nerve with
more efficient signaling transmission.
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