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Abstract: Mechanical properties of the constituent material of fiber-reinforced braided composites
will inevitably change after the manufacturing process. An approach to constituent parameters’
identification of braided composites was proposed to obtain the basic information of composites for
structural analysis. Identification of the constituent parameters was transformed as an optimization
problem, which was solved by adopting the sensitivity analysis method, iteratively minimizing the
discrepancies between the numerically calculated displacement field and the measured displacement
field. The sensitivity matrix of displacements with respect to the constituent parameters was directly
derived based on the constitutive material model for the first time. Considering that the large
magnitude differences between parameters will lead to an ill-posed problem of the sensitivity
matrix, the identification was susceptible to noise from the experimental data, the relative sensitivity
was adopted, and a condition number-based response point selection was applied to improve the
robustness of the parameter identification. A 2.5-dimensional braided composite was employed to
illustrate the constituent parameter identification method by comparing with the finite difference
method. In addition, the influence of selected measuring points and measuring errors on the proposed
method were discussed. The results showed that the proposed method can be used to identify the
constituent parameters efficiently and accurately. When the measured displacements are polluted by
noise, the condition number of the sensitivity matrix is an effective indicator of preceding information
to enhance the identification accuracy.

Keywords: braided composite; inverse methods; constituent parameter identification; sensitivity
analysis; response selection

1. Introduction

Braided composite materials have been widely applied in the aeronautics and aerospace
industries due to their excellent mechanical properties. The knowledge of the microstruc-
ture and its mechanical properties provides essential information for composite structural
design to satisfy the requirements of the macroscopic mechanical performance in different
conditions. The manufacturing process of a composite, such as chemical vapor infiltra-
tion [1], thermal treatment [2], and pressure forming [3], can improve the macro-mechanical
property but the constituent property of a composite will change after fabricating. Analyz-
ing the macroscopic mechanical behavior of composite structures greatly depends on the
mechanical properties of the fiber and the matrix [4–6] and the bonding conditions between
constituents [7]. Constituent parameters after manufacture should be predicted prior to
mechanical analysis and stimulation of composite structures [8].

The inverse method is widely applied to composite parameter prediction because it
is difficult to directly measure [9]. Based on minimizing the cost function of a response
residual between the analytical and experimental data, the composite parameters can be
identified using the iterative optimization method. The construction of a response residual

Materials 2022, 15, 8794. https://doi.org/10.3390/ma15248794 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15248794
https://doi.org/10.3390/ma15248794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-9636-8173
https://orcid.org/0000-0001-8873-7098
https://doi.org/10.3390/ma15248794
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15248794?type=check_update&version=1


Materials 2022, 15, 8794 2 of 19

can use static displacement [10–13], strain data [14–17], and vibration responses [18–21]. A
function is expressed as the discrepancies between the internal and external virtual work,
corresponding to the virtual fields method (VFM) [22]. The advantage of the VFM is the
superior computation efficiency; on the contrary, the disadvantage is the uncertainty of the
selection of the virtual fields. Investigations on the identification of macroscopic composite
material have attracted much attention. Although several non-gradient-based algorithms,
such as genetic algorithms [23] and neural networks [24] can identify parameters with a
data search, the superiority of gradient evaluations during identification is non-negligible.
In general, this non-gradient-based optimization requires more than the many function
evaluations of the gradient-based algorithm [25]. Common gradient-based identification
approaches are developed based on the sensitivity analysis of a structural response with
respect to constitutive structural parameters. For example, Huang [26] identified the elastic
orthotropic parameters of functionally graded structures by combining the Levenberg–
Marquardt method, in which the sensitivity calculation is based on the differentiation
of the governing equations of the structural finite element method. Charkas et al. [15]
calibrated a plasticity material model using the 2D inverse method based on quasi-static
displacements. Tam et al. [18] chose dynamic response data after Fourier transform as the
objective variables to identify composite structural parameters.

As the constituent properties of textile composites are complex [27–31], the gradient
relationship of the structural response with respect to the microscopic parameters [32,33] is
difficult to determine. The complex weaving types of braided composite material together
with orthotropic fiber components increase the calculation difficulty [34]. Comellas [10]
proposed a modeling method for composites based on the mixing theory. The model is
used to estimate the constituent isotropic parameters with the genetic algorithm. Mishra
proposed a binary model to simplify the fiber-reinforced plastics model for identifying a
constituent elastic modulus and structural boundary stiffness [12,14]. The binary model is
mainly applied in a polymer composite, aiming at isotropic fiber material. With the develop-
ment of experimental techniques in recent years [35], the heterogeneous deformation fields
of composite structural tests can provide more material information during parameters’
identification; it can estimate more material parameters, for example, the constituent pa-
rameters [36]. This paper is focused on the analytical method to calculate sensitivity based
on the finite element method, transforming the macroscopic and microscopic properties of
the braided composite material by displacement continuity conditions.

Many attempts have already been made to deal with parameter identification based
on sensitivity analysis. The sensitivity matrix can be calculated in several ways, such as the
finite difference method [37,38], which has a simple formulation that can be directly applied
in various analysis conditions; computations of structural response with small variations of
the parameters are often required. The adjoint variable method is implemented in finite
element code as a black box [39]. The substructure method of complex structures in the
dynamic analysis is applied to improve computational efficiency [40]. The derivation
formula of the mechanical relationship between the structural response and the parameter
is relatively complex [26,41]. During parameter identification by sensitivity calculation,
the ill-posed problem may result in unreliable solutions for the factors of experimental
errors, data interpolation, etc. Nakamura [11] and Gras [34] converted the unknown pa-
rameters to the specific value of a modulus to decrease the magnitude differences of the
parameters. Rahmani et al. identified the constituent mechanical properties with an im-
proved regularized model updating (RMU), which reduces the influence of measured noise
simultaneously [22]. Other methods such as the Kalman filter, regularized virtual fields
Levenberg–Marquardt, and direct inverse maps [42] were proposed to identify parameters
of composite material. Images were also used to predict the mechanical properties of
materials [43].

In this paper, a sensitivity-based inverse method is proposed to identify constituent
parameters of a composite; the objective function is the minimization of the discrepancies
between the numerical and experimental displacement responses. The novelty of the
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approach is the integration of the sensitivity formula derivation with respect to constituent
parameters and the parameter selection procedure. The relative sensitivity method and
condition number-based response selection were applied to obtain equations with anti-
noise performance for identification. The sensitivity analysis of displacement response
with respect to constituent parameters is introduced in Section 2. The inverse optimization
method integrated with the influence factors during identification is described in Section 3.
The proposed algorithm was verified by comparing with the finite difference method using
the representative volume element (RVE) of a 2.5D braided composite. The influences of
identification error were discussed as well.

2. Sensitivity Analysis

To obtain the sensitivity matrix of the structural response with respect to the con-
stituent parameters, the quantitative relationship of the mechanical property between the
macroscopic composite and each component should be ascertained with priority, which is
a complex task, especially for a braided composite. Although the sensitivity matrix can be
obtained by the finite difference method directly, the computational efficiency is a crucial
problem because of the requirement of repeated structural analysis at each sensitivity cal-
culation step. A sensitivity analysis method of a structural displacement response directly
with respect to the constituent parameters is proposed in this section; it can be applied to
identify mesoscopic properties of the composite without knowing the relationship between
the macroscopic and microscopic properties of the composite.

2.1. Constitutive Material Model

The basic theory of sensitivity analysis is derived from the foundation of the braided
composite constitutive model, which can be characterized by the microscopic parameters.
According to the finite element governing equation based on the constitutive model [44],
the relationship between nodal force f and nodal displacement δ of the e-th element is
expressed as

{f}e = [k]e{δ}e (1)

where k is the element stiffness matrix. Assuming that element e has l degrees of freedom,
fi and δi are arrays sized l × 1. The element can be expressed

[k]e =


k11 k12 · · · k1l
k21 k22 · · · k2l

...
...

. . .
...

kl1 kl2 · · · kll


e

(2)

where kij (i, j = 1~l) is the matrix element, which is related to the material parameters
and the nodal location. For composite structures in a macroscopic scale, the relationship
between external load P and structural displacements u is

[K]{u} = [P] (3)

The above equation can be superposed by the corresponding relationship of nodes in
elements, which connect the macroscopic and mesoscopic properties. The superposition
results of each element’s nodal force and nodal displacement are, respectively, the external
loads and the structural displacements [17].

In addition to the corresponding nodes, the unification of elements’ material direction
is necessary during the superposition period. Taking one representative volume element
(RVE) of a composite as an objective, the local material coordinate systems of the braided
composite are established along the axis direction of the fiber.

There are two coordinate transformations, including rotation and translation, as shown
in Figure 1. Each local coordinate system O′-x′y′z′ can be regarded as transforming from
global coordinate system O-xyz with two steps.
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Figure 1. Transformation of material coordinate system.

Supposing that two systems have the same origin, the local system is obtained by the
global coordinate system rotating around the x-axis, y-axis, and z-axis, respectively. In a
right-hand coordinate system, the transformation matrix from local coordinate to global
coordinate can be expressed as

[T] =

1 0 0
0 cos α − sin α
0 sin α cos α

 cos β 0 sin β
0 1 0

− sin β 0 cos β

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (4)

in which α, β, and γ are the rotating angles around the x-axis, y-axis, and z-axis, respectively.
The coordinate of O′ in the global coordinate system (x0, y0, z0) is the translation distance
of the local coordinate system. Supposing P is any point in the system, the coordinate of P
in the global and local system is (x, y, z) and (x′, y′, x′), respectively. The transformation
relationship between the global system and the local system can be expressed as

x
y
z
1

 =


T11 T12 T13 x0
T21 T22 T23 y0
T31 T32 T33 z0
0 0 0 1




x′

y′

z′

1

 (5)

To transfer the stiffness matrix from a local coordinate to a global coordinate, the eth

element’s stiffness matrix in a global coordinate is

[k]eG = [T]eT[k]eL[T]
e (6)

where the subscripts G and L represent the structure parameters in the global and local
system, respectively. T is the matrix for transforming the local coordinate system to
global ones.

The linear elastic constitutive equation satisfies Hooke’s law. Considering every single
element, each element satisfies. Combined with the finite element theory, the relationship
of Cauchy stress and nodal displacement can be equal, as

{σ}e = [D]e{ε}e = [D]e[B]e{δ}e (7)

In the above equation, D is the elastic coefficient matrix, B is the matrix-related strains
resulting from the differentiating operator on the shape function N, and δ is the matrix-
related stresses equaling the multiplication of D and B. According to the virtual work
principle, the stiffness matrix of an element can be expressed as

[k]e =
∫

Ve
[B]eT[T]eT[D]e[T]e[B]edV (8)
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in which Ve is the volume of the eth element. The above equation is universal for all the so-
lutions of an element stiffness matrix in the finite element displacement method. As shown
above, the structural stiffness matrix is superposed through the nodes’ correspondence
between elements. If the elements’ type and property of the homogeneous structure are
identical, the structural stiffness matrix can be calculated as

[K] =
N

∑
i=1

[G]iT[k]i[G]i (9)

in which N is the total number of structural elements and G is the conversion matrix
between the structure and element degree of freedom of nodes, which, similarly, can
represent the structural loads from an element force as

{P} =
N

∑
i=1

[G]iT{f}i (10)

The structural stiffness matrix of a heterogeneous structure is assembled from the
constituent materials’ stiffness matrix:

[K] =
n

∑
c=1

(
Mc

∑
i=1

[G]iTc [k]ic[G]ic

)
=

n

∑
c=1

[K]c (11)

where n is the total number of the components in the structure and M is the element number
of each component

N =
n

∑
c=1

Mc (12)

The braided composite material is microscopically heterogeneous and is composed
of an isotropic matrix and transversely isotropic fiber constituent. The different braiding
angles for both the fiber and matrix inevitably cause the difference between the composite
structural direction and the components’ element direction. It is worth stressing that each
split of the elemental stiffness matrix is transferred to the global coordinate prior to ensuring
the structural stiffness matrix under the global coordinate.

2.2. Analytical Derivation

Choosing elastic displacements as objective variables to identify constituent mate-
rial parameters, the sensitivity matrix can be calculated by differentiating the system of
structural displacements, which is derivable from Equations (6)–(12),

{u} =
(

n

∑
c=1

(
M

∑
i=1

[G]iTc [k]ic[G]ic

))−1

{P} (13)

While the nodal forces’ vector is independent of the material parameters, the partial
derivative result of the component parameter pj (j ∈ N+, j ≤ m) into Equation (13) is

∂{u}
∂pj

= −
(

n

∑
c=1

[K]c

)−2
∂[K]j
∂pj
{P} = −

(
n

∑
c=1

[K]c

)−1
∂[K]j
∂pj
{u} (14)

where Kj is the component structural stiffness matrix corresponding to the constituent’s
parameter pj. The derivative of Kj to pj can be expressed by Equation (9)

∂[K]j
∂pj

=

Mj

∑
i=1

[G]iTj
[k]ij
∂pj

[G]ij (15)
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Combining Equation (15) with Equation (8), one can obtain:

[k]ej
∂pj

=
∫

Ve
[B]T[T]T

∂[D]j
∂pj

[T][B]dV (16)

Calculating the derivatives of displacements’ response with respect to constituent
parameters, the sensitivity matrix S is

[S] =


∂u1
∂p1

∂u1
∂p2

· · · ∂u1
∂pm

∂u2
∂p1

∂u2
∂p2

· · · ∂u2
∂pm

...
...

. . .
...

∂us
∂p1

∂us
∂p2

· · · ∂us
∂pm

 (17)

in which s is the total number of experimental measuring points and m is the total number
of unknown constituent parameters.

It is clear from the above equations that the sensitivity matrix for a constituent of the
braided composite proposed is in the promise of the element type and the characteristics
of the composite structure. The transformation between the macroscopic and microscopic
material constitutive relation can be skipped over. Other objective variables can use a similar
derivation method to obtain the sensitivity matrix of response for constituent parameters.

3. Parameter Identification Algorithm
3.1. Inverse Method

The proposed inverse method for unknown parameters’ identification can be divided
into the following steps. Firstly, assuming initial values, the given initial parameters of
the constitutive tensor are used to construct the model of each component for estimating
the displacement response of the braided composite. Secondly, identify unknown parame-
ters iteratively by decreasing the discrepancies between the calculated response and the
experimental response.

The material parameter identification is implemented by minimizing the objective
function iteratively, which can be defined as the discrepancy between the experimentally
measured and the numerically computed responses. Thus, the objective function can be
expressed as a least-squares formulation:

J(p) = Min

√
s

∑
i=1

(yexp
i (p)− ynum

i (p))
2

(18)

where ynum and yexp are the numerically computed and the experimentally measured
responses, respectively and p is the vector of parameters to be identified.

The basic equation relating the changes in responses and the difference in material
parameters can be represented by a Taylor expansion as

yk+1
i ≈ yk

i +
m

∑
j=1

Sk
ij(pk+1

j − pk
j ) (19)

where yk is the numerically computed response at step k.
The identifying parameters at iteration step k are calculated from the equation given by

{∆p}k+1 =
(
[S]kT[S]k

)−1
[S]kT({y}exp − {y}num) (20)
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where ∆p is the identified increment of parameters at each iteration step. Both the sensi-
tivity matrix and the numeric response should be reanalyzed at each iteration step. The
convergence criterion is defined as follows:

i=s

∑
i=1

∣∣∣pk
i − pexp

i

∣∣∣
pexp

i
< ε (21)

in which ε is the given upper bound considering the accuracy requirement during identification.
Figure 2 shows the scheme of the proposed inverse method for identifying material

parameters. Firstly, construct the finite element model and complete the structural analysis
based on the assigned initial values and conduct an experimental study for obtaining data
of displacement. Secondly, combining the sensitivity analysis result with the influence
factors may affect the result of identification; the formula of parameters’ iteration updat-
ing in the inverse method is given. Whether the iteration ends or not depends on the
convergence criterion.
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3.2. Influence Factors

Substituting the sensitivity matrix into Equation (20) can theoretically realize the
inverse method for identifying the unknown parameters. However, the ill-posed problem
is unavoidable during the optimization procedure. For example, the order of magnitude of
a composite elastic modulus and shear modulus are usually 9 and 6, while the Poisson’s
ratio is 1, resulting in the magnitude differences of the sensitivity corresponding to each
variable. Premature local convergence during the identification process will severely
affecting the identification precision and efficiency. The modulus and Poisson’s ratios being
identified for the constituent parameters’ identification of composite structure are a typical
ill-posed problem. A common method to solve this problem is to replace the identified
parameters with the specific of two unknown parameters with similar magnitude. However,
this method requires calculating the sensitivity again. Moreover, the new sensitivity
analysis may bring in new ill-posed problems during the identification process. The
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identification method used for this paper selected the relative sensitivity to solve the
influence of magnitude differences among parameters.

The principle of the relative sensitivity method is substituting the optimization equa-
tion after dimensionless treatment. Considering the definition of the sensitivity matrix, the
relative sensitivity matrix can be expressed as

S′ij =
1
ui
· Sij · pj =

1
ui
· ∂ui

∂pj
· pj (22)

where S′ij and Sij represent the element of relative sensitivity and the sensitivity matrix,
respectively (i = 1, 2, . . . , s; j = 1, 2, . . . , m). The increment parameters in the kth step can
be transformed as  {δ}k+1 =

(
[S′]kT

[S′]k
)−1

[S′]kT
(
{y}exp−{y}

k
num

{y}k
num

)
{∆p}k+1 = {p}k × {δ}k+1

(23)

where the updated convergence criteria are

i=s

∑
i=1

∣∣∣δk
∣∣∣ < ε (24)

In addition to magnitude difference, choosing objective variables can influence the
identified result. Take the displacement as an example. The application of the full-field
measurement method is mature enough to satisfy the measurement requirements. A proper
quantity of measuring points and choosing the objective measuring direction are required
for the identified efficiency. Furthermore, the measuring errors during the experiment
would influence the accuracy of parameters’ identification, which varies with the number
of measuring points. To decrease the ill-posed problem caused by measuring points,
the condition number of the sensitivity matrix is proposed to determine the measuring
numbers, choosing

C(S) = ‖S‖ ·
∥∥∥S−1

∥∥∥ (25)

The condition number is a measure of the degree of ill condition for the matrix.
The smaller the condition number is, the better the identified results are. The condition
number does not have linear variation varying with the measuring points. The condition
number of the sensitivity matrix is an important indicator in determining the amount of
measuring points.

4. Numerical Simulated Examples and Discussion

To verify the identification method for composite constituent parameters, a 2.5D
braided composite was proposed for this paper. The textiles are usually braided or knitted
by the yarns, bundled from thousands of fibers. In particular, the 2.5-dimension compos-
ite utilizes fiber preforms constructed from straight and sinusoidal yarns arranged into
complex 2.5D structures. The weaving fabric architecture of a fiber preform is shown in
Figure 3, which includes the straight weft yarns and sinusoidal warp yarns in two vertical
directions, with the adjacent layers of weft yarns interlaced together by warp yarns. The
sinusoidal warp yarns interlock the warp yarns, while all the adjacent weft yarns are in the
same situation in the straight weft direction.
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Figure 3. Geometry of 2.5D braided composite.

The dimensions of the geometrical RVE model are 12.9 mm × 2 mm × 0.66 mm, while
the volume fraction of the fiber preform is 40%. Table 1 shows the geometrical parameters
of the weave architecture of the composite. The yarns composited of fiber and matrix are
treated as unidirectional fiber-reinforced composite materials during identification. The
natural coordinate system of fiber alternates along with the path of the fiber. The schematic
of the local coordinate system based on different weaving directions in the RVE is shown in
Figure 4, where the RVE is divided into six parts. The constituent properties assumed are
presented in Table 2, where fiber and matrix are transverse isotropic and isotropic material,
respectively [43].

Table 1. Geometrical parameters of weave architecture in 2.5D RVE.

Warp
Density/(Ends/cm)

Rectangular Warp Yarn Elliptical Weft Yarn Parallelogram
Weft Yarn Crimp Angle

of Warp
Yarns/deg

WEFT
Density/(Picas/cm)

Width/mm Height/mm Major
Axis/mm

Minor
Axis/mm

Length of
Side/mm

10 1 0.39 1.8 0.26 0.71 14 3
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Table 2. Constituent properties for the braided composite.

Modulus/GPa Poisson’s Ratio

E11 E22 G12 G23 ν12 ν23

Fiber 276 19 27 7 0.2 0.32
Matrix 4.08 1.48 0.38

Numerical examples were attempted for two distinct cases: a sensitivity matrix com-
parison with finite difference method and influence factors discussion during identification,
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especially with measuring noise. The solid model was proposed in a later case to fulfill
the simulation.

Case 1. Sensitivity matrix comparison

The 2.5D RVE model was considered in this case study. Calculating the sensitivity
matrix through the direct derivation and finite difference methods, the inverse method cou-
pling with relative sensitivity analysis was proposed to identify the constituent parameters
of a braided composite. The finite forward difference was used [13]

SFD
ij =

ui
(

p + ∆pj
)
− ui(p)

∆pj
(26)

in which ∆pj is the relative perturbation on jth parameter, whose selection remains to be
a controversial topic as the truncation error and round-off error of sensitivity calculated
above varied with the perturbation. Considering the output accuracy of the response in
the software, the perturbation value in the present study was set to ∆pj = 0.01 × pj. The
upper-bound error ε of the convergence criterion given here was 5 × 10−3.

Figure 5 shows the schematic diagram for the 2.5D braided RVE model. Applying a
three-point bending test on the RVE, the PATRAN/NASTRAN software was used to com-
plete the forward method, obtaining the structure displacements and objective variables.
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Figure 5. Three-point bending test diagram of the RVE.

Two group material parameters far from true values were chosen as initial values for
identification. The accuracy and the efficiency of the two methods were discussed in the
following case. The influence of measuring points during identification was discussed;
we determined that too many measuring points would increase the number of iterations.
The simulation here extracted six points of displacements of the x and y direction as the
objective variables.

Table 3 shows the identification result and errors with six measuring points by two
sensitivity calculation methods, respectively. The identified errors were ratios resulting
from the discrepancy between identified and true parameters. From the table, we can see
that both methods correctly identified the constituent mechanical properties of the 2.5D
braided composite and the identified errors shared similar rules, where the identified errors
of the elastic modulus were smaller than that of Poisson’s ratios. Therefore, the determined
result of the fiber of Poisson’s ratio in the transverse direction had a large error over 5%.
Indeed, the objective of the relativity method in the constituent parameters’ identification
can effectively solve a potential problem to some extent. Few measuring points during
identification may cause a large number of identified errors or other problems; so, it is
important to find a proper quantity of objective variables before identification.
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Table 3. Identification result for two sensitivity methods (six points).

Case Parameter Initial Data
Proposed Sensitivity Method Finite Difference Method

Identified Data Identified Error % Identified Data Identified Error %

1

Em/GPa 8 4.089 0.22 4.091 0.27
νm 0.45 0.381 0.26 0.381 0.26

Ef
11/GPa 100 275.991 −0.003 275.96 −0.014

Ef
22/GPa 6 19.045 0.24 19.072 0.38
νf

12 0.49 0.191 −4.55 0.192 −3.99
νf

23 0.1 0.340 6.25 0.344 7.44
Gf

12/GPa 60 27.058 0.21 27.065 0.24
Gf

23/GPa 2 7.040 0.57 7.046 0.66

2

Em/GPa 12 4.089 0.22 4.092 0.29
νm 0.1 0.381 0.26 0.381 0.26

Ef
11/GPa 800 275.945 −0.02 275.892 −0.04

Ef
22/GPa 5 19.019 0.10 19.079 0.42
νf

12 0.6 0.193 −3.5 0.195 −2.5
νf

23 0.6 0.341 6.56 0.344 7.55
Gf

12/GPa 50 27.056 0.21 27.066 0.24
Gf

23/GPa 1 7.039 0.56 7.045 0.64

Figures 6 and 7 show the identification process for the constituents of the 2.5D braided
composite with six measuring points. The direct derivation method and the finite dif-
ference method shared similar convergence rules during identification, while the latter
method required more iterative steps than the former one. Furthermore, the calculation
principle of the finite difference method required eight times forward analysis at each
iterative step, while the finite element method can accomplish sensitivity analysis by one
forward calculation. The sensitivity calculated by the direct derivation method had higher
calculation efficiency.
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Figure 6. Identified process for constituent parameters with six points (the direct derivation method).
(a) initial values: Em = 8 GPa, νm = 0.45, Ef

11 = 100 GPa, Ef
22 = 6 GPa, νf

12 = 0.49, νf
23 = 0.1,

Gf
12 = 60 GPa, Gf

23 = 2 GPa; (b) initial values: Em = 12 GPa, νm = 0.1, Ef
11 = 800 GPa, Ef

22 = 5 GPa,
νf

12 = 0.6, νf
23 = 0.6, Gf

12 = 50 GPa, Gf
23 = 1 GPa.
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Figure 7. Identified process for constituent parameters with six points (the finite difference method).
(a) initial values: Em = 8 GPa, νm = 0.45, Ef

11 = 100 GPa, Ef
22 = 6 GPa, νf

12 = 0.49, νf
23 = 0.1,

Gf
12 = 60 GPa, Gf

23 = 2 GPa; (b) initial values: Em = 12 GPa, νm = 0.1, Ef
11 = 800 GPa, Ef

22 = 5 GPa,
νf

12 = 0.6, νf
23 = 0.6, Gf

12 = 50 GPa, Gf
23 = 1 GPa.

Keep other conditions unchanged and add one measuring point during identification.
From the results shown in Table 4, we can see the identified errors of the direct derivation
method decreased with the addition of the measuring points while the Poisson’s ratio of
fiber in the transverse direction distorted with the finite difference method.

Table 4. Identification results for two sensitivity measuring method (seven points).

Case Parameter Initial Data
Proposed Sensitivity Method Finite Difference Method

Identified Data Identified Error % Identified Data Identified Error %

1

Em/GPa 8 4.082 0.06 4.144 1.56
νm 0.45 0.380 0.05 0.387 1.75

Ef
11/GPa 100 276.040 0.01 275.777 −0.08

Ef
22/GPa 6 19.030 0.16 17.958 −5.49
νf

12 0.49 0.197 −1.25 0.198 −0.92
νf

23 0.1 0.322 0.73 0.500 56.25
Gf

12/GPa 60 27.006 0.02 27.143 0.53
Gf

23/GPa 2 7.004 0.06 7.130 1.86

2

Em/GPa 12 4.082 0.06 4.143 1.54
νm 0.1 0.380 0.11 0.386 1.67

Ef
11/GPa 800 275.992 0.003 275.745 −0.09

Ef
22/GPa 5 18.951 −0.26 17.969 −5.43
νf

12 0.6 0.200 −0.21 0.199 −0.65
νf

23 0.6 0.328 2.52 0.499 56.25
Gf

12/GPa 50 27.005 0.02 27.147 0.54
Gf

23/GPa 1 7.006 0.09 7.122 1.75

Figure 8 shows the parameter identification process using the direct derivation method.
The identification process is quite similar to the process with six measuring points. The
constituent parameters’ identification based on the direct derivation method sensitivity
analysis can obtain better identified precision with the increase in a referenced response.
Comparing Figure 9 with Figure 7, the biggest difference between the two identification
processes is the identified plot of vf

23, where the result of sensitivity bias of Poisson’s
ratio, calculating from finite difference, is presented; the chosen relative perturbation for
finite differences may influence sensitivity accuracy, especially with some parameters
having nonlinearity variation rules. Comparing with other parameters, vf

23 varied flexibly
with the displacements’ response of a three-point bending test, while the response was
less sensitive to vf

23, which resulted in the error on parameter identification, shown in
Figure 9. When the objective function was close to zero, the sensitivity of vf

23 faced a
new ill-posed problem, which could not be eliminated simply by the relative sensitivity
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method. The perturbation chosen could influence the identification accuracy as there exists
a different extent of sensitivity variation in respect to different parameters. According
to the comparison between the direct derivation method and finite difference method,
the verification of the sensitivity formula derivation and the relative sensitivity method
applying to microscopic parameters’ identification was accomplished.
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Figure 8. Constituent parameter identification with seven points using direct derivation. (a) initial
values: Em = 8 GPa, νm = 0.45, Ef

11 = 100 GPa, Ef
22 = 6 GPa, νf

12 = 0.49, νf
23 = 0.1, Gf

12 = 60 GPa,
Gf

23 = 2 GPa; (b) initial values: Em = 12 GPa, νm = 0.1, Ef
11 = 800 GPa, Ef

22 = 5 GPa, νf
12 = 0.6,

νf
23 = 0.6, Gf

12 = 50 GPa, Gf
23 = 1 GPa.
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Figure 9. Constituent parameter identification with seven points using finite difference. (a) initial
values: Em = 8 GPa, νm = 0.45, Ef

11 = 100 GPa, Ef
22 = 6 GPa, νf

12 = 0.49, νf
23 = 0.1, Gf

12 = 60 GPa,
Gf

23 = 2 GPa; (b) initial values: Em = 12 GPa, νm = 0.1, Ef
11 = 800 GPa, Ef

22 = 5 GPa, νf
12 = 0.6,

νf
23 = 0.6, Gf

12 = 50 GPa, Gf
23 = 1 GPa.

Case 2. Influences factors with measuring noise

As shown in case 1, the quantity of measuring points may influence the identification
result of the composite. The following cases’ analysis identification resulted with the
increase in measuring points, considering measuring noise during identification. A 0.5%
unbiased white Gaussian noise was proposed to respond as the measuring noise. The
extracted displacements in x and y directions were chosen as the objective variables firstly.

Table 5 shows the identified errors of a 2.5D braided composite material varying with
the quantity of measuring points. None of the chosen cases satisfied the convergence
criterion after 30 times of iteration. Observing the value ratios in Figure 10, the convergence
of vf

12, vf
23, and Gf

23 had relatively high errors. Abstracting three directions of displacement
response, the identified results are shown in Figure 11. The identified results with three
displacement directions tended towards stability, and the case with 12 measuring points
obtained a satisfactory identification result.
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Table 5. Identified errors varying with amount of measuring points.

Direction Points
Identified Errors %

Em νm Ef
11 Ef

22 νf
12 νf

23 Gf
12 Gf

23

x, y

6 0.23 28.91 −18.76 30.29 50.90 56.25 190.1 −67.24
12 −2.99 18.28 3.86 −6.55 147.5 −81.01 −8.65 20.43
18 −0.99 7.19 1.05 −9.54 −6.02 −64.79 −0.94 12.21
24 2.13 2.38 −1.06 −8.25 65.75 −75.57 5.30 19.46

x, y, z
6 −0.28 −0.69 0.25 −2.65 −18.15 −23.48 1.36 8.36
12 0.11 −0.45 −0.03 −0.16 −3.88 −1.67 0.05 0.81
18 −1.18 −1.36 1.28 −3.79 16.23 −20.88 0.78 15.16
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Figure 10. RVE identified result with different numbers of points (x and y directions).
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Figure 11. RVE identified result with different numbers of points (three directions).

The Poisson’s ratio of fiber and shear modulus in 23 directions had a local convergence
problem when adding white Gaussian noise to objective variables. We chose one measuring
node to observe its sensitivity of static displacements with respect to each parameter, as
shown in Figure 12. The Figure 12 shows that the sensitivity for displacements with respect
to Poisson’s ratio was much higher than that with respect to modulus, which is one reason
for a relative sensitivity matrix.
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Figure 12. Sensitivity for displacements in respect to constituent parameters.

The condition number of the relative sensitivity matrix in different cases is shown
in Table 6. The lower the condition number the relative sensitivity matrix had, the more
accuracy the identified result had. On the other hand, the 2.5D RVE model was asymmetric.
Adding white Gaussian noise could influence some identification results in fiber only by x
and y direction measuring data.

Table 6. Condition number of relative sensitivity matrix for RVE.

Measuring Direction Measuring Points Condition Number

x, y

6 3.96 × 105

12 1.96 × 103

18 3.13 × 102

24 3.49 × 103

x, y, z
6 2.52 × 103

12 5.84 × 102

18 9.98 × 102

Case 3. Estimation parameters using a panel model

Constructing a 2.5D braided composite model based on the transformation of an RVE
model, three-point bending was applied in the model in the y direction as the schematic dia-
gram for the RVE model. The size of the solid model was 38.7 mm × 8 mm× 2.64 mm. The
eight elastic parameters of the fiber and matrix were identified considering the measuring
error. Determination of the measuring points’ amount was based on the condition number
of relative sensitivity. According to the calculated condition number shown in Table 7, we
selected 29 points in two-direction measurement and 18 points in three-direction measure-
ment, respectively. The initial value was the same as that in case 1. The white Gaussian
noise with 0.5% was added to the solid model. Identification results of different measuring
directions are shown in Table 8. The fiber’s transverse parameters had a local convergence
problem measuring in two directions, while all constituent parameters were successfully
identified measuring in three directions. The results demonstrated the certification method
of the response on identification to the influence of measuring noise.
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Table 7. Condition number of relative sensitivity matrix for solid model.

Measuring Direction Measuring Points Condition Number

x, y

24 1.08 × 104

25 1.02 × 104

26 8.57 × 103

27 8.18 × 103

28 8.07 × 103

29 7.98 × 103

30 2.95 × 104

x, y, z

15 2.58 × 103

16 2.39 × 103

17 2.38 × 103

18 1.83 × 103

19 1.84 × 103

20 3.05 × 103

Table 8. Identified constituent parameters of composite panel (0.5% noise).

Parameter Initial Data
Measuring in Two Directions Measuring in Three Directions

Identified Data Identified Error % Identified Data Identified Error %

Em/GPa 8 3.893 −4.57 4.053 −0.65
νm 0.45 0.365 −3.87 0.382 0.42

Ef
11/GPa 100 279.813 1.38 275.957 −0.02

Ef
22/GPa 6 18.706 −1.54 18.938 −0.32
νf

12 0.49 0.183 −8.53 0.215 7.72
νf

23 0.1 0.132 −58.86 0.320 0.07
Gf

12/GPa 60 26.415 −2.17 27.006 0.02
Gf

23/GPa 2 8.352 19.31 6.999 −0.01

We added white Gaussian noise with 1% and 3% to objective variables, respectively.
Table 9 and Figure 13 show the identification results. From the result data, we can see
the identified error of vf

12 increased with measuring noise. However, the other seven
constituent parameters had a relatively high identification accuracy. This is basically
because of the determination of the convergence criterion.

Table 9. Identified constituent parameters of composite panel.

Parameter Initial Data
1% Noise 3% Noise

Identified Data Identified Error % Identified Data Identified Error %

Em/GPa 8 4.026 −1.30 3.918 −3.97
νm 0.45 0.382 0.61 0.3867 1.75

Ef
11/GPa 100 275.992 0.00 276.227 0.08

Ef
22/GPa 6 18.876 −0.65 18.723 −1.46
νf

12 0.49 0.228 13.98 0.278 39.41
νf

23 0.1 0.321 0.24 0.318 −0.69
Gf

12/GPa 60 27.016 0.06 27.102 0.38
Gf

23/GPa 2 6.995 −0.07 6.946 −0.78
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Figure 13. Identified process for constituent parameters of composite plane. (a) 0.5% noise; (b) 1%
noise; (c) 3% noise.

5. Conclusions

A constituent parameter identification method was proposed based on a sensitivity
analysis of structural displacements. Identification effect factors such as the relative sen-
sitivity analysis and response point selection were investigated. Simulation studies on
identifying the elastic parameters were conducted by employing a 2.5-dimensional braided
composite; conclusions on the proposed method were drawn as follows.

1. The sensitivity analysis of displacement with respect to parameters of constituents was
derived. Coupling the relative sensitivity and condition number-based experimental
point selection, the noise-polluted problem during identification could be solved. It
was shown that the proposed sensitivity method was more effective and accurate
compared with the finite difference method.

2. The amount of measuring points greatly influenced the identification accuracy when
there were existing noises in the measurement. For the diversity of constituent param-
eters and the structural complexity of the braided composite, the condition number of
the relative sensitivity matrix could be a reliable index for response selection.

3. The identification result will be influenced by the selection of structural responses.
Prior information of the initial parameters and the value range can effectively improve
identification efficiency.

Author Contributions: Conceptualization, D.J. and R.Z.; methodology, D.J.; software, S.X. and F.Q.;
validation, D.J., S.X., F.Q. and R.Z.; formal analysis, D.Z. and R.Z.; investigation, D.J.; resources,
D.Z.; data curation, D.J., S.X. and F.Q.; writing—original draft preparation, D.J.; writing—review
and editing, D.Z. and R.Z.; visualization, S.X. and F.Q.; supervision, D.Z.; project administration,
D.Z. and F.Q.; funding acquisition, D.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 11602112)
and the Natural Science Research Project of Higher Education in Jiangsu Province (20KJB460003) and
sponsored by the QingLan Project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Materials 2022, 15, 8794 18 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Y.; Zhang, L.; Cheng, L.; Mei, H.; Ma, J. Characterization of tensile behavior of a two-dimensional woven carbon/silicon

carbide composite fabricated by chemical vapor infiltration. Mater. Sci. Eng. A 2008, 497, 295–300. [CrossRef]
2. Mei, H.; Bai, Q.; Sun, Y.; Li, H.; Wang, H.; Cheng, L. The effect of heat treatment on the strength and toughness of carbon

fiber/silicon carbide composites with different pyrolytic carbon interphase thicknesses. Carbon 2013, 57, 288–297. [CrossRef]
3. Matuzaki, R.; Seto, D.; Naito, M.; Todoroki, A.; Mizutani, Y. Analytical prediction of void formation in geometrically anisotropic

woven fabrics during resin transfer molding. Compos. Sci. Technol. 2015, 107, 154–161. [CrossRef]
4. Durville, D. Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int. J. Mater. Form. 2010, 3, 1241–1251.

[CrossRef]
5. Chen, S.; Fei, Q.; Jiang, D.; Cao, Z. Determination of thermo-elastic parameters for dynamical modeling of 2.5 DC/SiC braided

composites. J. Mech. Sci. Technol. 2018, 32, 231–243. [CrossRef]
6. Fei, Q.; Jiang, D.; Chen, S.; Qin, F. Thermal-related parameter identification of braided composites at high temperature. Chin. J.

Theor. Appl. Mech. 2018, 50, 497–507.
7. Mogilevskaya, S.G.; Stolarski, H.K.; Crouch, S.L. On Maxwell’s concept of Equivalent inhomogeneity: When do the interactions

matter? J. Mech. Phys. Solids 2012, 60, 391–417. [CrossRef]
8. Li, H.; Wu, T.; Gao, Z.; Wang, X.; Ma, H.; Han, Q.; Qin, Z. An iterative method for identification of temperature and amplitude

dependent material parameters of fiber-reinforced polymer composites. Int. J. Mech. Sci. 2020, 184, 105818. [CrossRef]
9. Zhou, H.; Liu, Y.; Liu, Z.; Zhuang, Z.; Wang, X.; Gou, B. Crack Detection Method for Engineered Bamboo Based on Super-

Resolution Reconstruction and Generative Adversarial Network. Forests 2022, 13, 1896. [CrossRef]
10. Comellas, E.; Valdez, S.I.; Oller, S.; Botello, S. Optimization method for the determination of material parameters in damaged

composite structures. Compos. Struct. 2015, 122, 417–424. [CrossRef]
11. Nakamura, T.; Gu, Y. Identification of elastic–plastic anisotropic parameters using instrumented indentation and inverse analysis.

Mech. Mater. 2007, 39, 340–356. [CrossRef]
12. Mishra, A.K.; Chakraborty, S. Determination of material parameters of FRP plates with rotational flexibility at boundaries using

experimental modal testing and model updating. Exp. Mech. 2015, 55, 803–815. [CrossRef]
13. Mishra, A.K.; Chakraborty, S. Development of a finite element model updating technique for estimation of constituent level

elastic parameters of FRP plates. Appl. Math. Comput. 2015, 258, 84–94. [CrossRef]
14. Mishra, A.K.; Chakraborty, S. Inverse detection of constituent level elastic parameters of FRP composite panels with elastic

boundaries using finite element model updating. Ocean Eng. 2016, 111, 358–368. [CrossRef]
15. Charkas, H.; Rasheed, H.; Najjar, Y. Calibrating a J2 plasticity material model using a 2D inverse finite element procedure. Int. J.

Solids Struct. 2008, 45, 1244–1263. [CrossRef]
16. Kam, T.; Lin, C.; Wang, W. Identification of material constants of composite laminates using measured strains. J. Eng. Mater.

Technol. 2000, 122, 425–427. [CrossRef]
17. Pottier, T.; Toussaint, F.; Vacher, P. Contribution of heterogeneous strain field measurements and boundary conditions modelling

in inverse identification of material parameters. Eur. J. Mech.-A/Solids 2011, 30, 373–382. [CrossRef]
18. Tam, J.H.; Ong, Z.C.; Lau, C.L.; Ismail, Z.; Ang, B.C.; Khoo, S.Y. Identification of material properties of composite plates using

Fourier-generated frequency response functions. Mech. Adv. Mater. Struct. 2017, 26, 119–128. [CrossRef]
19. Rahmani, B.; Mortazavi, F.; Villemure, I.; Levesque, M. A new approach to inverse identification of mechanical properties of

composite materials: Regularized model updating. Compos. Struct. 2013, 105, 116–125. [CrossRef]
20. Jiang, D.; Zhang, D.; Fei, Q.; Wu, S. An approach on identification of Equivalent properties of honeycomb core using experimental

modal data. Finite Elem. Anal. Des. 2014, 90, 84–92. [CrossRef]
21. Lauwagie, T.; Lambrinou, K.; Sol, H.; Heylen, W. Resonant-based identification of the Poisson’s ratio of orthotropic materials.

Exp. Mech. 2010, 50, 437–447. [CrossRef]
22. Rahmani, B.; Villemure, I.; Levesque, M. Regularized virtual fields method for mechanical properties identification of composite

materials. Comput. Methods Appl. Mech. Eng. 2014, 278, 543–566. [CrossRef]
23. Kersemans, M.; Martens, A.; Lammens, N.; Abeele, K.V.D.; Degrieck, J.; Zastavnik, F.; Pyl, L.; Sol, H.; Van Paepegem, W.

Identification of the elastic properties of isotropic and orthotropic thin-plate materials with the pulsed ultrasonic polar scan. Exp.
Mech. 2014, 54, 1121–1132. [CrossRef]

24. Fu, X.; Ricci, S.; Bisagni, C. Minimum-weight design for three dimensional woven composite stiffened panels using neural
networks and genetic algorithms. Compos. Struct. 2015, 134, 708–715. [CrossRef]

25. Zingg, D.W.; Nemec, M.; Pulliam, T.H. A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic
optimization. Rev. Eur. de Méc. Numér. 2008, 17, 103–126.

26. Huang, L.X.; Wang, L.; Chen, Y.; Yao, Q.; Zhou, X.J. The material parameter identification for functionally graded materials by the
isoparametric graded finite element. Adv. Mater. Res. 2012, 446–449, 3609–3614. [CrossRef]

27. Cooreman, S.; Lecompte, D.; Sol, H.; Vantomme, J.; Debruyne, D. Elasto-plastic material parameter identification by inverse
methods: Calculation of the sensitivity matrix. Int. J. Solids Struct. 2007, 44, 4329–4341. [CrossRef]

http://doi.org/10.1016/j.msea.2008.07.050
http://doi.org/10.1016/j.carbon.2013.01.076
http://doi.org/10.1016/j.compscitech.2014.12.013
http://doi.org/10.1007/s12289-009-0674-7
http://doi.org/10.1007/s12206-017-1224-8
http://doi.org/10.1016/j.jmps.2011.12.008
http://doi.org/10.1016/j.ijmecsci.2020.105818
http://doi.org/10.3390/f13111896
http://doi.org/10.1016/j.compstruct.2014.12.014
http://doi.org/10.1016/j.mechmat.2006.06.004
http://doi.org/10.1007/s11340-014-9981-0
http://doi.org/10.1016/j.amc.2015.02.003
http://doi.org/10.1016/j.oceaneng.2015.11.003
http://doi.org/10.1016/j.ijsolstr.2007.09.033
http://doi.org/10.1115/1.1289026
http://doi.org/10.1016/j.euromechsol.2010.10.001
http://doi.org/10.1080/15376494.2017.1365980
http://doi.org/10.1016/j.compstruct.2013.04.025
http://doi.org/10.1016/j.finel.2014.06.006
http://doi.org/10.1007/s11340-009-9250-9
http://doi.org/10.1016/j.cma.2014.05.010
http://doi.org/10.1007/s11340-014-9861-7
http://doi.org/10.1016/j.compstruct.2015.08.077
http://doi.org/10.4028/www.scientific.net/AMR.446-449.3609
http://doi.org/10.1016/j.ijsolstr.2006.11.024


Materials 2022, 15, 8794 19 of 19

28. Yang, Q.; Cox, B. Spatially averaged local strains in textile composites via the binary model formulation. J. Eng. Mater Technol.
2003, 125, 418–425. [CrossRef]

29. Zhang, D.; Fei, Q.; Jiang, D.; Li, Y. Numerical and analytical investigation on crushing of fractal-like honeycombs with self-similar
hierarchy. Compos. Struct. 2018, 192, 289–299. [CrossRef]

30. Zhang, D.; Waas, A.M.; Pankow, M.; Yen, C.F.; Ghiorse, S. Flexural Behavior of a Layer-to-Layer Orthogonal Interlocked
Three-Dimensional Textile Composite. J. Eng. Mater. Technol. 2012, 134, 031009. [CrossRef]

31. Mattsson, H.D.; Varna, J. Average strain in fiber bundles and its effect on NCF composite stiffness. J. Eng. Mater. Technol. 2006,
129, 211–219. [CrossRef]

32. Bei, G.; Ma, C.; Wang, X.; Sun, J.; Ni, X. Study on Tribological Characteristics of Textured Surface under Convergent Oil Film Gap.
Lubricants 2022, 10, 183. [CrossRef]

33. Bei, G.; Ma, C.; Wang, X.; Sun, J.; Ni, X. On the optimal texture shape with the consideration of surface roughness. Sci. Rep. 2022,
12, 14878. [CrossRef]

34. Gras, R.; Leclerc, H.; Hild, F.; Roux, S.; Schneider, J. Identification of a set of macroscopic elastic parameters in a 3D woven
composite: Uncertainty analysis and regularization. Int. J. Solids Struct. 2015, 55, 2–16. [CrossRef]

35. Koc, P.; Štok, B. Computer-aided identification of the yield curve of a sheet metal after onset of necking. Comput. Mater. Sci. 2004,
31, 155–168. [CrossRef]

36. Oberai, A.A.; Gokhale, N.H.; Feijóo, G.R. Solution of inverse problems in elasticity imaging using the adjoint method. Inverse
Probl. 2003, 19, 297. [CrossRef]

37. Zhou, J.; Xu, L.; Zhao, J.; Hang, X.; Zhou, H. Effective excitation conditions for the intense motion of the ginkgo seed-stem system
during mechanical vibration harvesting. Biosyst. Eng. 2022, 215, 239–248. [CrossRef]

38. Zhu, R.; Fei, Q.; Jiang, D.; Cao, Z. Dynamic sensitivity analysis based on Sherman–Morrison–Woodbury formula. AIAA J. 2019,
57, 4992–5001. [CrossRef]

39. Avril, S.; Bonnet, M.; Bretelle, A.-S.; Grediac, M.; Hild, F.; Ienny, P.; Latourte, F.; Lemosse, D.; Pagano, S.; Pagnacco, E.; et al.
Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 2008, 48, 381.
[CrossRef]

40. Cao, Z.; Fei, Q.; Jiang, D.; Wu, S. Substructure-based model updating using residual flexibility mixed-boundary method. J. Mech.
Sci. Technol. 2017, 31, 759–769. [CrossRef]

41. Mliani, A.S.; Nemes, J.A. On identification of material models when nonrepeatability of test data is present: Application to textile
composites. J. Eng. Mater. Technol. 2004, 126, 443–449. [CrossRef]

42. Asaadi, E.; Wilke, D.N.; Heyns, P.S.; Kok, S. The use of direct inverse maps to solve material identification problems: Pitfalls and
solutions. Struct. Multidiscip. Optim. 2017, 55, 613–632. [CrossRef]

43. Yu, W.; Liu, Z.; Zhuang, Z.; Liu, Y.; Wang, X.; Yang, Y.; Gou, B. Super-Resolution Reconstruction of Speckle Images of Engineered
Bamboo Based on an Attention-Dense Residual Network. Sensors 2022, 22, 6693. [CrossRef] [PubMed]

44. Majzoubi, G.H.; Farahi, G.H.; Ferdows, F.F. Finite Element Method; Springer International Publishing: Berlin/Heidelberg,
Germany, 2003.

http://doi.org/10.1115/1.1605117
http://doi.org/10.1016/j.compstruct.2018.02.082
http://doi.org/10.1115/1.4006501
http://doi.org/10.1115/1.2400266
http://doi.org/10.3390/lubricants10080183
http://doi.org/10.1038/s41598-022-19094-8
http://doi.org/10.1016/j.ijsolstr.2013.12.023
http://doi.org/10.1016/j.commatsci.2004.02.004
http://doi.org/10.1088/0266-5611/19/2/304
http://doi.org/10.1016/j.biosystemseng.2022.01.014
http://doi.org/10.2514/1.J058280
http://doi.org/10.1007/s11340-008-9148-y
http://doi.org/10.1007/s12206-017-0127-z
http://doi.org/10.1115/1.1789963
http://doi.org/10.1007/s00158-016-1515-1
http://doi.org/10.3390/s22176693
http://www.ncbi.nlm.nih.gov/pubmed/36081151

	Introduction 
	Sensitivity Analysis 
	Constitutive Material Model 
	Analytical Derivation 

	Parameter Identification Algorithm 
	Inverse Method 
	Influence Factors 

	Numerical Simulated Examples and Discussion 
	Conclusions 
	References

