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Abstract: To improve the use of lithium-ion batteries in electric vehicle (EV) applications, 
evaluations and comparisons of different equivalent circuit models are presented in this 
paper. Based on an analysis of the traditional lithium-ion battery equivalent circuit models 
such as the Rint, RC, Thevenin and PNGV models, an improved Thevenin model, named 
dual polarization (DP) model, is put forward by adding an extra RC to simulate the 
electrochemical polarization and concentration polarization separately. The model 
parameters are identified with a genetic algorithm, which is used to find the optimal time 
constant of the model, and the experimental data from a Hybrid Pulse Power 
Characterization (HPPC) test on a LiMn2O4 battery module. Evaluations on the five models 
are carried out from the point of view of the dynamic performance and the state of charge 
(SoC) estimation. The dynamic performances of the five models are obtained by 
conducting the Dynamic Stress Test (DST) and the accuracy of SoC estimation with the 
Robust Extended Kalman Filter (REKF) approach is determined by performing a Federal 
Urban Driving Schedules (FUDS) experiment. By comparison, the DP model has the best 
dynamic performance and provides the most accurate SoC estimation. Finally, sensitivity 
of the different SoC initial values is investigated based on the accuracy of SoC estimation 
with the REKF approach based on the DP model. It is clear that the errors resulting from 
the SoC initial value are significantly reduced and the true SoC is convergent within an 
acceptable error. 
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1. Introduction  

With the increased research in the fields of hybrid electric vehicle dynamic simulation, energy 
distribution and power control strategy, as well as the estimation of batteries’ state of charge (SoC) and 
state of health (SoH) [1–6], nowadays improving the accuracy of the charging and discharging model 
of power batteries, especially lithium-ion batteries, is a significant objective. 

Since the battery is a nonlinear system, the models usually used in electric vehicles (EVs) can be 
divided into three kinds: the simplified electrochemical model was proposed based on the 
electrochemical theory [7–9], and could fully describe the characteristics of the power battery by using 
mathematics to describe the inner action of the battery. For example, the Peukert equation can simply 
associate the power battery to an invariant linear system, however, it cannot handle its nonlinear 
characteristics and it can hardly simulate its dynamic performance. 

In order to overcome the drawbacks of the mathematical models, the neural network model was put 
forward, which took the weights of neurons into account instead of the state variables [10–14]. The 
accuracy of this model could reach 3% under certain conditions. However, the accuracy and 
calculation burden of the model were influenced by the choices and quantity of input variables of the 
neural network. Also, a neural network trained by data can only be used within the original scope of 
that data. 

Based on the dynamic characteristics and working principles of the battery, the equivalent  
circuit model was developed by using resistors, capacitors and voltage sources to form a circuit  
network [15–17]. Typically, a large capacitor or an ideal voltage source was selected to represent the 
open-circuit voltage (OCV), the remainder of the circuit simulated the battery’s internal resistance and 
dynamic effects such as terminal voltage relaxation. On a basis of the OCV estimate, SoC could be 
inferred via a lookup table. The equivalent circuit model has been widely used in various types of 
modeling and simulation for EVs and battery management systems. Evidently high dynamic 
simulation with high accuracy is one of the key technologies. 

In this paper, a LiMn2O4 battery module with a nominal voltage of 57.6 V and a nominal capacity 
of 100 Ah is researched. An improved model is proposed based on the investigations of the traditional 
models from the point of view of the aspects of dynamic performance and SoC estimation. The model 
parameters are identified by the genetic algorithm along with the experimental data. The dynamic 
performances of the battery models are compared and the accuracy of the model-based SoC 
estimations with a robust extended Kalman filter (REKF) are evaluated. Furthermore, the sensitivity of 
the different SoC initial values on the presented model-based SoC estimation is discussed.  

2. Equivalent Circuit Models of Lithium-Ion Battery 

Various equivalent circuit models such as the Rint model, the RC model, the Thevenin model or the 
PNGV model are now widely used in EV studies [16–18]. In order to refine the polarization 
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characteristics of a battery, an improved Thevenin circuit model named DP (for dual polarization) 
model is proposed herein. Further, comparisons between the model-based simulation data and the 
experimental data are carried out to evaluate the validity of the foregoing models, which provides a 
foundation for the model-based SoC estimation. 

2.1. The Rint Model 

The Rint model, as shown in Figure 1 and Equation (1), implements an ideal voltage source Uoc to 
define the battery open-circuit voltage. Both resistance Ro and open-circuit voltage Uoc are functions of 
SoC, SoH and temperature. IL is load current with a positive value at discharging and a negative value 
at charging, UL is the terminal voltage.  

Figure 1. Schematic diagram of the Rint model. 
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2.2. The RC Model 

The RC model was designed by the famous SAFT Battery Company, and has achieved good 
application via the Advisor software. As shown in Figure 2, it consists of two capacitors (Cc, Cb) and 
three resistors (Rt, Re, Rc). The capacitor Cc, which has a small capacitance and mostly represents the 
surface effects of a battery, is named surface capacitor. The capacitor Cb, which has a very large 
capacitance and represents the ample capability of a battery to store charge chemically, is named bulk 
capacitor. SoC can be determined by the voltage across the bulk capacitor. Resistors Rt, Re, Rc are 
named terminal resistor, end resistor and capacitor resistor, respectively. Ub and Uc are the voltages 
across Cb and Cc, respectively. The electrical behaviour of the circuit can be expressed by Equations (2) 
and (3). 

Figure 2. Schematic diagram of the RC model. 
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2.3. The Thevenin Model 

The Thevenin model connects a parallel RC network in series based on the Rint model, describing 
the dynamic characteristics of the battery. As shown in Figure 3, it is mainly composed of three parts 
including open-circuit voltage Uoc, internal resistances and equivalent capacitances. The internal 
resistances include the ohmic resistance Ro and the polarization resistance RTh. The equivalent 
capacitance CTh is used to describe the transient response during charging and discharging. UTh is the 
voltages across CTh. ITh is the outflow current of CTh. The electrical behavior of the Thevenin model 
can be expressed by Equation (4). 

Figure 3. Schematic diagram for the Thevenin model. 
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2.4. The PNGV Model 

The PNGV model as shown in Figure 4 can be obtained by adding a capacitor '
oc1 U  in series based 

on the Thevenin model to describe the changing of open circuit voltage generated in the time 
accumulation of load current. 

Figure 4. Schematic diagram of the PNGV model. 
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Ud and UPN are the voltages across '
oc1 U  and CPN respectively. IPN is the outflow current of CPN. 

The electrical behavior of the PNGV model can be expressed by Equation (5): 
'

d oc L

PN L
PN

PN PN PN

L oc d PN L o

U U I
U IU

R C C
U U U U I R

⎧ =
⎪
⎪ = − +⎨
⎪
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 (5) 

2.5. The DP Model 

Based on the test analysis of the characteristics of a lithium-ion power battery, an obvious 
polarization can be observed. The polarization characteristic could be simulated by the Thevenin 
model to some extent, however, the difference between concentration polarization and electrochemical 
polarization leads to an inaccurate simulation in the moments at the end of charge or discharge. An 
improved circuit model is presented in Figure 5, which is defined as dual polarization (DP) model, to 
refine the description of polarization characteristics and simulate the concentration polarization and the 
electrochemical polarization separately. 

Figure 5. Schematic diagram for the DP model. 
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The DP model the composed of three parts: (1) Open-circuit voltage Uoc; (2) Internal resistances 
such as the ohmic resistance Ro and the polarization resistances, which include Rpa to represent the 
effective resistance characterizing electrochemical polarization and Rpc to represent the effective 
resistance characterizing concentration polarization; (3) the effective capacitances like Cpa and Cpc, 
which are used to characterize the transient response during transfer of power to/from the battery and 
to describe the electrochemical polarization and the concentration polarization separately. Upa and Upc 
are the voltages across Cpa and Cpc respectively. Ipa and Ipc are the outflow currents of Cpa and Cpc 
respectively. The electrical behavior of the circuit can be expressed by Equation (6): 
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3. Model Parameters’ Identification of a Lithium-Ion Power Battery Module 

To identify the model parameters, a battery test bench is designed. The purpose of recognition is 
based on a criterion and the measurement information of the known systems to estimate the model 
structure and unknown parameters.  

3.1. Battery Test Bench 

The configuration of the battery test bench is shown in Figure 6. The key equipment is the Digatron 
EVT500-500, which can charge/discharge battery module with a maximum voltage of 500 V and a 
maximum current of 500 A, and can measure in a timely fashion the major parameters like voltage, 
current and temperature. The host computer with the installed BTS-600 software can program the 
experimental procedures and deal with real-time data acquisition. In order to limit the temperature’s 
influence on the model parameters, all of the experiments of the LiMn2O4 battery module are carried 
out in a thermal chamber with a fixed temperature of 20 °C.  

Figure 6. Configuration of the battery test bench. 
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3.2. Experimental Design  

In order to acquire data to identify the model parameters, a Hybrid Pulse Power Characterization 
(HPPC) [17] test procedure is conducted on the LiMn2O4 battery module at 0.1 SoC intervals (constant 
current C/3 discharge segments) starting from 1.0 to 0.1 and each interval followed by a 2-hour rest to 
allow the battery to get an electrochemical and thermal equilibrium condition before applying the next.  

Figure 7. The terminal voltage profile at SoC = 0.1 during the HPPC test.  
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Figure 7 shows the terminal voltage profile of the battery module at SoC = 0.1 during the 
HPPC test. It is assumed that the current is (+)ve when the battery discharges and (−)ve when the 
battery charges. 

3.3. Model Parameters’ Identification Method 

3.3.1. The Rint Model 

Based on the experimental data, a regression analysis according to Equation (1) with the input of IL 
is conducted at each SoC separately. A confirmed coefficient r2, which is defined as Equation (7), is 
selected to evaluate the identification accuracy:  

2
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ˆ( )
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U U
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U U

−
=

−
∑
∑

 (7) 

where LÛ is the model-based observer value of UL, LU is the average value of UL. 

3.3.2. The RC Model 

According to the method provided in the guide document of ADVISOR [16], the HPPC test data is 
used to identify the five unknown parameters (Cc, Cb, Rt, Re, Rc) at each SoC separately.  

3.3.3. The Thevenin Model 

In order to identify the model parameters, a regression equation is built as Equation (8). The 
appropriate time constant of polarization (τTh = RThCTh) needs to be given in advance based on the 
battery characteristics: 
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In this paper, a genetic algorithm is used to find the optimal value of τTh and the objective function 
of the genetic algorithm is built as follows: 
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where, (g)
kχ̂ is the estimation value of current population kχ  at generation g; kχ is the current individual 

k of the population χ, where χ = [τTh]; L,kÛ  is the estimation value of UL at the individual k; N is the 

estimation length, here N = 200.  
 



Energies 2011, 4                 
 

 

589

3.3.4. The PNGV Model 

The model parameters’ identification of the PNGV model with regression Equation (10) is similar 
to that of the Thevenin model, and it also needs to pre-set the time constant τPN. The same genetic 
algorithm as Equation (9) where [ ]= PNτχ , was used to find the optimal value of τPN: 
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3.3.5. The DP Model 

The model parameters’ identification of the DP model with regression Equation (11) is similar to 
that of the Thevenin model, and it also needs to pre-set time constants τpc and τpa. The same genetic 
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3.4. Identification Results 

The identification results of the Rint model, the RC model, the Thevenin model, the PNGV model 
and the DP model for the SoC within the ranges of 0.5 and 0.6 are shown in Tables 1–5, respectively. 

Table 1. The identification results of the Rint model. 

SoC r2 Uoc (V) Ro (Ω) 
0.5 0.996 63.158 0.02486 
0.6 0.997 63.676 0.02465 

Table 2. The identification results of the RC model. 

SoC r2 Cb (F) Re (Ω) Cc (F) Rc (Ω) Rt (Ω) 
0.5 0.976 58103 0.01776 24.73 0.00651 0.01954 
0.6 0.982 70266 0.01776 27.60 0.00651 0.01954 
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Table 3. The identification results of the Thevenin model. 

SoC r2 Uoc (V) CTh (F) RTh (Ω) Ro (Ω) τTh (s) 
0.5 0.999 63.294 4581 0.007360 0.02423 33.7 
0.6 0.999 63.808 5141 0.007046 0.024223 34.2 

Table 4. The identification results of the PNGV model.  

SoC r2 Uoc (V) '
oc1 U  (F) CPN (F) RPN (Ω) Ro (Ω) τPN (s) 

0.5 0.999 63.327 8373761 4643 0.00719 0.02425 33.4 
0.6 0.999 63.845 8597339 4635 0.00678 0.02424 34.5 

Table 5. The identification results of the DP model. 

SoC r2 Uoc Cpa Rpa Cpc Rpc Ro τpa τpc 
0.5 0.999 63.302 5630 0.00064 54277 0.00824 0.02402 3.6 44.7
0.6 0.999 63.824 5700 0.00065 53817 0.00839 0.02406 3.7 45.2

There is no similarity between Table 2 and the other four tables due to the totally different model 
structures of the RC model. The other four tables show the model parameters, Uoc and Ro are similar, 
but those parameters identifying the polarization characteristics are totally different due to the different 
levels of description of the polarization characteristics. 

4. Evaluation on the Lithium-Ion Battery Models  

4.1. Model Verification 

To evaluate the validity of the battery models, six consecutive Dynamic Stress Test (DST) 
cycles [16] which is a standard testing program of the EVT500-500, are adopted as the input for both 
the lithium-ion battery module and the battery models, as shown in Figure 8. The initial SoC is 100%. 
The parameters of the battery models as a function of SoC are updated via linear lookup table 
and extrapolation. 

Figure 8. The load current profiles of 6 DST testing cycles.  
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Figure 9 presents the terminal voltage curves of the experimental data and the model-based 
simulation data.  

Figure 9. The terminal voltage profiles of the model-based simulation and experiment. 
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The comparison curves of the terminal voltage between the experimental data and the model-based 
simulation data are drawn as shown in Figure 10. 

Figure 10. The terminal voltage error curves between the simulation and experiment. 
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It can be concluded that all five equivalent circuit models simulate the dynamic characteristics to 
some extent, albeit with different accuracy. Both the DP model and the Thevenin model have better 
dynamic simulation results, which indicates that these two models are more suitable for the modeling 
of lithium-ion batteries. 

4.2. Evaluation on the Accuracy of the Battery Models  

A statistical analysis on the absolute values of the terminal voltage errors was conducted and the 
results were as shown in Table 6. It shows that the Rint model has the biggest error and can hardly 
simulate the dynamic performance of the power battery since the polarization characteristic has been 
ignored. The PNGV model and the Thevenin model can both simulate the polarization characteristics. 
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Compared with the Thevenin model, the PNGV model has an additional capacitor which accounts for 
the influence of the open circuit voltage. However, it will produce a fluctuation in the battery model, 
and causes a big error. The terminal voltage estimated by the Thevenin model has a better dynamic 
performance following the experimental data, and its maximum error rate is less than 1%. The big 
error caused by the RC model also indicates that it needs much improvement and optimization. With 
regard to the DP model, it can simulate the battery with better dynamic characteristics as well as 
the smallest error compared with other models, so by comparison, the DP model is both accurate 
and reasonable. 

Table 6. The statistic analysis list of the absolute values of terminal voltage errors. 

Model Maximum (V) Mean (V) Variance (V2) Max. Error Rate 
(%) 

Rint model  1.6229 0.3945 0.0762 2.8176 
RC model 1.0785 0.2336 0.0463 2.0337 

Thevenin model 0.2967 0.0455 0.0220 0.5151 
PNGV model 0.5772 0.0875 0.0243 1.0020 

DP model 0.2183 0.0429 0.0021 0.3790 

4.3. Evaluation on the Adaptability of the Battery Models for SoC Estimation  

The Federal Urban Driving Schedules (FUDS) is a typical driving cycle which is often used to 
evaluate various SoC estimation algorithms. In this paper, eleven consecutive FUDS were employed to 
verify the SoC estimation approach, and the sampled current profiles are shown in Figure 11.  

Figure 11. Load Current profile sampled during eleven consecutive FUDS cycles. 
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The model-based SoC estimation greatly depends on the algorithms and this may lead to a fluctuant, 
even divergent result. The Kalman filter algorithm can reduce the fluctuation by adjusting the gain 
matrix based on the error between the model-observed value and the actual value of the terminal 
voltage, and gradually make the SoC estimation approach the true value. Meanwhile, another feature 
of the Kalman filter is its strong dependence on the model accuracy [14,16]. In order to reduce the 
dependence of the Kalman filter on uncertain factors, a robust extended Kalman filter (REKF) 
algorithm is selected and designed for the implementation of the SoC estimation [19,20]. 
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The SoC estimations with REKF algorithm were conducted for the five models. A detailed 
description with the DP model taken as an example follows: 

The state equation and observation equation of the discrete system of interest with REKF algorithm 
is as follows: 

-1 -1 -1 -1 -1 -1

~ ( , )
~ ( , )

k k k k k k k

k k k k k k

k k k

k k k

= + +⎧
⎪ = + +⎪
⎨
⎪
⎪⎩

X A X B u Γ w
Y C X D u v
v r R
w q Q

 (12)

where X is a n × 1 state matrix; Y is a m × 1 observe matrix; A, B, C, D and Γ are n × n, n × 1, m × n, 
m × 1 and n × n matrix respectively; kw is a process noise with mean of kq and covariance of kQ ; kv is 
the measurement noise with mean of kr and covariance of kR . 

Transform the Equation (6) to a discrete system: 
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-1 o[ ]k R=D  (19)

L,k[ ]k U=Y  (20)

where, s is the abbreviation of SoC, Δt is the sample step, η is the coulombic efficiency, CN is the 
nominal capacity of the battery. 

The experimental data of the coulombic efficiency under different charging/discharging current for 
the lithium-ion battery module are shown in Table 7, which shows that the coulombic efficiency 
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decreases with the increase of the discharge current and it is necessary to limit the discharge current 
range for a higher efficiency. 

Set the initial values as: X0 = [0 0 1]T; R = 10; Q = diag (0.00001, 0.00001, 0.00001, 0.00001, 
0.00001); P0 = diag (1, 0.1, 0.1, 0.1, 0.1) (herein, P is the covariance matrix of X). The DP  
model-based SoC estimation results with REKF are shown in Figure 12. 

Table 7. Coulombic efficiency list of the lithium-ion battery module. 

Current (A) 30 50 100 150 200 300 
Coulombic efficiency in discharging process (%) 100 99.3 98.5 98.1 97.4 95.2 

Coulombic efficiency in charging process (%) 100 98.5 97.4 96.0 94.0 - 

Figure 12. The DP model-based SoC estimation results with REKF: (a) Terminal voltage; 
(b) Voltage estimation error; (c) Polarization voltages; (d) SoC. 
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4.3.1. SoC Estimation Accuracy 

Figure 12(d) shows the experimental SoC data based on the Digatron EVT 500-500 test bench 
results after proper adjustments as follows: in order to get the true SoC by an experimental approach, 
firstly, the battery module is fully charged to make sure the initial SoC is 1.0; after the eleven 
consecutive FUDS test is finished, the battery module is rested for at least 2 hours and a further 
discharge experiment with nominal current is conducted until the battery module is fully discharged, 
and then the true value of the terminal SoC can be calculated according to the definition of SoC. Since 
the true values of the initial SoC and the terminal SoC are determined, the simple Ah counting method 
is used to calculate the experimental SoC based on the load current profile and the coulomb efficiency 
map, also a proper adjustment coefficient, which is calculated based on the true values of the initial 
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SoC and terminal SoC, is applied during the calculation. The Ah counting method with an adjustment 
approach based on a further discharging experiment can only be used in laboratory. Herein, it is used 
to provide a true SoC profile for comparison purposes. The results of the SoC estimation with REKF 
for the five models are shown in Figure 13 and the comparisons between the estimations and the 
experiment are shown in Figure 14. A statistic analysis on the absolute SoC estimation errors is 
conducted and the results including the terminal SoC error are list in Table 8.  

Figure 13. SoC estimation profiles based on FUDS cycles. 
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Figure 14. The SoC estimation error profiles based on FUDS cycles. 

0 2000 4000 6000 8000 10000 12000 14000 16000-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time/s

So
C

 e
st

im
at

io
n 

er
ro

r

 

 

Rint model RC model Thevenin model PNGV model DP model

 

Table 8. The statistic list of the absolute SoC estimation error and the terminal SoC error. 

Model Maximum Mean Variance Terminal  
Rint Model 0.0462 0.0186 0.0012 0.046 
RC Model 0.0681 0.0167 0.0009 0.013 

Thevenin Model 0.0500 0.0101 0.0004 −0.016 
PNGV Model 0.0675 0.0126 0.0005 −0.017 

DP Model 0.0309 0.0047 0.00004 −0.005 

According to Figure 14 and Table 8, it can be seen that for the Rint model, due to the precise initial 
SoC and Ah counting method, a minimal SoC error is achieved for the first 2020 s, however, an 
accumulation error appears and a maximum SoC error is obtained at the end of the calculation due to 
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the lower accuracy of this model. For the other four models with the considerations of the polarization 
characteristics, there appears a similar fluctuation and tendency, which shows that the SoC error 
reaches a maximum in the first stage and reduces quickly toward the true SoC during the calculation 
process with different accuracy. The fact that the maximum of SoC error appears at the first stage for 
the DP model, the RC model, the Thevenin model, the PNGV model, while that appears at the final 
stage for the Rint model, shows that the Rint model is not suitable for long time application in SoC 
estimation except for timely revision of the initial SoC, while the other four models have good 
performance in SoC estimation especially for long time periods. By comparison, the SoC error for the 
DP model always stays at a minimum, except for the first 2020 s; this also verifies that the DP model 
has the highest accuracy for SoC estimation.  

4.3.2. Evaluation on the SoC Estimation Accuracy Influenced by Its Initial Value 

An accurate SoC estimation depends on two aspects according the definition of SoC given by 
Equation (15), one is the initial SoC, and the other is the calculation of SoC consumption. From the 
comparison in Section 4.3.1, the DP model has the highest accuracy for the SoC estimation under the 
assumption of a precise initial SoC value. In order to investigate whether the SoC estimation with 
REKF algorithm and the DP model, can effectively solve the initial estimation inaccuracy of SoC, a 
further simulation analysis is conducted. Four different SoC initial values, 0.90, 0.96, 0.84 and 0.50, 
are preset and the corresponding SoC estimations are performed based on the FUDS cycles, at the 
same time, a true SoC is calculated with the true initial SoC of 0.899 based on the FUDS test data. The 
results are shown in Figure 15 for the first 150 s and the results of the statistic analysis on the absolute 
SoC estimation error between the true value and the estimation during 151 s~15775 s are listed in 
Table 9. It can be seen that the estimated SoC can effectively converge around the true SoC within 
150 s, no matter which initial SoC value is used and its terminal error is within 1.56%.  

Figure 15. The SoC estimation profiles with different SoC initial values. 
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Table 9. The statistical list of absolute SoC estimation errors with different initial SoC 
values after 150 s and the terminal error. 

SoC0 Maximum Mean Variance Terminal Error 
0.90 0.0098 0.0051 2.65 × 10−5 0.0070 
0.96 0.0181 0.0080 1.79 × 10−5 0.0073 
0.84 0.0279 0.0105 7.40 × 10−5 0.0103 
0.50 0.0352 0.0144 3.68 × 10−4 0.0156 

5. Conclusions 

A dual polarization (DP) model is put forward based on the evaluations of the traditional models by 
adding an extra RC circuit to the Thevenin model simulating the electrochemical polarization and 
concentration polarization separately. Detailed evaluations on the Rint model, the RC model, the 
Thevenin model, the PNGV model and the DP model are carried out by experiments and simulations 
from the aspects of the dynamic performance and SoC estimation. It can be found that the proposed 
DP model has the best dynamic performance and gives a more accurate SoC estimation. In addition, 
the sensitivity of the different SoC initial values is examined based on the accuracy of the DP  
model-based SoC estimation with the REKF approach. It is clear that the error resulting from the SoC 
initial values is significantly reduced and the true SoC is convergent within an acceptable error.  
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