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Abstract: The efficient utilization of waste heat from industrial processes can provide a significant
source of energy savings for production plants, as well as be a driver of sustainable operations
and the abatement of emissions. Industrial waste heat usually is contained in liquid or gaseous
outlet streams. Although the possible ways to utilize waste heat are discussed in a wide variety
of papers, these either provide only a general overview of utilization options and opportunities
or focus on a narrow range of industrial processes. The aim of the present paper is to discuss
the practical aspects of waste heat utilization in the European Union so that the reader can gain
perspective on (i) the thermal classification of waste heat, (ii) liquid and gaseous waste streams
and their typical temperatures for industrial use cases, (iii) the technical, economic, physical, and
environmental aspects barring full utilization of the available waste heat, (iv) waste heat sources in
various industries, and (v) standardized equipment and technologies applicable to industrial waste
heat utilization, including their advantages, disadvantages, and weak points.

Keywords: waste heat recovery; waste heat potential; heat recovery technologies

1. Introduction

Industrial waste heat is the energy that is generated in industrial processes but cannot
be put to any practical use [1]. Jouhara et al. [2] extended this definition by adding that
this heat can be used, but instead it is wasted into the environment. Grönkvist et al. [3]
defined waste heat as the extra heat that is produced in a thermodynamically optimized
process. Bendig et al. [4] improved this definition by discriminating between waste heat
that can be avoided, because it comes from unoptimized processes and can further be
utilized, and waste heat that is unavoidable, because it comes from already optimized
processes. It is important to note that apart from the term “waste heat”, one can also
encounter “low-quality heat” [5], “secondary heat” [6], or “energy losses” [7].

Utilizing the available waste heat would not only increase the sustainability of in-
dustrial processes and products, but also markedly reduce greenhouse gas emissions [8].
This is especially relevant regarding the worldwide efforts to reduce energy consumption
related to the ever-stricter legislation [9]. Although it is difficult to determine for a given
industrial process the actual amount of input energy that is lost as waste heat, various
studies report that it generally is between 20% and 50% and that 18% to 30% of this waste
heat could be utilized (see, e.g., the 2006 report prepared for the U.S. Department of En-
ergy [10]). Forman et al. [7] stated that in industrial processes, 30% of the overall energy
consumption constitutes unused energy exiting via liquid or gaseous waste streams and
21% constitutes other losses, i.e., only 49% of the input energy represents actual energy
service. Bianchi et al. [11] provided in their study similar data: 29% of the input energy
exited via liquid or gaseous waste streams, 20% was otherwise lost, and 51% accounted for
energy service. Likewise, Agathokleous et al. [12] estimated waste heat to make up 23% of
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the total amount of input energy, with other losses constituting 30% and the actual energy
service being attributable to the remaining 47%. According to Pashchenko [13], in selected
energy-intensive industries (e.g., the iron and steel industry or glass industry), the overall
losses could be as large as 75%.

Therefore, it is obvious that the amount of waste heat (that is, wasted energy) in
industrial processes is not negligible. For instance, Arzbaecher et al. [14] estimated the
annual energy cost savings reachable through systematic industrial waste heat recovery
to be 10–20%. If one assumes that, e.g., only 51% of the primary energy is transformed
into a usable form [11], then industrial waste heat would amount to approx. 1.29 PWh/y
solely in the European Union (see Figure 1). This clearly indicates that energy sources are
being not utilized properly (or, at least, it points to significant limitations of the currently
available technologies) and that greenhouse gas emissions, as well as the corresponding
energy costs, could be much reduced.
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Figure 1. Yearly energy consumption in the European Union [15]; the percentages of energy services
vs. exhaust/effluents and other losses in the industry as a whole were taken from [11].

Waste heat is contained in a wide variety of heat carrier media [16]. Gaseous media
include exhaust and flue gases, low-grade steam, and cooling air. Liquid media most often
are hot thermal oil or cooling water. As for solid media, these include hot products of
any kind (e.g., steel ingots) and solid combustion residues (e.g., slag). Moreover, waste
streams are available at various temperatures, and the ultra-low temperature level has been
identified in multiple studies (e.g., [17,18]) as the most important one because such streams
still contain large amounts of energy but are most likely to be discarded due to the recovery
being more difficult. For instance, Luberti et al. [18] estimated that in the power industry,
75% of energy could be recovered from ultra-low-temperature waste streams, while in the
(petro)chemical or pulp and paper industries, the fraction of utilizable heat in these waste
streams approached 100%.

Before the recovery of waste heat can take place, one must first consider the waste
heat potential (discussed in detail in Section 3), which determines whether any waste heat
can actually be recovered and, if so, the recoverable amount. The respective heat recovery
processes and technologies can then be classified into four main groups [19]:

1. Energy recycling within the process;
2. Waste heat recovery (WHR) for the purposes of other on-site processes;
3. Electricity generation (combined heat and power installations, thermoelectric generation);
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4. Building/district heating systems.

Each group presents its own challenges, primarily the following:

• Group 1: retrofits of existing processes can be problematic (e.g., due to insufficient
space) [20], while some technologies require specific conditions to work properly [21];

• Group 2: the selection of the best technology may not be straightforward [22], and
corrosion, erosion, and fouling of the heat transfer surfaces can severely limit the
prospective operator’s options [23];

• Group 3: the environmental impact of the working fluids [24] and their degradation at
higher temperatures [25] may prove to be problematic, higher exergy losses [26] and
low conversion efficiencies of conventional thermoelectric materials [27] have often
been reported, and some technologies are still under development and are largely
unproven (thus risky and unattractive to, e.g., shareholders);

• Group 4: the seasonal nature of the demand [28] as well as the greater distances be-
tween the heat source and sink [29] are often major challenges, and some technologies
have also been shown to suffer from low efficiency [30];

• All groups: long(er) payback periods may discourage the investors [31].

What is more, it generally holds true that the lower the stream temperature, the more
difficult the implementation of a suitable heat recovery technology. The mentioned factors
are thus crucial in determining the suitable heat recovery methods.

The present paper focuses on the analysis of waste heat in the European Union with
the main aim being to improve the understanding of its utilization and integration into
processes as a source of energy. Only industrial gaseous and liquid waste heat streams
from which direct heat recovery is possible (in contrast to general “energy recovery” such
as thermoelectric generation [32], etc.) are considered. Additionally, only heat exchange
between nearby heat sources and sinks is discussed because it is the most economic waste
heat recovery option [33] and, by extension, the one most likely to be implemented by
prospective users.

2. Waste Heat Stream Temperature

Current industrial processes involve waste heat streams available at different tem-
perature levels. These usually are classified as low, medium, or high, but some studies
also include ultra-low and ultra-high temperature levels—see Table 1. From this table, it is
obvious that no clear consensus exists among the studies in terms of the temperature level
stratification. It is also important to note that the situation becomes even more clouded
when considering the percentages of waste heat available per level. This is because many
studies—after a priori defining the temperature levels—report the waste heat availability
for entirely different, arbitrarily chosen temperature ranges. However, good agreement can
be observed in that most of the waste heat is available at low or low-to-medium tempera-
tures, generally in the range of 100–300 ◦C (see, e.g., [34]). A detailed breakdown of the
actual origins of waste heat, i.e., the processes that generate it, is provided in Section 4.

Table 1. Typical waste heat stream temperature levels and the corresponding percentages of waste
heat available per the individual levels (“N/A” if not listed in the respective studies).

Reference Ultra-Low Level Low Level Medium Level High Level Ultra-High Level

Ammar et al. (2012) [35] – <250 ◦C
N/A – – –

Benedetti et al.
(2021) [36]

<120 ◦C
N/A

120–230 ◦C
N/A

230–650 ◦C
N/A

650–870 ◦C
N/A

>870 ◦C
N/A

Bianchi et al. (2019) [11] – <100 ◦C
51%

100–300 ◦C
19%

>300 ◦C
30% –

Bonilla-Campos et al.
(2019) [37] – <120 ◦C

38% – >120 ◦C
62% –
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Table 1. Cont.

Reference Ultra-Low Level Low Level Medium Level High Level Ultra-High Level

Brückner et al.
(2015) [38] – <100 ◦C

30%
100–400 ◦C

27%
>400 ◦C

43% –

Christodoulides et al.
(2022) [22] – <100 ◦C

N/A
100–600 ◦C

N/A
>600 ◦C

N/A –

Forman et al. (2016) [7] – <100 ◦C
42%

100–300 ◦C
20%

>300 ◦C
38% –

Haddad et al. (2014) [39] – 100–200 ◦C
66%

200–500 ◦C
32%

>500 ◦C
2% –

Ji et al. (2024) [34] – <100 ◦C
N/A

100–300 ◦C
N/A

>300 ◦C
N/A –

Johnson et al. (2008) [1] – <230 ◦C
60% – >230 ◦C

40% –

Law et al. (2013) [33] – <260 ◦C
N/A – – –

Loni et al. (2021) [40] – <230 ◦C
N/A

230–650 ◦C
N/A

>650 ◦C
N/A –

Luberti et al. (2022) [18] <80 ◦C
N/A

80–240 ◦C
N/A

240–650 ◦C
N/A

>650 ◦C
N/A –

Papapetrou et al.
(2018) [16] – <200 ◦C

33%
200–500 ◦C

25%
>500 ◦C

42% –

Pehnt et al. (2011) [41] – <60 ◦C
82%

60–140 ◦C
6%

>140 ◦C
12% –

Sollesnes and Helgerud
(2009) [42] – <60 ◦C

47%
60–140 ◦C

16%
>140 ◦C

37% –

3. Waste Heat Potential

Panayiotou et al. [8] expand the original definition of waste heat potential by Brückner
et al. [38] and specify four distinct layers (Figure 2):

1. Theoretical and physical potential;
2. Theoretical technical potential;
3. Applicable technical potential;
4. Economic (i.e., feasible) potential.
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The broadest layer, technical and physical potential, is concerned only with the tech-
nical and environmental constraints (i.e., whether there exists a suitable heat recovery
technology and a prospective user) and the physical constraints (e.g., the Second Law
of Thermodynamics; this generally is given by the heat losses in the heat carrier during
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transfer, the minimum safe operating temperature, limitations imposed by the legislation,
etc. [43]). The following theoretical technical potential encompasses scenarios where suit-
able heat recovery technologies exist and physical constraints are satisfied, irrespective of
whether such heat recovery would be applicable in the given process or whether it would
be economical. In other words, it is connected to the efficiency of energy transformation in
the process [44] and must consider the heating (or cooling) demand in the region [45]. As
implied by Figure 3 (see below), one must be aware of the possible fluctuations—not only
whether the amount of waste heat is constant or fluctuates (e.g., seasonal fluctuation), but
also in terms of changes in the demand for it. Moreover, any waste heat recovery technology
must meet a wide range of requirements if it is to be implemented successfully. This is a mat-
ter of applicable technical potential, which concerns situations where there is heat available
for recovery and at the same time there exists a technology—or technologies—applicable
on site for the respective purpose (note that economic factors still are not considered).
Please refer to Section 4 for details. Lastly, economic—or feasible—potential includes only
the scenarios where heat recovery from the corresponding stream is not only possible,
but also brings about economic benefits (i.e., it is profitable). However, this last potential
and the eventual related savings depend to a large extent on the market prices of energy
sources as well as any additional costs imposed by the implementation of the heat recovery
technology. Thekdi and Nimbalkar [46] claimed that the cost of energy, especially that from
fossil fuels, ultimately is the most important parameter in the decision-making process.
Compared to technical potential, which can be evaluated with relative ease using available
statistical data, the evaluation of economic potential is much more difficult and often
requires stochastic modeling or forecasting to properly include the fluctuations in energy
and commodity prices, interest and tax rates, subsidies, planned changes in environmental
protection legislation, etc.
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The initial and most important step in determining waste heat potential is finding the
areas in which heat is not fully utilized and quantifying the available waste heat, as well as
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areas where waste this heat could be used as a secondary energy source. This is especially
relevant considering the ever-growing energy demand and more stringent environmental
legislation where waste heat can help meet the respective requirements. In any case, to
quantify the available waste heat, it is paramount to first understand which sectors are the
largest producers of waste heat.

The latest statistical data for 2022 and the individual sectors within EU27 [47] (datasets
newer than 2022 are not yet available) show that the industry as a whole accounts for
25% of the total energy consumption (see Figure 1). Figure 3, which is based on the same
statistical data source, presents the overall energy consumption in specific industries for the
last 32 years. An earlier study by Brückner et al. [38] claimed that in the European Union,
the industries with the greatest production of waste heat are the (petro)chemical, iron and
steel, food and tobacco, and pulp and paper industries. Judging by the latest EU27 data
(Figure 3), this still is the case. Bianchi et al., in their 2019 study [11], stated that these four
industries accounted for almost 60% of the overall theoretical potential, while according to
Figure 3, this would in 2022 amount to approx. 54%, or 1.47 PWh.

The estimated overall waste heat potential in the major EU27 industries is shown in
Figure 4. The necessary energy consumption data were taken from the latest dataset [47],
while the waste heat ratios and temperature distributions per industry correspond to those
published by Bianchi et al. [11].

Energies 2024, 17, 2084 7 of 29 
 

 

 

Figure 4. Waste heat potential in individual industries obtained using the latest EU27 data [47]; the 

temperature distribution and waste heat ratios per industry were taken from the study by Bianchi 

et al. [11]. 

In essence, estimating the waste heat potential involves determining the following 

data for each source stream that is not yet fully utilized: 

1. Temperature level or range (incl. to what temperature the stream can be cooled); 

2. Composition, physical properties, fouling propensity, corrosivity, and whether the 

condensation of stream components could be an issue; 

3. Mass flow rate;  

4. Availability (year-round, seasonal, only specific days or parts of days, etc.). 

Then, these data are compared to the demand, and one must ask primarily the following 

questions (see also Figure 5): 

1. Is the stream temperature sufficient for the intended purpose(s)? 

2. Is the amount of heat available from the stream sufficient, or would an additional 

heat source be needed? 

3. Is the distance between the heat source and the heat sink sufficiently small to make 

heat recovery possible? 

4. Is there a suitable heat recovery technology? Is there sufficient space for the addi-

tional equipment within the plant? 

5. Would the payback period be acceptable? That is, would the cost of the necessary 

technology (and the connecting pipeline, if needed) be reasonable compared to the 

yearly financial savings due to waste heat recovery? 

6. Would the implementation of the selected waste heat recovery technology bring 

measurable environmental benefits? 

Figure 4. Waste heat potential in individual industries obtained using the latest EU27 data [47]; the
temperature distribution and waste heat ratios per industry were taken from the study by Bianchi
et al. [11].

In essence, estimating the waste heat potential involves determining the following
data for each source stream that is not yet fully utilized:

1. Temperature level or range (incl. to what temperature the stream can be cooled);
2. Composition, physical properties, fouling propensity, corrosivity, and whether the

condensation of stream components could be an issue;
3. Mass flow rate;
4. Availability (year-round, seasonal, only specific days or parts of days, etc.).

Then, these data are compared to the demand, and one must ask primarily the follow-
ing questions (see also Figure 5):

1. Is the stream temperature sufficient for the intended purpose(s)?



Energies 2024, 17, 2084 7 of 27

2. Is the amount of heat available from the stream sufficient, or would an additional heat
source be needed?

3. Is the distance between the heat source and the heat sink sufficiently small to make
heat recovery possible?

4. Is there a suitable heat recovery technology? Is there sufficient space for the additional
equipment within the plant?

5. Would the payback period be acceptable? That is, would the cost of the necessary
technology (and the connecting pipeline, if needed) be reasonable compared to the
yearly financial savings due to waste heat recovery?

6. Would the implementation of the selected waste heat recovery technology bring
measurable environmental benefits?
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4. Factors Limiting the Full Utilization of Waste Heat

As noted in the papers published by Christodoulides et al. [22,48], the major limitations
and barriers to the widespread adoption of waste heat recovery technologies are as follows
(in order from the most common to least common, according to the reported survey results):

• Insufficient information and know-how available to the prospective technology opera-
tors (see also [49]);

• The risks associated with new and unproven technology (see also [36], where orga-
nizational barriers stemming from the involvement of stakeholders and their likely
resistance to unproven technologies and financial risks are highlighted);

• The requirements imposed by legislation;
• High investment and operating costs, long payback periods (due to comparably lower

primary energy prices, etc.), and, in many cases, relatively low internal rates of return
(see also [36]);

• Insufficient financial incentives and subsidies;
• Space limitations with regard to the sizes of the necessary technologies;
• Insufficient infrastructure;
• Limitations of the production process (see also [50], where this point is discussed in

detail in the context of harsh environments for which specialized waste heat recovery
equipment may be required) and the risk of production process disruptions.
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Earlier studies (e.g., [46,51]) stressed that conventional heat recovery technologies
often may not have been suitable in the respective industrial processes or waste heat
temperature ranges. However, Benedetti et al. [36] has argued that this is no longer the case.
According to both Miró et al. [51] and Xu et al. [52], the problem is further compounded by
the temporal and geographical inconsistencies between waste heat availability and demand
and the lack of a global optimization methodology for the design of distributed waste heat
recovery systems.

As for technological barriers in particular, the data reported by Christodoulides
et al. [22] suggest that by far the most common reason for not recovering waste heat
has been the high capital cost per unit of energy recovered (i.e., low efficiency of the
available waste heat recovery solutions). The second most common concern has been the
low or variable waste heat source quality. Other reasons included, e.g., the problematic
nature of long-distance transport of low-grade heat (i.e., the previously mentioned spatial
mismatch between the heat source and heat sink) or high chemical activity of the source
barring the use of common materials. Jouhara and Olabi [53] mentioned the legislative
limitations stemming from efforts to limit the production of greenhouse gases as one of the
factors limiting the implementation of waste heat recovery technologies. Such legislation
forces the operators of industrial plants to adapt their processes so that they meet these
new regulatory requirements, and then waste heat recovery may not be economical or
even feasible.

A common consequence of the aforementioned economic barriers (high investment
costs, etc.) is that a more economic yet less ecological technology is often selected. Moreover,
the survey carried out by Christodoulides et al. [22] among waste heat recovery operators
showed that the majority (12 out of 16 implemented cases, i.e., 75%) were not profitable.
This is why new support mechanisms would make waste heat recovery projects more
appealing to prospective operators. The absence of a binding EU waste heat policy is
a closely related and no less important factor influencing operators in their decisions
regarding whether to implement waste heat recovery solutions.

In summary, to promote waste heat recovery and make it more appealing to the
prospective operators, an innovative approach is needed involving education and edifi-
cation, close cooperation between the industries and the public and private sectors, and
government subsidies. Once the discussed barriers are removed, waste heat can become
one of the pillars of sustainable energy policies. The following section focuses on spe-
cific sources of waste heat across industries to provide the information necessary for the
identification of suitable waste heat recovery strategies.

5. Industrial Sources of Waste Heat

Waste heat is generated in almost every thermal and mechanical process and includes
both sensible heat and latent heat. Some authors also include chemical waste among the
sources of waste heat [54]. Su et al. [55] published an overview of waste heat sources in indi-
vidual industries. Waste heat potential together with the temperature levels corresponding
to selected industries has also been provided, e.g., by Bianchi et al. [11] or Panayiotou
et al. [8]. Panayiotou et al., in their more recent paper [56], also mentioned information
related to the iron and steel industry, while Oliveira et al. [57] focused solely on waste heat
sources in the ceramics industry. Benedetti et al. [36] discussed industrial processes with
low-temperature waste heat production. Typical applications of waste heat from various
sources were listed by Huang et al. [58].

Waste heat source temperature ranges typical for the main industries have been
summarized by Arzbaecher et al. [14], or, in terms of the actual industrial heating process
temperatures, by Garofalo et al. [59]. A common rule of thumb is that most of the high- and
medium-temperature waste heat comes from combustion processes, while low-temperature
waste heat is available from products or the equipment in production units [38]. Table 2 lists
the most common industrial waste heat sources and their corresponding temperature levels.
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Table 2. Common waste heat sources and their temperature levels; individual sources were classi-
fied according to Benedetti et al. [36] if the specific temperatures were provided in the respective
references instead.

Industry Process or Waste Heat Stream Temperature Level References

Chemical and petrochemical

Conventional steam reforming High [8]
Sulfuric acid process High [11]

Thermal oxidation of VOCs High [11]
Distilling Medium–High [14]

Boiler exhaust Medium [19]
Exhaust from ethylene furnaces Medium [36]

Processing furnace exhaust Medium [19]
Stack gas from crude/vacuum distillation Medium [36]

Compressor cooling air/water Ultra-Low [33]
Condensate Ultra-Low [19]

Condenser cooling water Ultra-Low [19]
Latex rubber Ultra-Low [18]

Methane production (electrolysis, biomethanation) Ultra-Low [17]
Process water Ultra-Low [19]

Soda ash Ultra-Low [18]

Food and tobacco

High-temperature frying High [11]
Extracted air from cooking with fryers or ovens Medium [36]

Exhaust from spray/rotary dryers Medium [36]
Frying Medium [8]

Sterilizing Medium [14]
Drying Low–Medium [14]

Pasteurizing Low–Medium [14]
Utility processes (CHP) Low–Medium [8]

Water vapor from evaporation and distillation Low–Medium [36]
Canning of fruit/vegetables/meat Low [18]

Clean-in-place washing; washing of bottles, clothes, etc. Low [14]
Crude vegetable oil production from oilseeds Low [11]

Heat recovery from cooling systems Low [8,11]
Seed oil extraction process Low [8]

Sugar refining Low [18]
Yogurt maturation Low [14]

Dairy pasteurization Ultra-Low [18]
Grain milling Ultra-Low [18]

Iron and steel

Electric arc furnaces Ultra-High [60]
Flue gas from continuous/forging/pit furnaces Ultra-High [61]

Basic oxygen furnaces High [18]
Blast furnaces High [18]

Casting High [18]
Coking High [18]
Rolling High [62]

Sintering Medium [18]

Mining

Crushing/haulage exhaust Medium [18,63]
Drilling/digging coolant Medium [18]

Separation reboiler exhaust Medium [64]
Motor coolant Ultra-Low [65]

Air conditioning Ultra-Low [18]

Non-ferrous metals

Blast furnaces High [18]
Casting High [18]

Exhaust gas from aluminum, copper, or zinc
refining furnaces High [14]

Induction furnaces High [18]
Smelting High [8,11]
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Table 2. Cont.

Industry Process or Waste Heat Stream Temperature Level References

Non-ferrous metals

Zinc sulfide production High [8,11]
Exhaust from aluminum casting with a stack melter Medium [36]

Primary/secondary lead production Medium [8,11]
Rolling Medium [18]

Sintering Medium [18]

Non-metallic materials

Flue gas from glass-melting furnaces Ultra-High [18,61]
Clinker Ultra-High [18]

Lime Ultra-High [18]
Ceramic kilns High [18]

Clinker High [8,11]
Exhaust gas from cement kilns (dry process) or

glass-melting furnaces High [14]

Furnace heating and primary melting High [8,11]
Kiln firing High [8,11]

Exhaust from cement kilns using a 5- or 6-stage preheater Medium [36]
Exhaust gas from ceramic furnaces Medium [66]

Hot air discharged from clinker coolers Low–Medium [36]
Ceramic ovens Low [18]

Power

Gas turbine exhaust Medium–High [67]
Coal/gas/oil-fired boiler exhaust Medium [68,69]

Solar concentrators Medium [67]
Flat-panel/vacuum-tube solar collectors Low [67]

Geothermal technologies Ultra-Low–Low [67]
Condensate Ultra-Low [18]

Engine coolant Ultra-Low [18]
Steam turbine exhaust Ultra-Low [18]

Pulp and paper

Chemical/mechanical pulping Low–High [8,11]
Papermaking and related processes Low–High [8,11]

Furnace wall cooling water Low [36]
Waste steam/water from slag flushing in furnaces Low [36]

Combined heat and power plants Ultra-Low [18]
White water from TEMPO-mediated oxidation Ultra-Low [18]

Textile

Dirt removal High [8,11]
Drying Medium [8,11,14]

Cotton warp yarn optimization Low–Medium [8,11]
Dyeing Low–Medium [14]
Dyeing Low [8,11]

Bleaching Low [14]
Dyed wastewater from drying Low [36]

Rinsing after dyeing Low [14]
Stenter exhaust (fabric drying and finishing) Low [36]

Washing Low [14]
Wastewater rejected from heat exchangers Low [36]

While some heat losses are inevitable, there often exists a wide range of technologies
capable of transforming waste heat into utilizable energy. Implementation of such technolo-
gies can significantly improve the efficiency and competitiveness of the respective process
as well as decrease its environmental impact. Selected waste heat recovery technologies and
equipment are discussed together with their advantages, disadvantages, and limitations in
the following text.

6. Technologies and Equipment Applicable to Waste Heat Recovery

Zhang et al. [70] classified waste heat recovery technologies into three main categories,
namely direct utilization, transformation into electricity, and cascading systems which in-
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volve direct use of the higher-temperature heat, while the remaining portion is transformed
to electricity. Similarly, Brueckner et al. [71] identified four modes of waste heat recovery:

1. Direct recovery (e.g., using heat exchangers or thermal energy storage);
2. Transformation to a higher temperature level (e.g., via heat pumps);
3. Transformation to a lower temperature level (i.e., cooling via absorption or adsorption

chillers etc.);
4. Transformation to electricity (e.g., through an organic Rankine cycle).

Heat recovery technologies and equipment sometimes also are classified as “active”
or “passive” depending on the actual manner of energy recovery or transformation (see
Figure 6).
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A brief overview of common waste heat recovery technologies and the typical operat-
ing temperature ranges, as listed in various studies, is provided in Table 3. The review of
published papers has shown that in industry, the largest portion of waste heat is available
at low temperatures. For example, Haddad et al. [39] estimated that 66% of industrial
waste heat is in streams at temperatures up to 200 ◦C. To make use of such heat, several
new technologies have recently been developed. These typically involve heat pumps [72],
organic Rankine cycles [36], Kalina cycles, adsorption chillers, absorption refrigerators,
liquid desiccants [73], thermal energy storage [74], or solid or liquid thermal storage to
match the spatial or temporal discrepancy between heat source and heat sink [52]. Of
these, organic Rankine cycles were reported to be most suitable under constant (possibly
low) waste heat stream temperatures [75]. Brueckner et al. [71] also mentioned several
emerging technologies applicable even at ultra-low temperatures (up to ca. 120 ◦C), e.g.,
thermoacoustic, electrochemical, piezoelectric, or pyroelectric systems.
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Table 3. Common waste heat recovery technologies as listed in various studies; temperature levels
(unless provided in the respective studies) are classified according to Benedetti et al. [36].

Technology Temperature Level References

Absorption refrigerator Ultra-Low–Low [76]
Ultra-Low [77]

Adsorption chiller Ultra-Low–Low [78]
Ultra-Low [77]

Air preheater Low–Medium [2,79]
Ultra-Low–Medium [48]

Economizer
Low–Medium [2]

Ultra-Low–Medium [48]

Flat heat pipe

Ultra-Low–Ultra-High [22,80,81]
Medium–Ultra-High [48]

up to High [82]
Ultra-Low–Medium [2]

Heat pipe (condensing, non-condensing) Ultra-Low–Medium [22]

Heat pump

Low–Medium [2]
Ultra-Low–Low [83]

up to Low [84]
Ultra-Low [48,77,82,85,86]

Hot water building heating Ultra-Low–Low [76]

Hot water storage Ultra-Low [77]

Kalina cycle

Low–Medium [77,87]
Ultra-Low–Medium [59,73,88]

Ultra-Low–Low [32]
Ultra-Low and up [89]

Organic Rankine cycle

Medium and up [90]
Low–Medium [91,92]

Ultra-Low–Medium [21,32,48,77,84,92,93]
Low and up [94]

Ultra-Low and up [85,95,96]
Ultra-Low [76]

Phase change material Medium–High [77]

Plate heat exchanger
Medium–High [2]

Ultra-Low–Medium [48,77]
Ultra-Low–Low [97]

Plate-fin heat exchanger Ultra-Low–Low [98]
Ultra-Low [77,99]

Rankine cycle (without explicit specification)

Medium–High [92]
Medium and up [33,84,100]

Medium [93]
Low [94]

Recuperator
up to Ultra-High [101]

Low–High [2]
Medium [84]

Regenerative/recuperative burner High–Ultra-High [48]
High [2]

Regenerator Low–High [2]

Shell-and-tube heat exchanger Ultra-Low–Medium [77]

Steam dehumidification Ultra-Low [76]
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Table 3. Cont.

Technology Temperature Level References

Steam generator High [2]
Ultra-Low–Medium [48]

Steam micro-turbine Medium–High [92]

Steam Rankine cycle Medium–High [32]
Medium [76]

Stirling engine Medium–Ultra-High [102]
Ultra-Low–High [77]

Supercritical CO2 cycle
Medium [22,82]

Low–Medium [77]
Medium–High [92]

Transcritical CO2 cycle Medium–High [32]

Trilateral flash cycle Ultra-Low–Medium [77]
Ultra-Low [22]

Waste heat boiler
Medium–High [2]

Ultra-Low–Medium [48]

At temperatures above ca. 200 ◦C, well established technologies are prevalent if the
source of waste heat (e.g., flue gas) is clean [50]. Attempts to use such technologies when
the waste heat sources were fouled reportedly resulted in short maintenance periods as
well as lifespans, especially so when the stream temperature was high. Similar scenarios
were common when the flue gas temperature decreased below the condensation point of
the contained acidic compounds (which has bearing not only on the selection of equipment,
but also on the selection of construction materials, thus greatly influencing the capital cost).
The survey results presented by Christodoulides et al. [22] indicated a pattern similar to the
findings in [50], that is, by far the most common waste heat recovery equipment were air
preheaters, economizers, waste heat boilers, or steam generators, with the corresponding
waste stream temperatures ranging up to 650 ◦C. This was especially true if the waste
heat stream temperature was fluctuating [75]. Several novel and more efficient waste heat
recovery technologies making use of heat pipes (e.g., heat pipe condensing economizers)
also were put forth at the temperatures of up to 1000 ◦C by the respondents in the same
survey, but these were used much less often due to being costly. As for, e.g., supercritical
CO2 cycles, which overall should perform much better than other waste heat recovery
options [22], none of the respondents in the mentioned survey stated that they even
considered them as an option.

Despite the large amounts of waste heat available, Benedetti et al. [36] pointed out
that the number of recovery applications has been limited, and that there still has remained
a large disproportion between the available waste heat and the waste heat that has actually
been utilized. The barriers limiting the wider acceptance and implementation of waste heat
recovery technologies are outlined in Section 4. Xu et al. [52] noted that high-temperature
waste heat could be recovered more easily without the need for novel or specialized
technology and meet the demand of a wider range of users. These authors also mentioned
that the efficient recovery of low-temperature heat was challenging and often necessitated
optimization. Brückner et al. [38] listed two additional factors with great influence on the
waste heat recovery process, namely the composition of the waste stream and the space
available for the respective technology.

6.1. Regenerative and Recuperative Heat Exchangers

Both regenerative (Figure 7a) and recuperative (Figure 7b) heat exchangers are proven
and widely used technologies. Rotary and stationary regenerators are often employed for
ultra-high-temperature waste heat recovery from fouled flue gas (e.g., glass or coke pro-



Energies 2024, 17, 2084 14 of 27

duction) [103]. Their major disadvantages are the large built-up area they require [104] (al-
though comparatively smaller than that of an equivalent recuperative heat exchanger [105]),
bypass streams [106], and possible structural issues stemming from the utilization of mate-
rials having different thermal expansion characteristics (e.g., ceramic matrices and steel
shells) [107].
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Recuperative heat exchangers are, according to Jouhara et al. [103], most commonly
used for medium- and high-temperature waste heat recovery. Metallic recuperators can be
used at up to ca. 1100 ◦C, and those made from ceramics can withstand temperatures up to
ca. 1500 ◦C [1]. Considering cost savings, Akhan and Eryener [108], for example, evaluated
the heating of buildings using waste heat recovered from a compressor unit’s cooling
water in a plate heat exchanger in combination with further heating of the heat carrier in
a capillary tube solar collector, and found that it reached 14%/y. The implementation of
low-temperature heat recovery is generally limited to using either enhanced (e.g., fins)
tubular heat exchangers or plate heat exchangers [104], and necessitates waste heat sources
with a low fouling propensity. Similarly, heavily fouled streams that absorb the waste
heat [109] and tube-side stream maldistribution [110] can also cause severe issues.

6.2. Waste Heat Boilers

Waste heat boilers (Figure 8) are also a widely used type of heat recovery equipment
and typically are employed to produce steam from medium-to-high-temperature flue
gas [111]. These apparatuses are efficient and easy to maintain; this makes them ideal
for waste heat recovery, even in industries where waste heat streams are fouled (be it at
the typical high temperatures [112] or low-to-medium temperatures [113]). Other studies
also mention reduced emissions among their advantages [114]. It is important to note that
due to the conditions in which waste heat boilers are commonly used (flue gas containing
acidic compounds, etc.), in many cases, they tend to fail—or at least require frequent
servicing—because of corrosion [23], erosion, or a combination of both [115].
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Figure 8. Typical arrangement of a waste heat boiler; the superheater is only present if the waste
stream temperature is high enough.

6.3. Regenerative and Recuperative Burners

Both regenerative (Figure 9a) and recuperative (Figure 9b) burners are more compact
and feature better thermal efficiency than regular burners, leading to a 25–23% reduction in
fuel consumption due to the integrated preheating of combustion air [116]. Some studies
mention even greater fuel savings of up to 43% compared to conventional recuperative
systems in reheating furnaces [117]. According to Wu et al. [118], these burners produce
lower amounts of NOx emissions than conventional burners. However, they must be
installed in pairs and may require additional heat storage equipment [2], i.e., the resulting
capital cost generally is much higher. The more complex nature of these burners also may
require more careful design in terms of the gas and air velocities, etc. [119].
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6.4. Heat Pipes

Heat pipes (Figure 10) can be used to recover waste heat from sources at up to
600 ◦C [120] or, according to some sources [12], even 1000 ◦C, but the selection of the
working fluid inside the heat pipe as well as the material of the pipe must reflect the actual
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operating conditions [121]. For example, liquid metals must be used when operation under
high temperatures is required [122]. The compatibility of the fluid and pipe material must
also be ensured [81]. Heat pipes feature thermal conductivity rates of up to 200,000 W m−1

K−1 (thus making them suitable for the transfer of heat over relatively long distances [123]),
great reliability, and a long service life [103]. The main weakness of heat pipes—primarily
in cases when the working medium is solid at ambient temperatures—is their “frozen”
startup [122].
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The application of heat pipes is common not only in thermal management (typically
in the IT sector or the automotive or power generation industries) [120], but also in glass
production or solar concentrators [48]. Major benefits of heat pipe application in terms
of CO2 emission savings have been observed in the iron and steel and (petro)chemical
industries and in cement production [12].

6.5. Heat Pumps

Heat pumps (Figure 11) are a reliable [124] and efficient [125] waste heat recovery
solution especially suitable for ultra-low and low temperature levels [126]. Their average
temperature lifts are about 30 ◦C [127], while high-temperature heat pumps have been
reported to increase the heat carrier stream temperature by up to 150 ◦C [128]. According
to Ma et al. [129], high-temperature heat pumps are crucial when converting heat from
low-to-medium-temperature industrial effluents to high-grade energy. The same authors
also evaluated six different refrigerants across several industrial applications and found
the binary refrigerant MC-1 to be the best overall. Liu et al. [130] stated that for high-
temperature waste heat recovery, pure substances are not suitable, and recommended
a ternary mixture of CO2, R600a, and R1233zd(E) for the best performance. In ultra-
low-temperature applications, on the other hand, cryogenic fluids or nano-fluids may be
required [83].
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Heat pumps are typically utilized to extract waste heat from cooling media (air, water,
lubricants, etc.) [126]. Tan et al. [131] evaluated four different types of heat pumps (a
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mechanical heat pump, an absorption heat pump, an absorption heat transformer, and
a steam jet pump) and argued that any heat pump was always more efficient than a
thermodynamic cycle, and that, e.g., the organic Rankine cycle was more efficient in terms
of exergy than a steam turbine. The only mentioned scenario where heat pumps were not
competitive was when, locally, the price ratio of electricity to heat was greater than five.
Still, the main factors limiting the widespread use of heat pumps are their high capital costs
and the environmental impact of refrigerants [132].

6.6. Thermodynamic Cycles

Thermodynamic cycles (Figure 12)—typically the organic Rankine cycle (ORC) or
Kalina cycle (KC), which make use of low-boiling-point working fluids—can cost-effectively
transform waste heat to electricity [133]. Douvartzides and Karmalis [134] estimated the
primary energy savings in industrial processes resulting from the implementation of ORC
waste heat recovery to be 6–13%. Carcasci et al. [135] stated that the ORC was suitable
for low-to-medium-temperature waste heat recovery where a steam cycle could not be
implemented. However, Chen et al. [136] stipulated that the working fluid must be selected
carefully because it influences the cycle efficiency as well as the capital cost. According
to Jiménez-García et al. [137], the most cost-effective fluids are R1234yf (at temperatures
below 120 ◦C) and cyclohexane (at higher temperatures). R600, R601, R123, and R134a and
toluene, respectively, were identified as the best fluids from an environmental perspective
for these two temperature levels. Additionally, the ORC is not strictly limited to industrial
use cases as it has also been successfully implemented in, e.g., geothermal, ocean thermal,
and solar applications [93].
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Compared to the ORC, the KC has been reported to feature greater efficiency [138]
but require careful selection of the necessary components [139]. Similarly, Iqbal et al. [140]
stated that the trilateral flash cycle (TFC) was up to 50% more efficient than the ORC
and could be implemented even under temperatures below 80 ◦C, where the ORC was
economically infeasible [141]. A different study [12] reported the TFC to even be twice as
efficient as the ORC, but for waste heat recovery at higher temperature levels (200–500 ◦C),
supercritical CO2 cycles were recommended. Zamfirescu and Dincer [142] evaluated the
ORC, KC, and TFC and found that the TFC outperformed both the ORC and KC. They also
stated that, when implemented into a combined heat and power generation system, the
TFC’s efficiency was above 70%. In general, thermodynamic cycles have been deemed the
best waste heat recovery technology in cases of ultra-low-temperature waste heat streams
at up to 120 ◦C [32].
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6.7. Thermal Energy Storage

Waste heat can be recovered and stored (Figure 13) in a wide variety [143] of
media—typically water (e.g., as part of a district heating system) [144], sand [145], ze-
olite [146], phase change materials [147] (possibly mixed, e.g., with either regular [148]
or volcanic [149] sand for improved heat capacity), graphite matrices filled with paraffin
wax [150], or molten metals [151] or salts [152]. According to Tetteh et al. [153], thermal
energy storage can be more efficient and cheaper than the transformation of waste heat to
electricity coupled with the utilization of Li-ion batteries.
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7. Case Studies

A concise list of selected case studies available in the literature is provided in Table 4.
This literature review has shown that thermodynamic cycles, most notably organic Rankine
cycles, are prevalent and are used across a very wide temperature range—from less than
100 ◦C to 1400 ◦C. It also is clear that waste heat recovery case studies have been carried
out primarily in the context of processes with a heavy use of energy (i.e., the production of
cement, ceramics, or iron and steel). Overall, the studies found in the literature state that
industrial waste heat recovery is possible and desirable from both an energy-saving and an
environmental point of view.

Table 4. Selected waste heat recovery case studies incl. their main characteristics; pieces of information
not provided in the respective studies are denoted with “N/A”.

Technology Process Waste Heat Source Temperatures Reference

Absorption refrigerator Iron smelting Hot-blast stove flue gas 250 ◦C [154]
Utility system Steam turbine effluent 70–140 ◦C [75]

Double-pipe heat
exchanger Ceramics production Kiln exhaust gas 600 ◦C [155]

Economizer
Milk pasteurization Furnace/boiler exhaust gas 175–330 ◦C [156]
Power generation Boiler exhaust gas 70–123 ◦C [157]

Heat pump
Data-center cooling Cooling water 65 ◦C [158]

Pharmaceutical application
(unspecified) Chilled water 7 ◦C [159]

Utility system Steam turbine effluent 70–140 ◦C [75]

Heat recovery steam
generator

Cement production Exhaust gases from a preheater, calciner,
kiln, and cooler 100–400 ◦C [160]

Cement production Kiln exhaust gas 170–315 ◦C [161]

Hot water boiler Utility system Steam turbine effluent 70–140 ◦C [75]

Kalina cycle

Cement production Kiln exhaust gas 327 ◦C [162]
Combined heat and power

production Flue gas 130–150 ◦C [163]

Geothermal power generation Brine 150–180 ◦C [164]
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Table 4. Cont.

Technology Process Waste Heat Source Temperatures Reference

Organic Rankine cycle

Cement production Kiln exhaust gas 1400 ◦C [83]
Cement production Kiln exhaust gas 327 ◦C [162]
Cement production Kiln exhaust gas, clinker cooler exhaust gas 150–180 ◦C [165]

Ceramics production Exhaust air from the intermediate
cooling zone 200–300 ◦C [166]

Ceramics production Kiln exhaust gas 200–300 ◦C [167]
Ceramics production Kiln exhaust gas 150–220 ◦C [168]

Crude dehydrogenation Condensate 82 ◦C [169]
Float glass production Glass-melting furnace exhaust gas 150–180 ◦C [165]

Gas compression Gas turbine exhaust gas 150–180 ◦C [165]
Kerosene production Liquid kerosene 140–105 ◦C [170]

Steel production Electric arc furnace exhaust gas 200–500 ◦C [171]

Steel production Exhaust gas from a re-heating furnace of a
rolling mill 150–180 ◦C [165]

Utility system Steam turbine effluent 70–140 ◦C [75]

Plate heat exchanger Tobacco drying Dryer exhaust gas 140 ◦C [104]

Steam cycle Cement production Clinker-cooler exhaust gas 315 ◦C [172]
Cement production Exhaust gas from a raw materials preheater 380 ◦C [172]

Thermal energy storage District heating Off-gas from a ferrosilicon plant N/A [173]
Steel production Electric arc furnace exhaust gas 700–1500 ◦C [174]

Trilateral flash cycle Cement production Kiln exhaust gas 327 ◦C [162]
Geothermal power generation Brine 150 ◦C [142]

Vacuum cooler Hot-spring cooling Thermomineral water 50–73 ◦C [175]

In addition to Table 4, the paper by Benedetti et al. [36] should also be mentioned.
Although it did not discuss any case study in detail, it presented the concept of a “database
of case studies and technologies” which should help users identify suitable technologies
for their specific use cases. Similarly, one could refer to the paper by Jegla and Daxner [176]
when deciding which waste heat recovery technology to use in order to minimize the
environmental impact.

8. Perspective and Outlook

The utilization of waste heat provides economic and environmental benefits, and
therefore it has become an increasingly important topic in the industry. There are four main
factors that will drive the implementation of future industrial waste heat recovery solutions:

• The ever-widening range of and improvements made to waste heat recovery technolo-
gies and equipment;

• Economic benefits;
• Changes in environmental legislation;
• The availability of waste heat.

Due to the recent technological innovations, it has never been easier for companies to
implement waste heat recovery solutions and benefit from the increased energy efficiency
that these solutions bring. This is closely followed by lower primary energy consumption
and lower operating costs. Even if a company is not able to utilize the recovered waste
heat on site, the overall economic balance can often be improved by exporting the excess
energy (possibly transformed to electricity or cold) to nearby consumers. Also related to the
cost–benefit analysis of any such waste heat recovery project is the diversification of energy
sources, which is ever more important given the volatility of energy prices—especially
when it comes to fossil fuels.

Considering the ongoing changes in legislation (e.g., the European Green Deal), one
can reasonably expect the laws and regulations to become more and more stringent in
terms of the emission limits, etc. The increasing cost of European Emission Allowances,
fines and/or penalties issued for non-compliance, as well as EU/government subsidies
will inevitably motivate those that have not yet implemented waste heat recovery tech-
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nologies to do so. The operators will in their own interest follow the latest technological
developments and consider which technologies would best suit their needs. It can also be
expected that due to the non-negligible capital costs, some companies will cooperate and
spread the financial burden among themselves.

One could assume that with respect to the technological progress, the amount of
available waste heat will gradually decrease. However, there are many uncertain factors
involved, and to make any reasonably accurate predictions, one would have to make use of
stochastic modeling, employ neural networks, or rely on the emerging artificial intelligence
tools. What is certain, though, is that due to the developing technological innovations,
new legislation and EU/government subsidies, and increased awareness, there will be in
the upcoming years an upswing in the rate of implementation of industrial waste heat
recovery solutions.

9. Discussion

The present paper summarizes the latest European Union data on industrial energy
consumption and waste heat potential and highlights the significance of the proper utiliza-
tion of industrial waste heat and its bearing on the efficiency of operation and reduction
in environmental impact of industries in the European Union. According to the available
data, the overall yearly energy consumption in these industries reaches approx. 2.63 PWh,
of which—according to multiple studies—only ca. 50% is transformed to a usable form
of energy. The rest of the energy is marred in various waste streams or other energy
losses. However, the energy in these waste streams amounts to ca. 29% of the total energy
consumption [11] and can further be utilized. It is shown that the industries with the
largest potential are the chemical and petrochemical; paper, pulp, and printing; and food,
beverages, and tobacco industries, and that the total waste heat potential in just these
three industries reaches more than 350 TWh/y (i.e., a significant amount of energy that, if
utilized, could markedly reduce the primary energy consumption).

The scope of this paper also covers the identification of a wide spectrum of factors
hindering industrial waste heat utilization. One such barrier is the quantification of waste
heat available at various temperature levels. As presented in Table 1, there exists a multitude
of differing classifications, and although no consensus can be observed, many studies agree
that the majority of waste heat is available at temperatures up to 200 ◦C. For each of the
main EU industries, the representative sources of waste heat and their temperature levels
were compiled from the available literature and are provided.

Our extensive literature review assessing research on industrial waste heat recovery
technologies and equipment yielded a wide range of equipment suitable for various tem-
perature levels. According to the results of this review, the greatest research effort seems
to have been devoted to thermodynamic cycles and heat pumps. The development and
improvements of these technologies in recent years have resulted in their superior perfor-
mance and ability to function at (ultra-)low temperatures, which is especially desirable
given the fact that most waste heat is available at 200 ◦C or less.

A representative selection of 35 industrial waste heat recovery case studies found
in the literature is also provided. Although these examples confirm that the utilization
of industrial waste heat represents a major opportunity for primary energy savings and
emission reduction across the entire range of industries, they also show that further research
is needed to solve the challenges related to the implementation of waste heat recovery
technologies and equipment in varied industrial processes. In other words, the results and
recommendations listed in the available case studies, each of which is related to a specific
process and conditions, must be extended and generalized. Only then could the decisions
of prospective operators be made easier, and consequently, there could be a significant shift
in and proliferation of waste heat recovery and utilization.
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