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Abstract: Advancements in electric vehicle technology have promoted the development trend of
smart and low-carbon environmental protection. The design and optimization of electric vehicle
braking systems faces multiple challenges, including the reasonable allocation and control of braking
torque to improve energy economy and braking performance. In this paper, a multi-source braking
force system and its control strategy are proposed with the aim of enhancing braking strength,
safety, and energy economy during the braking process. Firstly, an ENMPC (explicit nonlinear
model predictive control)-based braking force control strategy is proposed to replace the traditional
ABS strategy in order to improve braking strength and safety while providing a foundation for
the participation of the drive motor in ABS (anti-lock braking system) regulation. Secondly, a grey
wolf algorithm is used to rationally allocate mechanical and electrical braking forces, with power
consumption as the fitness function, to obtain the optimal allocation method and provide potential
for EMB (electro–mechanical brake) optimization. Finally, simulation tests verify that the proposed
method can improve braking strength, safety, and energy economy for different road conditions, and
compared to other methods, it shows good performance.

Keywords: commercial vehicles; state observation; braking force control; braking source distribution

1. Introduction

With the development of science and technology, smart and low-carbon environmental
protection have become the mainstream trend of future automobile development. Electric
vehicles are the ideal platform for developing smart automobiles and have attracted much
attention and research due to their clean, efficient, and energy-saving characteristics. An
EMB does not use the original hydraulic and pneumatic systems but uses a motor as the
braking source to achieve high precision in brake force control. However, due to the highly
nonlinear nature of vehicle dynamics, the design and optimization of electric vehicle brake
systems still faces multiple challenges, such as coordination between the power domain
and the chassis domain and the trade-off between safety and economy. How to reasonably
allocate and control brake torque to improve the energy efficiency and braking performance
of electric vehicles is one of the core issues [1,2].

For an EMB, the main drawbacks are large mass and volume, which have negative
effects on reducing mass, assembly, and layout. Reducing the volume of an EMB system is
usually achieved by changing its internal structure, such as by using a cam configuration
and a wedge-type self-increasing force configuration. The cam configuration has less axial
space utilization and has a compact structure, but the cam and support are disconnected
by points or lines, which are prone to wear [3,4]. The wedge-type self-increasing force
configuration can greatly reduce the required driving power and the volume of the actuator,
but it is difficult to control due to factors such as wear and temperature [5,6]. The above so-
lutions can ensure that the EMB can provide sufficient braking intensity while reducing the
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volume, but it is still difficult to reduce the volume of EMB systems to the size of traditional
brakes, and they will still face problems such as excessive lower mass and difficulty with
assembly and layout. In order to solve the problem of the large volume of EMB systems,
for electric vehicles, using the energy recovery of the driving motor or power-consuming
braking to share a part of the braking force that should be provided by an EMB has become
an effective solution. If the motor provides a larger brake torque, the EMB will provide
a smaller brake torque. As shown in Figure 1, in the braking system of electric vehicles,
there are three sources of braking force: 1. EMB braking, 2. driving motor energy recovery,
and 3. driving motor power-consuming braking. The allocation scheme of the braking
source can be roughly divided into three types based on: vehicle dynamics, fuzzy control,
and intelligent algorithms. As for those based on vehicle dynamics, some researchers have
proposed to develop different braking force distribution strategies according to different
braking conditions to improve vehicle stability and braking efficiency, but this method does
not consider the response characteristics of switching between different braking sources [7].
Some researchers have proposed a decision-making method based on energy recovery
demand for energy efficiency considerations: this method formulates different strategies
according to the charging state and energy recovery demand of the battery, but this method
takes more consideration of energy recovery efficiency and less consideration of overall
performance [8]. Some researchers have proposed a decision-making method based on
predictive control to plan the distribution of vehicle braking power sources in advance to
reduce the impact of the response characteristics of each system on vehicle performance.
However, this method is too idealistic and is difficult to achieve under complex road condi-
tions and scenarios [9–11]. Fuzzy control refers to using a fuzzy controller to determine the
size of the motor braking torque based on the vehicle’s driving state and expert experience,
and then it combines the formulated front and rear axle braking force distribution strategy
to obtain the braking force distribution strategy. Fuzzy control has good robustness and is
easy to implement, but its formulation depends on experience and parameter calibration,
which requires a lot of manual cost [12,13]. Intelligent algorithms include neural network
control and particle swarm optimization algorithm control. Neural network control refers
to controlling the regenerative braking torque based on the braking force distribution com-
bined with neural network algorithms to improve the efficiency of braking energy recovery.
Neural network control has high classification accuracy and strong parallel processing
capabilities, but it requires a large number of training samples, and the data collection and
preprocessing process requires a lot of computing resources and costs [14,15]. A particle
swarm optimization algorithm refers to using the theory of particle swarm algorithms to
optimally distribute the braking force in the regenerative braking process and has high
braking energy recovery efficiency. A particle swarm optimization algorithm has fast search
speed and can achieve multi-objective optimization, but its optimization goal is achieved
through iterative methods, which will result in poor real-time computing capabilities [16].
The adaptability and convergence speed of the above methods are poor, so it is necessary
to optimize the adaptability of braking force allocation strategies.

Figure 1. Braking torque from different sources.
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In addition, there are also coordination methods between the ABS and the regenerative
braking system (RBS) or the power-consuming braking of the driving motor, which makes
it difficult for the driving motor and the mechanical brake to work together to meet the
high-frequency torque fluctuation requirements of ABS control. The role of ABS is to make
the vehicle maintain sufficient maneuverability and stability under high braking conditions
so as to improve road safety, and in the case of poor road adhesion conditions, the demands
on the system are greater [17,18]. ABS initially uses a rule-based algorithm that takes into
account slip rate and wheel deceleration. These methods do not have the capability of
continuous feedback control, and while such methods are robust for the vehicle’s possible
operating conditions, they provide only sub-optimal performance for wheel slip rate
tracking control. As a result, incremental improvements have followed at the expense
of increasing the complexity of tuning [19], such as algorithms for estimating maximum
transmitted torque or torque control [20]. Some scholars have proposed slip controllers [21],
but the essence remains unchanged. Subsequently, there has been growing interest in
model-based state feedback controllers, especially MPC. Some researchers have proposed
linear MPC to discuss longitudinal slip tracking performance during transitions from
high-adhesion to low-adhesion surfaces [22], and others have compared MPC strategies
to PID controllers and evaluated them on electric vehicle prototypes [9]. In the study of
MPC algorithms for ABS, some scholars have discussed the anti-lock control of internal-
combustion-engine-driven vehicles and have compared four-linear-MPC strategies with
hybrid-explicit MPC, and the performance of the hybrid strategy is comparable to that
of a well-tuned PID controller [23]. At the same time, some researchers have shown that
the implementation time step has a greater impact on the anti-lock performance of electric
vehicles than the selected control technology [24]. To sum up, more efficient ABS requires a
controller with higher tracking performance and less computation time. In order to solve the
coordination problem between RBS and ABS, there are currently three approaches: using
only mechanical braking force for ABS control, using only electric braking force for ABS
control, and combining mechanical and electric braking forces for ABS control. For the first
approach, this ensures driving safety, but it completely wastes the braking force of the motor,
making the idea of using the driving motor to share part of the braking demand for an EMB
a fantasy, and it also affects the energy economy during the braking process [25–27]. For the
second approach, due to the limitations of motor battery characteristics and matching, the
electric braking torque may not be able to meet the braking demand, resulting in insufficient
braking force during high-intensity braking in actual vehicle driving, which affects braking
safety. This method only exists in idealized simulation verification [28–30]. For the third
approach, the main control methods can be divided into the following categories: model-
following control, logic threshold value method, and fuzzy control. In the model-following
control method, the electric braking force is responsible for the high-frequency part of the
braking demand, and the mechanical braking force is responsible for the low-frequency
part of the braking demand. A combination of a PQ-method, a filter-based frequency band
selection method, and a model-following control method is used to control the two braking
forces to achieve ABS function. The PQ-method is one of the “Parallel Control” methods
that considers different response characteristic. It is simple and effective, but it still cannot
fully utilize the motor’s capabilities [31]. The logic threshold value method is an optimal-
slip-rate-based compensation control strategy, which uses an optimum control method to
determine the optimal braking torque of the wheels, uses the logic threshold value method
to control the frictional braking force, and uses the motor torque to compensate for the
difference between the optimal braking torque and the frictional braking torque. This
method has good robustness, accuracy, and effectiveness and is less affected by noise, but it
still cannot fully utilize the motor’s capabilities [32]. Fuzzy control is based on the vehicle’s
driving state and expert experience and uses a fuzzy controller to determine the size of
the motor and mechanical braking forces. Fuzzy control has good robustness, is easy to
implement, and has a good chance of utilizing the motor’s energy recovery capabilities, but
its reliance on experience and parameter calibration requires a lot of manual cost [33,34]. In
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addition, its transient response to braking torque is poor, making it highly susceptible to
noise and difficult to control under complex conditions. In summary, the third approach
mentioned above can ensure that the braking torque meets the control requirements and
can also utilize the motor’s energy recovery capabilities to some extent. However, in
order to fully utilize the motor’s capabilities, precise control and stable braking torque
decisions are needed, as these provide a foundation for coordinating control between the
driving motor and EMB. For the EMB system, the ABS function can be replaced by a slip
rate controller, which precisely controls the braking torque to maintain a stable slip rate
throughout the entire braking process, increasing braking comfort and improving energy
recovery efficiency. In summary, the decision about braking force demand is extremely
important, and stable braking force demand can provide the potential to fully utilize the
motor’s capabilities.

In this paper, a multi-source braking force system and its control strategy is proposed
with the aim of improving the braking force, safety, and energy efficiency during the braking
process. In the proposed strategy, firstly, a vehicle–road state observer based on vehicle
dynamics is developed to meet the requirements of subsequent control [35–37]. Secondly,
a braking force control strategy based on ENMPC is developed to replace traditional
ABS strategies. By using closed-loop slip rate control, stable demand for braking force is
achieved to fully utilize the motor’s capabilities [38–40]. Thirdly, in order to ensure that the
motor’s capabilities can be used to share part of the braking force for an EMB, the entire
electric braking system is optimized based on the motor battery’s characteristics. Finally, a
reasonable allocation of braking sources is achieved through the grey wolf algorithm, using
energy consumption as the fitness function to obtain the optimal allocation method, which
improves energy efficiency and provides the possibility of reducing the size of the EMB
system [41,42]. The innovations of this paper are as follows:

1. The feasibility of using the motor’s energy recovery or power-consuming braking
to share part of the braking force for an EMB is theoretically elaborated based on
the analysis of motor battery characteristics. This aims to reduce the braking force
demand of the EMB system and its size.

2. In order to ensure that the braking torque can be easily adjusted using the driving
motor, a slip rate controller is designed based on the ENMPC algorithm, which makes
the demand torque more stable compared to traditional ABS, thereby improving
braking performance.

3. In order to achieve a reasonable allocation of the three braking forces, a braking source
allocation strategy is developed based on the grey wolf algorithm, which improves the
fitness of the braking source allocation and the overall energy efficiency of the vehicle.

The remainder of this paper is structured as follows: Section 2 illustrates the vehicle
model, and Section 3 discusses the multi-source braking force system and the control
strategies. Simulations are provided in Section 4. The conclusions are presented in Section 5.

2. Vehicle and Component Model

In this paper, an electric box-type truck is the focus, and the corresponding config-
uration is illustrated as Figure 2. The studied vehicle comprises a single drive motor for
the rear axle, a power battery, a gearbox, and a main reducer. The electronic mechanical
brake (EMB) acts as the brake system actuator and is controlled by the brake control unit.
The brake control unit communicates via the controller area network (CAN) bus, which
connects it to the electronic mechanical brake motor control unit and the vehicle control
unit. Additionally, the vehicle is equipped with regenerative braking functionality. Under
conditions conducive to energy recovery, the drive motor operates as a generator, produc-
ing power to recharge the battery. During this phase, the drive motor can supply braking
torque, facilitating vehicle deceleration.
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Figure 2. Vehicle electronic control system architecture.

The vehicle parameters are shown in Table 1.

Table 1. Vehicle Parameter.

Definition Unit Value

Vehicle mass (full) kg 4495
Vehicle mass (no load) kg 3200
Front axle load (full) kg 2000

Front axle load (no load) kg 1800
Rear axle load (full) kg 2495

Rear axle load (no load) kg 1400
Height of vehicle c.g. (full) mm 844

Height of vehicle c.g. (no load) mm 630
Distance between two axles mm 3300

Wheel type - 750R16

2.1. Vehicle Mathematical Model

During vehicle operation, the power sources should provide tractive force that over-
comes the resistance of the vehicle in order to drive the studied vehicle. The various
resistances include air resistance, slope resistance, and acceleration resistance, and the
corresponding relationship between the tractive force and the resistance is formulated as:

Ttqi0igηt

r
= mg sin β +

1
2

CD Aρv2 + mg f cos β + δmv̇ (1)

where m denotes the vehicle mass, v denotes the vehicle longitudinal velocity, Ttq denotes
the motor torque, ηt denotes the transmission efficiency, r denotes the wheel rolling radius,
CD denotes the air resistance coefficient, A denotes the windward area, ρ denotes the
air density, f denotes the road rolling resistance co-efficient, β denotes the road grade,

δ = 1+ 1
m

∑ Iw
r2 + 1

m
I f i2gi20ηt

r2 denotes the rotary mass coefficient, Iw denotes the rotating inertia
of the wheels, I f denotes the rotating inertia of the motor, i0 denotes the main reduction
gear ratio, and ig denotes the vehicle’s transmission ratio.
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2.2. EMB Actuator Response Characteristics

An electro–mechanical brake (EMB) realizes brake control by means of a motor-driven
transmission mechanism and a clamping brake disc, thus realizing decoupling of the brake
pedal and the brake torque at the mechanical level. Meanwhile, an EMB has the advantages
of fast response, high control accuracy and low maintenance cost compared with pneumatic
brake systems. The response characteristic of an EMB are shown in Figure 3.

Figure 3. EMB response characteristics.

2.3. Tire Model

The fitting of a magic formula is based on test data, and its fitting accuracy is high,
but the calculation is large, so it is more suitable for product design, automobile dynamic
simulation, test comparison, and other fields that require accurate descriptions of tire
mechanical properties [43]. Thus, the magic formula is utilized in this paper to calculate
the tire force:

Y(x) = y(x) + Sv
y = Dx · sin{Cx · arctan[Bx · x − Ex · (Bx · x − arctan Bx · x)]}

x = X + Sh

(2)

In the equation, Y represents lateral force, longitudinal force, or self-aligning torque,
X signifies slip angle or longitudinal slip ratio, Dx denotes the peak factor, Bx stands for
the stiffness factor, Cx represents the curvature factor, Ex signifies the curvature factor, Sh
represents lateral curve shift, and Sv represents vertical curve shift.

The primary focus of this study is the influence of the longitudinal slip ratio on tire
forces. The formula for calculating the slip ratio is as follows:{

λ = vw−ωw ·Rw
vw

, Brake
λ = ωw ·Rw−vw

vw
, Drive

(3)

where Rw represents the radius of the tire, ωw represents the speed of the tire, and Vw
represents the linear speed of the tire. When the vehicle travels in a straight line, Vw = Vx.

2.4. Drive Motor Model

The electric braking torque of the energy regeneration system is provided by the motor.
The external characteristics and the efficiency of the motor are depicted as Figure 4.
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Figure 4. The motor’s external characteristics.

Based on Figure 4, the motor efficiency ηm can be determined by the motor speed and
motor torque, which can be shown as: Equation (4). The formula for calculating the motor
output power PM is:

ηM = ηM(nM, TM) (4)

where nw represents the speed of the motor, and Tw represents the output torque of
the motor.

PM =
π

30
· nM · TM (5)

In this paper, only the motor serving as a load to the battery is considered. The battery
output power PB can be expressed as:

PB = IB · UB (6)

where IB represents the battery load current, and UB signifies the terminal voltage of
the battery.

During battery discharge, the battery output power PB is positive, indicating energy
transfer from the battery to the motor. Conversely, during battery charging, the battery
output power PB is negative, indicating energy transfer from the motor to the battery.
Hence, the power of the motor and the battery is shown as:

PM = PB · ηM
sgn(PB) (7)

During the modeling phase, the motor torque can be approximated as a first-order
response, and according to the simulation step size τs, the motor’s required torque TM_cmd
is shown as:

TM_cmd = TM + τs · TM (8)

During energy regeneration braking involving the motor, the torque is transmitted
through the gearbox, driveshaft, main reducer, and half-shafts to the driving wheels. The
electric braking torque TE acting on the driving wheels is shown as:

TE =
ig · i0

2
· TM (9)

where ig represents the gearbox ratio, and i0 signifies the main reducer ratio.
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2.5. Battery Model

A second-order RC circuit battery model was constructed with an initial battery
capacity of 318 Ah. The battery’s state of charge (SOC) and terminal voltage concerning the
load current IB are expressed as:

UB = [EB − IM · (rB/Np)− U1 − U2] · Ns

U̇1 = IB/Np−U1/r1
C1

U̇2 = IB/Np−U2/r2
C2

(10)

where IM represents the current of the motor, U1 represents the voltage of a first-order RC
circuit, U2 represents the voltage of a second-order RC circuit, NP denotes the number of
parallel battery modules, NS represents the number of series-connected battery modules,
EB stands for the electromotive force of the power source, and r1 and C1 correspond to
the first-order RC circuit resistance and capacitance, respectively. Additionally, r2 and C2
indicate the second-order RC circuit resistance and capacitance, respectively. Values for
EB, r1 , r2, C1, and C2 are obtained using the approach described in Equation (11), utilizing
battery SOC and temperature TempB to access the table.

(EB, r1, C1, r2, C2) = fB(Soc, TempB) (11)

3. Multi-Source Braking Force System and the Control Strategy

In this section, a discussion of the structural refinement of the braking system is
initiated, wherein the energy-consuming braking of the drive motor is deliberated as a
supplementary source of braking force. This approach aims to decrease the performance
demands on the electro–mechanical brake (EMB) motor and to achieve downsizing. Con-
cerning the control strategy, a vehicle motion state observation system is established.
Through the outcomes of state observation, computation of the required braking torque for
the vehicle is performed, along with the provision of a reference wheel slip ratio concurrent
with the allocation of the required braking torque. The allocation is bifurcated into two
steps. Initially, based on the outcomes of state observation, the braking torque is distributed
to individual wheels. Subsequently, for the driving wheels, the allocated braking force
undergoes mechanical braking (EMB braking), energy recovery braking, and distribution
of torque from the power-consuming action of the drive motor. This ultimately enables
control of the vehicle’s braking torque and the regression of the actual wheel slip ratio to the
targeted slip ratio. The overall architecture of the control strategy is depicted in Figure 5.

Figure 5. Braking force control strategy process.

3.1. Enhancements to the Configuration of Multi-Source Braking Power System

In order to solve the problem of the large volume of EMB systems, for electric vehicles,
using the energy recovery of the driving motor or power-consuming braking to share part
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of the braking force that should be provided by the EMB has become an effective solution.
If the motor provides larger brake torque, the EMB will provide a smaller brake torque.

The recovery motor torque can be increased by increasing the output voltage of the
motor, but the battery cannot accept excessive voltage from the motor. A series resistor
needs to be added, with the aim of diverting a portion of the motor output voltage so that
the battery can accept it.

The motor’s external characteristics curve as installed in the target vehicle is illustrated
in Figure 6. The higher the motor speed, the smaller the torque generated. Therefore, when
utilizing the braking capability of the drive motor, it is essential to consider the most
extreme scenario: whether at maximum motor speed nmax, the required deceleration for
the vehicle can be achieved.

Figure 6. The relationship between motor torque and speed.

During the braking process, if we solely consider the drive motor’s effect on the vehicle
within the constant power region of the motor’s external characteristics curve, we have:{

PChg = ηz · PBrk
PBrk = ηn · PDcg

(12)

where PBrk is the required power during vehicle braking, PChg is the motor power for
energy recovery when formulating, PDcg is the motor power during electric motor power
consumption braking, and ηz and ηn are the efficiency of the transmission system.

The calculation of the maximum required braking power at the rear axle is shown as:

PBrk = Fx_rear · vmax = Fz_rear · areq · vmax/g (13)

where vmax is the maximum design speed of the vehicle, and Fz_rear is the rear axle load.
Based on the vehicle’s drivetrain system structure, Equation (14) represents the maxi-

mum design speed of the vehicle.

vmax =
π · Rw · nmax

30 × i0 · ig_ max
(14)

where ig_max represents the max gear ratio of the transmission.
In this scenario, to achieve the desired deceleration areq, the minimum counter electro-

motive force that the drive motor needs to generate can be represented as:

Umin =
π · Fz_rear · areq · Rw · nmax · η0

30 × i0 · ig_ max · IM · g
(15)

where IM is the rated motor current.
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To ensure charging of the battery at the rated power, a series resistor is needed; the
resistance value can be represented as:

RB_extra =
Umin · IM − PB_ChgLimit

PB_ChgLimit
· rB_ max (16)

where PB_ChgLimit is the maximum charging power of the battery, and rB_ max is the maxi-
mum internal resistance of the battery.

To reduce the EMB’s volume, the relationship between the EMB force required and
the volume needs to be researched.

The mass and volume of the EMB primarily consist of the motor and rotating com-
ponents. The volume of the transmission mechanism scales in proportion to the load it
carries. For the motor, when maintaining its current and voltage as constant, the maximum
output torque is directly proportional to the magnetic flux. Without altering the magnetic
characteristics of the permanent magnet, the magnetic flux is directly proportional to the
number of coil turns, denoted as “n”. The quantity of coil turns impacts the motor’s volume.
This discussion solely considers the number of coil turns as a measure of the motor’s size,
thereby establishing a direct correlation between the motor’s volume and the number of
coil turns.

Based on the above analysis, we can infer that the maximum output torque of the
motor is directly proportional to its volume, and simultaneously, the maximum torque
output of the motor is directly proportional to the maximum deceleration it can produce.

The proportion by which the volume of the EMB motor decreases can be expressed as
Equation (17) once the performance of the drive motor is established.

k =
apre_ max − areq

apre_ max
(17)

where apre_max is the maximum designed deceleration of the vehicle.
The required driving motor voltage at this point is shown as:

Umin =
π · mveh_ max · apre_ max · Rw · nmax · η0

30 × i0 · ig_ max · IM
· (1 − k) (18)

The resistance values of the fixed resistors to be connected in series are shown as:

RB_extra =

[
π · mveh_ max · apre_ max · Rw · nmax · η0

30 × i0 · ig_ max · PB_ChgLimit
· (1 − k)− 1

]
· rB_ max (19)

3.2. Control Strategies for Multi-Source Braking Power System
3.2.1. Vehicle State Observer

A. Estimation of Vehicle Weight and Road Gradient:
Commercial vehicles serve a primary purpose of transporting passengers and goods.

There is a substantial disparity in vehicle weight between empty and fully loaded states.
Vehicle mass can differ by as much as 400% based on varying loads. Although the quality
of the vehicle will not change during the driving process, the load will change greatly after
loading and unloading, and a fixed set of parameters cannot meet the needs of vehicle
control. Accurately estimating vehicle mass holds significant importance for enhancing
control precision.

This study utilizes a recursive least squares method with a forgetting factor for param-
eter estimation, transforming Equation (1) into the standard expression of the least squares
method, as shown in Equations (20)–(24).

y = ϕTθ (20)
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where
y = v̇ (21)

v̇ =
1
m
(

Ttqi0igηt − I · ω̇

r
− 1

2
CD Aρv2) (22)

ϕ =
Ttqi0igηt − I · ω̇

r
− 1

2
CD Aρv2 (23)

θ =
1
m

(24)

After the controller is powered off, in order to ensure safety, the initial value of the
mass estimation result is reset to the full load mass to ensure that the braking torque meets
the requirements after the vehicle is powered on again.

B. Estimation of Tire–Road Adhesion Coefficient:
To meet the requirements of subsequent control strategies, the tire–road adhesion

coefficient needs to be estimated.
The estimation method based on the µ − λ (adhesion coefficient–slip ratio) model is a

typical effect-based estimation approach that has seen extensive application in the field of
automotive dynamics.

When the slip ratio is less than 0.07, it can be approximated that there exists a linear
relationship between the adhesion coefficient and the slip ratio. Therefore, the road surface
adhesion coefficient can be shown by Equations (25) and (26).

k =
Fx/Fz

λ
(25)

µ = k · λ1 · p (26)

In Equations (25) and (26), k represents the slope of the “µ − λ” curve, where Fx and
Fz denote the longitudinal and vertical forces, respectively, acting on the tire at the current
slip ratio λ. The term λ1 stands for the maximum tire slip ratio within the linear region and
is set as λ1 = 0.07. The variable p signifies the coefficient between the maximum adhesion
coefficient in the linear region and the peak adhesion coefficient of the road surface and
typically ranges from 1.2 to 1.4.

For the road adhesion coefficient at large wheel slip rates (λ1 > 0.07), the magic tire
model is represented as Equation (2); the detailed coefficient is represented as:

Cx = 1.65

Bx =
(0.0496×Fz

2+226×Fz)·e−6.9×105×Fz

1.65×(−0.0213×Fz
2+1144×Fz)

Ex = −6 × 10−9 × Fz
2 + 5.6 × 10−5 × Fz + 0.486

(27)

Cx, Bx, and Ex have nothing to do with road adhesion, but Dx is related to
road adhesion:

Dx = µc ·
(
−0.0213 × Fz

2 + 1144 × Fz

)
× 10−3 (28)

where µc represents the coefficient related to road adhesion; the magic formula is matched
under conditions of 0.8 road adhesion:

µc = µ/0.8 (29)

where µ represents the road adhesion, so that

Dx = (µ/0.8) ·
(
−0.0213 × Fz

2 + 1144 × Fz

)
× 10−3 (30)

The magic tire model can be written in the following nonlinear format:

y(k) = f (Fz, µ(k)) + v1 (31)
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with
y(k) = Fx (32)

where f (Fz, µ(k)) is the expression of the magic tire model, and v1 is the noise during
the measurement.

Linearizing y(k) , Equation (31) can be approximated as

y(k) ≈ F(k)(µ̂(k)− µ(k − 1)) + f (Fz, µ̂(k − 1)) (33)

with

F(k) =
∂ f
∂µ

∣∣∣∣
µ=µ̂(k−1)

(34)

Define the variable z(k) as:

z(k) = y(k) + F(k)(µ̂(k − 1))− f (Fz, µ̂(k − 1)) (35)

then we have
z(k) ≈ F(k)µ̂(k) (36)

The form obtained by simplification meets the requirements of least squares parameter
estimation, and the tire–road adhesion coefficient can be effectively estimated by the least
squares method.

C. Estimation of Vertical Dynamic Load on the Wheels:
Based on the estimated mass and considering the axle load transfer due to longitudinal

and lateral accelerations, vertical tire forces are calculated. The longitudinal axle load
transfer caused by longitudinal acceleration is shown as Equations (37) and (38).

Fz_1L + Fz_1R =
m
(
bg − axhg

)
L

(37)

Fz_2L + Fz_2R =
m
(
ag + axhg

)
L

(38)

Similarly, considering the longitudinal axle load transfer caused by lateral acceleration,
taking the front axle as an example, it is shown as:

Fz_1L =

Fz_1L+Fz_1R
g

(
1
2 Bg − ayhg

)
B

(39)

Rearranging Equations (37)–(39), the dynamic vertical load on the vehicle’s left front
wheel is shown as:

Fz_1L =

Fz_1L+Fz_1R
g

(
1
2 Bg − ayhg

)
B

(40)

Similarly, the expressions for the dynamic vertical loads on the other wheels are given
as shown in Equations (41)–(43).

Fz_1R =
m
(
bg − axhg

)( 1
2 B f g + ayhg

)
B f Lg

(41)

Fz_2L =
m
(
ag + axhg

)( 1
2 Brg − ayhg

)
BrLg

(42)

Fz_2R =
m
(
ag + axhg

)( 1
2 Brg + ayhg

)
BrLg

(43)
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where Fz_1L ,Fz_1R, Fz_2L, and Fz_2R represent the vertical loads on the four wheels, ax and
ay denote the longitudinal and lateral accelerations, respectively, a and b represent the
longitudinal distances from the center of mass to the front and rear axles, respectively, and
hg represents the height of the center of mass.

3.2.2. Calculation and Allocation of Required Braking Torque

In this section, based on driver and external braking requirements, the total vehicle
mass and peak road adhesion coefficient are used to calculate the required braking torque
for the entire vehicle. Then, based on the dynamic loads on each wheel, the required
braking torque for each wheel is computed.

The aim of this study is to adjust the braking torque to maintain the slip ratio around
the target value instead of the traditional ABS control strategy. An ENMPC is proposed to
control the brake force, with the aim of keeping the slip ratio stable.

The relationship between braking torque and deceleration on a road surface with a
specific adhesion is depicted in Figure 7. Excess braking torque not only fails to enhance
deceleration but also increases tire slip, raising the probability of ABS activation and wheel
lockup. Therefore, Tmax represents the minimum braking torque achievable on the current
road surface to attain the maximum achievable deceleration.

Figure 7. The relationship between deceleration and brake torque.

As shown in Figure 8, the maximum achievable deceleration of a vehicle and the
minimum braking force corresponding to this maximum deceleration vary across different
road surface adhesions. On surfaces with lower adhesion coefficients, applying a smaller
braking torque is adequate to reach the maximum braking potential the ground can offer.
Therefore, if the road surface adhesion coefficient is known, real-time adjustments to the
braking torque can be made based on this coefficient. This ensures that the braking torque
does not exceed the corresponding Tmax value associated with the current road surface
adhesion, significantly reducing the probability of ABS activation.

Figure 8. The relationship between deceleration and brake torque for different adhesion coefficients.



Energies 2024, 17, 2032 14 of 31

For commercial vehicles, the maximum achievable braking deceleration during brak-
ing processes is approximately amax = 7 m/s2. Normalizing the driver’s pedal displace-
ment, denoted as 0 ≤ xpdl ≤ 1, the demanded braking deceleration by the driver can be
expressed as:

acmd_Drv = xpdl · amax (44)

Considering the potential deceleration demanded from intelligent driver assistance
systems, the overall vehicle’s required deceleration can be consolidated as:

acmd = max(acmd_Drv, aext) (45)

At the vehicle level, the sum of the required longitudinal tire forces for the desired
deceleration can be expressed as:

∑ Fx_cmd =mveh · acmd (46)

The relationship between the total torque acting on each wheel and the angular
acceleration is as follows:

Jw · ω̇w = Tdrv − Tbrk − Rw · Fx (47)

where Jw is the longitudinal rotational inertia of the tire, ωw represents the angular velocity
of the tire, Rw stands for the effective radius of the tire, Tdrv denotes the driving torque, and
Tbrk represents the braking torque.

During braking, Tdrv = 0, Ttotal = Rw · mveh · acmd; also, the maximum deceleration
the vehicle can achieve at a peak road adhesion coefficient µmax is µmaxg. Therefore, the
vehicle’s overall required braking torque can be expressed as

Ttotal = min(Rw · mveh · acmd, Rw · mveh · µmax · g) (48)

According to the estimated results of Fz, the braking torque for each wheel is:
Tcmd_1
Tcmd_2
Tcmd_3
Tcmd_4

 =


Fz1
Fz2
Fz3
Fz4

 · Ttotal
mveh · g

(49)

where Tcmd represents the theoretical braking torque required under the current braking
intensity demand, while under emergency braking, adjustments should be made to Tcmd to
prevent wheel lockup.

3.2.3. Distributed Braking Torque Control Strategy

Due to vibrations and impacts experienced by vehicles during operation, sensors
may suffer from errors and noise that affect the precision of parameter estimation. There-
fore, it is necessary to make adjustments to the theoretical braking torque Tcmd to ensure
braking safety.

Hence, a compensatory braking torque ∆T is introduced based on the current slip
ratio of each wheel:

Tbrk = Tcmd − ∆T (50)

Applying the adjusted target braking torque Tbrk to each wheel ensures that the
slip ratio remains within the desired range, significantly reducing the probability of ABS
activation. Simultaneously, to ensure the motor can fully respond to the electric braking
torque, it is crucial to maintain Tbrk in a state of low-frequency minor fluctuations.

Differentiating the formula for the slip ratio yields:

λ̇ =
v̇xωwRw − ω̇wvxRw

vx2 (51)
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Based on the previously derived brake force distribution and assuming equal utiliza-
tion of the coefficient of adhesion by each wheel, we can conclude:

v̇x =
ΣFx

mveh
=

ΣFx

ΣFz
· g =

Fx

Fz
· g (52)

According to Equation (47), it can be deduced that:

ω̇w = − Fx · Rw + Tbrk
Jw

(53)

Substituting Equations (52) and (53) into Equation (51), we get:

λ̇ =
(1 − λ0) · Jw · g + Rw

2 · Fz

Fz · Jw · vx
· Fx +

Rw

Jw · vx
· Tbrk (54)

According to Equation (50), modify the required braking torque Tcmd.

λ̇ =
(1 − λ0) · Jw · g + Rw

2 · Fz

Fz · Jw · vx
· Fx +

Rw

Jw · vx
· (Tcmd − ∆T) (55)

In the equation, ∆T represents the compensatory braking torque.
Use the current slip ratio λ(k) and simulation time step τs to calculate the next time

step slip ratio λ(k + 1).
λ(k + 1) = λ(k) + τs · λ̇ (56)

Given the known vehicle driver’s overall demanded deceleration, it is possible to
calculate the required longitudinal force.

Fx = min(mveh · acmd, mveh · µmax · g) (57)

According to Equation (57), when the driver’s demand Fx is determined, it is possible
to calculate the slip ratio corresponding to the linear range, denoted as λ = λ(Fx). The
method for calculating the reference slip ratio, denoted as λR, is as follows:

λR = λ(Fx) = λ(min(mveh · acmd, mveh · µmax · g)) (58)

The relationship between the braking torque and the slip ratio exhibits high nonlinear-
ity. To address this highly nonlinear issue, model predictive control (MPC) is introduced.
Based on the current operating conditions, MPC employs the predicted range of braking
torque as a control parameter and predicts and observes the slip ratio within this predictive
interval. The goal is to approach the desired slip ratio through prediction and then deduce
the necessary braking torque to be applied within the predicted interval. This method
is applicable across various conditions and demonstrates precise and effective control
while possessing robustness. The model predictive control logic utilized in this paper is
illustrated in Figure 9.

Consider the following discrete nonlinear system:

x(k + 1) = f (x(k), u(k)) (59)

where x(k) represents the system state at time t = k, u(k) denotes the system control at
time t = k, and x(k + 1) signifies the system state at time t = k + 1.

Taking the slip ratio as the system state and the compensatory braking torque as the
system control, applying control u0(k) within the prediction horizon allows observation of
the system state x0(k).

x0(k + 1) = f (x0(k), u0(k)) (60)
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Figure 9. Nonlinear model predictive control process.

Taking the current control input as the compensatory braking torque ∆T0 and the
currently observed variable as the slip ratio λ0, then:

x0(k) = λ0 (61)

u0(k) = ∆T0 (62)

x0(k + 1) = λ0(k + 1) = λ0(k) + τs · λ̇ (63)

According to the magic formula:

Fx = Dx · sin{Cx · arctan[Bx · λ − Ex · (Bx · λ − arctan Bx · λ)]} (64)

λ̇ =
(1 − λ0) · Jw · g + R2

w · Fz

Fz · Jw · vx
· Dx · sin{Cx · arctan[Bx · λ0 − Ex · (Bx · λ0 − arctan Bx · λ0)]}+

Rw

Jw · vx
· (Tcmd − ∆T0) (65)

The first-order Taylor expansion of Equation (60) at time t = k yields:

x(k + 1) = x0(k + 1) +
δ f
δx

∣∣∣∣
x0(k),u0(k)

(x(k)− x0(k)) +
δ f
δu

∣∣∣∣
x0(k),u0(k)

(u(k)− u0(k)) (66)

Let A = δ f
δx

∣∣∣
x0(k),u0(k)

, B = δ f
δu

∣∣∣
x0(k),u0(k)

Incorporating Equations (61)–(63) into Equation (66) gives{
x(k + 1) = Ax(k) + Bu(k) + D

D = x0(k + 1)− Ax0(k)− Bu0(k)
(67)

Taking the predicted time t, we can obtain:
x(k + t) = Ax(k + t − 1) + Bu(k + t − 1) + D

x(k + t − 1) = Ax(k + t − 2) + Bu(k + t − 2) + D
...

x(k + 2) = Ax(k + 1) + Bu(k + 1) + D
x(k + 1) = Ax(k) + Bu(k) + D

(68)

Iterate on Equation (68).

x(k + t) = At · x(k) +


At−1 · B
At−2 · B

...
A0 · B


T

·


u(k)

u(k + 1)
...

u(k + t)

+


At−1

At−2

...
A0


T

·


D
D
...
D

 (69)
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Equation (69) represents the relationship between the state variables at time t and
the control variables at different time points. Similarly, the relationship between the state
variables at each time point and the control variables at various time points can be derived,
as shown in Equation (70).


x(k)

x(k + 1)
...

x(k + t)

 =


I
A
...

At

 · x(k) +


0 0 · · · 0
B 0 · · · 0

AB B · · · 0
...

...
. . .

...
At−1B At−2B · · · B

 ·


u(k)

u(k + 1)
...

n(k + t − 1)

+


0 0 · · · 0
I 0 · · · 0
A I · · · 0
...

...
. . .

...
At−1 At−2 · · · I

 ·


D
D
...

D

 (70)

Let X(t+1)×1 =


x(k)

x(k + 1)
...

x(k + t)

, Ut×1 =


u(k)

u(k + 1)
...

u(k + t − 1)

, M(t+1)×1 =


I
A
...

At



N(t+1)×t =


0 0 · · · 0
B 0 · · · 0

AB B · · · 0
...

...
. . .

...
At−1B At−2B · · · B

, Pt×1 =


0 0 · · · 0
I 0 · · · 0
A I · · · 0
...

...
. . .

...
At−1 At−2 · · · I

 ·


D

D
...

D


Then, Equation (70) can be simplified:

X = M · x(k) + N · U + P (71)

During the braking process, it is necessary to control the actual slip ratio λ to be
close to the reference slip ratio λR. This means that the difference between the actual
and reference slip ratios should be as small as possible. Simultaneously, to prevent the
system from being overly sensitive and to avoid large fluctuations in the braking torque,
the compensatory braking torque ∆Tbrk should not be too large. Based on the reference
slip ratio, let XR(t+1)×1 =

(
λR λR · · · λR

)T , where XR is a matrix with t + 1 rows and
1 column.

We introduce a cost function:

Jmin = (XR − X)T · Q · (XR − X) + UT · R · U (72)

where Q(t+1)×(t+1) =


q1 0 · · · 0
0 q2 · · · 0
...

...
. . .

...
0 0 · · · qt+1

, Rt×t =


r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rt


Let S = XR − M · x(k)− P. Rearranging Equation (72), we obtain

Jmin = UT ·
(

NT · Q · N + R
)
· U − 2ST · Q · N · U + ST · Q · S (73)

In Equation (73), a smaller cost function Jmin better aligns with expectations. Matrices
Q and R act as weight matrices, signifying the impact of each time step within the prediction
horizon on control effectiveness and determining the importance between reducing the
disparity of state variables from target states and minimizing control effort. It is essential to
note that since the cost function Jmin is dimensionless, the values in matrices Q and R are
influenced by the magnitudes of the state variables and control inputs. Smaller magnitudes
should receive relatively larger weighting values.

In the cost function applied in this context, a higher value in matrix Q leads to a
quicker convergence of the current slip ratio toward the target slip ratio. However, this
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can result in significant fluctuations in both braking torque and slip ratio to expedite the
convergence of the slip ratio, subsequently increasing the probability of wheel lockup
due to highly fluctuating slip ratios. Moreover, substantial fluctuations in braking torque
can be disadvantageous for energy recovery in the motor system. Conversely, a higher
value in matrix R may cause the compensatory braking torque ∆T to be too small. This
scenario, especially during emergency braking on low-adhesion surfaces, slows down the
convergence of the slip ratio and similarly raises the probability of wheel lockup.

Through the QP solver, the cost function Jmin is solved, and according to Equation (73),
the value of the matrix U is solved when the cost function Jmin is minimized,
Ut×1 =

(
u(k) u(k + 1) · · · u(k + t − 1)

)T , and U(K) is taken as the current control
quantity to be applied, and the same computation is performed in each simulation step to
obtain the control quantity at each moment.

3.2.4. Explicit Control Strategy

Due to the considerable computational load of model predictive control (MPC), its cur-
rent focus remains on simulation testing, as the high computational load poses challenges
to real vehicle testing. To expedite simulation speed and pave the way for practical vehicle
trials, an approach integrating offline simulation with online solving has been proposed.
This method replaces the implicit MPC solving process with an explicit one. By feeding the
current vehicle state into the solver, output values can be obtained.

Throughout the braking process, parameters such as vehicle speed, wheel speed, and
tire vertical load dynamically change over time. If these dynamically changing parameters
are segmented and an offline solution is computed using a single value from each segment,
an approximate explicit solution can be obtained for any known value.

Specifically, in the state Equation (67) proposed in this paper, the dynamically vary-
ing parameters are λ0, vx , Fz, and Tcmd, and we need to solve ∆T based on the above
four parameters, as shown in Equation (74).

∆T = fENMPC(λ0, vx, Fz, Tcmd) (74)

The constraints for this function are defined as follows:
λ0_ min < λ0 < λ0_ max
vx_ min < vx < vx_ max
Fz_ min < Fz < Fz_ max

Tcmd_ min < Tcmd < Tcmd_ max

(75)

Divide the blocks in the definitional domain by dividing the above definitional domain
into χ1, χ2, χ3, and χ4 blocks, respectively.

λ0
(i) = λ0_ min +

λ0_ max − λ0_ min

χ1
· i, i = 0, 1, 2 · · · χ1 (76)

vx
(j) = vx_ min +

vx_ max − vx_ min

χ2
· j, j = 0, 1, 2 · · · χ2 (77)

Fz
(k) = Fz_ min +

Fz_ max − Fz_ min

χ3
· k, k = 0, 1, 2 · · · χ3 (78)

Tcmd
(l) = Tcmd_ min +

Tcmd_ max − Tcmd_ min

χ4
· l, l = 0, 1, 2 · · · χ4 (79)

Given χ1 + 1 occurrences of λ0, χ2 + 1 occurrences of vx, χ3 + 1 occurrences of Fz, and
χ4 + 1 occurrences of Tcmd as inputs, perform calculations based on Equation (74) to obtain
(χ1 + 1)(χ2 + 1)(χ3 + 1)(χ4 + 1) occurrences of ∆T. Completion of the offline simulation
computation is illustrated as Figure 10.



Energies 2024, 17, 2032 19 of 31

Figure 10. Explicit process.

In the process of online simulation, for each set of inputs, we can obtain an approxi-
mate explicit solution through linear interpolation, significantly accelerating the simula-
tion speed.

3.3. Allocation of Braking Force Sources

After calculating the required braking torques for each wheel, the distribution of
regenerative braking force for the rear wheels, electrical braking force for the drive motor,
and mechanical braking force is performed, with the aim of maximizing the recovery and
utilization of regenerative braking energy. This paper adopts a braking force allocation
strategy that maximizes the utilization rate of regenerative braking energy. The allocation
strategy that maximizes the recovery and utilization rate of braking energy calculates the
maximum electric braking force that the motor can provide based on the motor battery
status. When the electric braking force meets the braking requirements, it is utilized to
its fullest extent; otherwise, mechanical braking force is used as compensation. During
phases when energy recovery is not feasible, priority is given to the use of electrical braking
by the drive motor, resorting to mechanical braking force only if the electrical braking is
insufficient. The process is illustrated in four parts, as shown in Figure 11.

Figure 11. Different parts divided by velocity and brake torque.

As shown in Figure 11, vB represents the minimum vehicle speed at which the motor
can perform energy recovery, while Tmax = f (vx) denotes the maximum braking torque
that the motor can provide.

Part 1: When vx > vB and T < Tmax, the driving motor has energy recovery capability,
and the required braking torque is within the motor’s recovery capacity. Brake force is
provided solely through energy recovery.



Energies 2024, 17, 2032 20 of 31

Part 2: When vx > vB and T > Tmax, the driving motor has energy recovery capability,
and the required braking torque exceeds the motor’s recovery capacity. The motor utilizes
its entire recovery capability, and the remaining braking torque is compensated for using
mechanical braking force.

Part 3: When vx < vB and T < Tmax, the driving motor lacks energy recovery
capability, yet the required braking torque falls within the motor’s electrical braking
capacity. Braking force is solely provided by the motor’s electrical braking capability.

Part 4: When vx < vB and T > Tmax, the driving motor lacks energy recovery
capability, and the required braking torque exceeds the motor’s electrical braking capacity.
The optimal allocation factor µ is determined using the grey wolf algorithm.

The grey wolf algorithm (GWO) is a method that seeks the optimal solution based
on the hunting principle of a pack of grey wolves. It possesses advantages such as strong
convergence, fewer parameters, simple structure, and ease of implementation. This paper
takes power consumption as fitness, calculating the fitness of each grey wolf to establish a
social hierarchy. Subsequently, the three wolves with the best fitness are selected as α, β,
and δ, while the remaining wolves are labeled as ω. Its mathematical expression is shown
in Equation (80), and the flowchart is illustrated in Figure 12.

D = CXp(t)− X(t)
X(t + 1) = Xp(t)− AD

Ax = 2arx1 − a
Cx = 2rx2

(80)

In Equation (80): t represents the iteration count, Ax and Cx are cooperative coefficient
matrices, Xp denotes the prey’s location information, Xt represents the wolves’ location
information, α is the convergence factor and gradually decreases from 2 to 0, and rx1 and
rx2 are random variables within the range of [0, 1].

Figure 12. The grey wolf algorithm process.
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During the process of grey wolf hunting, the wolves can identify the prey’s location
and encircle it. When the grey wolves identify the prey’s location, β and δ, under the
guidance of α, lead the wolf pack to encircle the prey. To enhance the grey wolves’ ability
to recognize potential prey, the fitness of the wolves is updated in each iteration calculation.
The three wolves with the best fitness, designated as β , δ, and α, are chosen. Based
on the position information of β , δ, and α, the position information of the remaining
wolves is updated in the next iteration. The mathematical expressions are shown in
Equations (81) and (82). 

Dα = |C1Xα − X|
Dβ =

∣∣C2Xβ − X
∣∣

Dδ = |C3Xδ − X|
(81)

where X represents the current position of the grey wolf, Dα is the distance between α and
the wolf, Dβ is the distance between β and the wolf, Dδ is the distance between δ and the
wolf, and C1, C2, and C3 are random vectors.

X1 = Xα − A1Dα

X2 = Xβ − A2Dβ

X3 = Xδ − A3Dδ

X(t + 1) = X1+X2+X3
3

(82)

where X1 represents the position information of wolf α, X2 represents the position informa-
tion of wolf β, X3 represents the position information of wolf δ, and X(t + 1) denotes the
updated positioning of the wolf.

The grey wolf algorithm (GWO) is used for offline optimization of the best brak-
ing distribution factor µ under various constraints. This process involves establishing a
database correlating constraint sets with the optimal µ factors. During the vehicle’s actual
operation, based on real-time vehicle speed and required braking force, the optimal µ factor
is selected. This aims to enhance the vehicle’s fuel efficiency while meeting the overall
braking demands of the vehicle.

4. Simulation and Evaluation

In this section, the effectiveness of the vehicle–road state observers, ENMPC braking
force control strategy, and allocation of braking force sources is verified. To be specific,
aiming to evaluate the performance of the vehicle state observer, the vehicle mass, road–tire
adhesion coefficient, and vertical tire forces are assessed via comparing them with the data
collected from the real-world driving test. Furthermore, to confirm the effectiveness of the
ENMPC braking force control strategy, the proposed strategy is assessed via comparing
it with a rule-based ABS strategy. Specially, a high-adhesion test and a low-adhesion test
contrasted with a rule-based ABS strategy are provided to ensure that the ENMPC strategy
can adapt to different road surfaces. Finally, to assess the adaptiveness of the proposed
strategy utilizing the grey wolf algorithm, a test contrasting it with a rule-based distribution
strategy is provided.

The mentioned rule-based strategies for ABS and distribution are as follows: The
rule-based ABS strategy is a strategy that depends on the angular acceleration and the slip
ratio threshold to increase or decrease the brake force. The rule-based brake force source
distribution strategy is a strategy that uses a fixed distribution ratio to distribute the brake
force from different sources.

For those verifications, a vehicle model is established consisting of a vehicle dynamics
module, magic formula tire module, drive motor module, and battery pack module. The
simulations are conducted on MATLAB R2021b and Python 3.8 and are performed on
a personal computer equipped with an Intel i5-6300HQ processor and 8 GB of memory.
Further, all simulations are conducted involving a fixed simulation step of 0.01 s.
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4.1. Vehicle State Observer

The accuracy of the mass estimation, road adhesion estimation, and tire vertical
force estimation results are verified in this section. The test conditions in this section
are acceleration and deceleration from 0 to 60 to 0 km/h, with 0–30 s being the driving
condition and 30–45 s being the braking condition.

To ensure the effectiveness of the total braking force decision and tire vertical force
estimation, the mass estimation results are verified. Figure 13 shows the mass estimation
results, including the vehicle’s empty state (a) and full state (b).

Figure 13. Mass estimate results: (a) No load. (b) Full load.

To ensure the effectiveness of the total braking force decision-making and ENMPC con-
trol strategy, the road adhesion estimation is verified. Figure 14 shows the simulated road
adhesion estimation results, including the high-adhesion road (a) and the low-adhesion
road (b). The test conditions are high-intensity braking with ABS activation.

Figure 14. Adhesion coefficient estimates: (a) High adhesion. (b) Low adhesion.

To ensure the effectiveness of inter-wheel braking, the tire vertical force estimation
is verified through simulation. Figures 15 and 16 show the simulated tire vertical force
estimation results, including front axle with no load (Figure 15a), rear axle with no load
(Figure 15b), front axle with full load (Figure 16a), and rear axle with full load (Figure 16b).
“Standstill” indicates the tire vertical force when the vehicle is stationary.

As shown in Figure 13, regardless of full load or no load, the quality estimation
can converge within 3 s and the error is less than 1%, which can meet the subsequent
control requirements.
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Figure 15. Vertical tire forces for no load: (a) Front axle. (b) Rear axle.

Figure 16. Vertical tire forces for full load: (a) Front axle. (b) Rear axle.

As shown in Figure 14, the error of road adhesion estimation reaches 5% on the high-
adhesion road and 10% on the low-adhesion road. In the first 30 s, the road adhesion
estimation cannot be estimated because the vehicle is in a non-braking state. The accuracy
of road adhesion estimation affects the precision of total braking force decision-making and
the EMPC control strategy.

As shown in Figures 15 and 16, the error between the estimated value and the actual
value is extremely small during the time period when ASR and ABS are not activated.
During the time period when ASR (0–10 s) and ABS (30–40 s) are activated, there is
significant fluctuation in the estimated and actual values due to the fluctuations of driving
and braking torque and vehicle acceleration. However, the estimated and actual values
have a consistent trend and fluctuate within their respective ranges. The result shows that
the accuracy meets the requirements of subsequent control.

In conclusion, the errors in mass estimation, road adhesion estimation, and tire ver-
tical force estimation are all within an acceptable range, laying the foundation for the
development of subsequent ENMPC strategies.

4.2. ENMPC Braking Torque Control Strategy

In this section, the ENMPC-based braking torque control strategy is verified through
simulation, and high- and low-adhesion road high-intensity braking tests are conducted.

Table 2 shows the argument values of ENMPC in simulation. Figures 17–20 show the
simulation results of the ENMPC braking torque control strategy on a high-adhesion road.
Under these conditions, the road adhesion is 0.8, the initial vehicle speed is 80 km/h, the
desired slip ratio is 0.07, and the desired deceleration is approximately 7 m/s2. Figures 17a,
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18a, 19a, and 20a show the vehicle speed and wheel speed curves, braking torque curves, slip
ratio curves, and deceleration curves, respectively, under the ENMPC strategy. Figures 17b,
18b, 19b, and 20b show the vehicle speed and wheel speed curves, braking torque curves,
slip ratio curves, and deceleration curves, respectively, under the rule-based ABS control
strategy. Table 3 shows the braking time, average deceleration, and braking distance under
both strategies.

Figure 17. Vehicle and wheel speed for high adhesion: (a) ENMPC strategy. (b) Rule-based
ABS strategy.

Figure 18. Brake torque for high adhesion: (a) ENMPC strategy. (b) Rule-based ABS strategy.

Figure 19. Slip ratio for high adhesion: (a) ENMPC strategy. (b) Rule-based ABS strategy.
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Figure 20. Deceleration for high adhesion: (a) ENMPC strategy. (b) Rule-based ABS strategy.

Table 2. The argument values of ENMPC.

Argument Value

t 3
q1 3 × 108

q2 2.8 × 108

q3 1.8 × 108

r1 1
r2 1
r3 1
χ1 200
χ2 50
χ3 150
χ4 200

Table 3. Details of high-adhesion braking.

Definition Unit Value (ENMPC) Value (Rule-Based)

Braking time s 3.4 4
Average deceleration m/s2 6.96 5.56

Braking distance m 37.2 44.6

As shown in Figures 17–20, when comparing the braking torque curves of the ENMPC
strategy and the rule-based ABS strategy, the rule-based ABS strategy relies on slip ratio
and angular acceleration threshold values to control the boosting and releasing of the
braking torque. Therefore, the rule-based strategy results in significant fluctuations in the
braking torque, while the ENMPC strategy has a very fast convergence speed and does not
experience large increases or decreases in the braking torque, which means this way is more
suitable to control the braking torque by the drive motor. In the vehicle speed and wheel
speed curves and slip ratio curves under the rule-based control, the large increase in braking
torque corresponds to a decrease in wheel speed and an increase in slip ratio, while the
large decrease in braking torque corresponds to an increase in wheel speed and a decrease
in slip ratio. The slip ratio fluctuates repeatedly between 0 and 0.3. Under the ENMPC
strategy, the braking torque is more stable due to the abandonment of traditional boosting
and releasing strategies, and the corresponding slip ratio also stabilizes around the desired
value of 0.07. Finally, when comparing the deceleration curves of the ENMPC strategy and
the rule-based ABS strategy, due to the repeated fluctuations of the slip ratio between 0 and
0.3 under the rule-based ABS control, the utilization coefficient of each wheel also fluctuates
repeatedly and only reaches its peak for a short period of time. Therefore, the deceleration
fluctuates greatly and cannot reach a high level. However, under the ENMPC strategy, the
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slip ratio is maintained around 0.07, resulting in a consistent utilization coefficient for each
wheel and a high deceleration of 7 m/s2.

In summary, the ENMPC control strategy not only allows for a high level of braking
intensity but also ensures the safety of the vehicle during the braking process. Additionally,
the stable demand for braking torque allows it to be provided by the drive motor rather
than the EMB.

Figures 21–24 show the simulation results of the ENMPC braking torque control
strategy on a low-adhesion road. Under these conditions, the road adhesion is 0.3, the
initial vehicle speed is 60 km/h, the desired slip ratio is 0.07, and the desired deceleration
is approximately 3 m/s2. Figures 21a, 22a, 23a, and 24a show the vehicle speed and wheel
speed curves, braking torque curves, slip ratio curves, and deceleration curves, respectively,
under the ENMPC strategy. Figures 21b, 22b, 23b, and 24b show the vehicle speed and
wheel speed curves, braking torque curves, slip ratio curves, and deceleration curves,
respectively, under the rule-based ABS control strategy. Table 4 shows the braking time,
average deceleration, and braking distance under both strategies.

Table 4. Details of low-adhesion braking.

Definition Unit Value (ENMPC) Value (Rule-Based)

Braking time s 6.4 10.6
Average deceleration m/s2 2.67 1.73

Braking distance m 56.4 91.2

Figure 21. Vehicle and wheel speed for low adhesion: (a) ENMPC strategy. (b) Rule-based
ABS strategy.

Figure 22. Brake torque for low adhesion: (a) ENMPC strategy. (b) Rule-based ABS strategy.
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Figure 23. Slip ratio for low adhesion: (a) ENMPC strategy. (b) Rule-based ABS strategy.

Figure 24. Deceleration for low adhesion: (a) ENMPC strategy. (b) Rule-based ABS strategy.

As shown in Figures 21–24, the simulation results on the low-adhesion road are
similar to those on the high-adhesion road. Comparing the braking torque curves of
the ENMPC strategy and the rule-based ABS strategy, the rule-based strategy results in
significant fluctuations in the braking torque, while the ENMPC strategy has a very fast
convergence speed and does not experience large increases or decreases in the braking
torque even though the test is on the low-adhesion road, which means this way is more
suitable to control the braking torque by the drive motor. In the vehicle speed, wheel
speed curves, and slip ratio curves under the rule-based control, the slip ratio fluctuates
repeatedly between 0 and 0.5. Under the ENMPC strategy, the braking torque is more
stable due to the abandonment of traditional boosting and releasing strategies, and the
corresponding slip ratio also stabilizes around the desired value of 0.07. Finally, when
comparing the deceleration curves of the ENMPC strategy and the rule-based ABS strategy,
due to the repeated fluctuations of the slip ratio between 0 and 0.5 under the rule-based
ABS control, the deceleration fluctuates greatly and cannot reach a high level. However,
under the ENMPC strategy, the slip ratio is maintained around 0.07, resulting in a consistent
utilization coefficient for each wheel and a high deceleration of 3 m/s2.

Similar to the results on the high-adhesion road, the EMPC strategy on the low-
adhesion road also allows the braking torque to be provided by the drive motor rather than
the EMB and provides stable demand for braking torque.

In summary, whether on a high-adhesion road or a low-adhesion road, the ENMPC
strategy outperforms the traditional rule-based ABS control strategy in terms of braking
intensity, safety, and energy efficiency.
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4.3. Allocation of Braking Force Sources

To ensure the energy recovery of the drive motor and the rational allocation between
the energy-consuming braking of the drive motor and the mechanical braking of the EMB,
this section simulates and verifies the braking source allocation strategy.

In this paper, the number of wolves is 20, and 100 iterations are selected. Figures 25 and 26
show the braking torque of each braking source and the energy obtained by the battery during
braking. Figures 25a and 26a show the braking torque curves of each braking source and the
battery energy curves under the grey wolf allocation strategy, while Figures 25b and 26b show
the braking torque curves of each braking source and the battery energy curves under the
rule-based allocation strategy. Under this condition, the vehicle is braking at any intensity
and with a simulated deceleration of 2 m/s2. The front axle braking force is provided solely
by the EMB, while the rear axle braking force is provided by the energy recovery of the drive
motor, energy-consuming braking of the drive motor, and the EMB. Therefore, the analysis of
the braking source allocation focuses on the rear axle.

Figure 25. Brake torque from each sources: (a) Grey wolf strategy. (b) Rule-based distribution
strategy.

Figure 26. Energy obtained: (a) Grey wolf strategy. (b) Rule-based distribution strategy.

As shown in Figure 25a, under the rule-based allocation strategy, the braking force
is provided by a fixed ratio between energy recovery of the drive motor and the EMB.
Therefore, during high-speed braking, the braking force is provided by the energy recovery
of the drive motor and the EMB, while at low speeds, the drive motor cannot recover
energy and instead uses energy-consuming braking to provide the braking force.

As shown in Figure 25b, comparing the energy obtained during braking, the grey
wolf allocation strategy results in significantly more energy recovered due to the increased
involvement of energy recovery of the drive motor, far surpassing the rule-based strat-
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egy. The grey wolf algorithm possesses advantages such as strong convergence, fewer
parameters, simple structure, and ease of implementation. The fitness is taken by power
consumption, which means the less power consumed, the more energy obtained for the
battery. The grey wolf algorithm find a way to consume less energy, which means letting
the motor regeneration torque maximize its value.

As shown in Figure 26, due to the grey wolf allocation applying more motor regenera-
tion torque than the rule-based distribution strategy, the grey wolf allocation can obtain
more energy for the battery. When the vehicle brakes at a low velocity, the motor cannot
provide enough motor regeneration torque for the tires, so neither the grey wolf allocation
nor the rule-based distribution strategy can obtain more energy for the battery, instead,
the motor consume the energy to obtain a braking torque for the tires in order to stop
the vehicle.

In summary, the grey wolf allocation strategy can obtain more energy for the battery,
so it surpasses the rule-based distribution strategy in terms of energy efficiency. It should
be noted that the ENMPC brake force control strategy provides stable braking force and
allows the brake force source distribution to have an opportunity to explore more feasible
methods to enhance the energy efficiency.

5. Conclusions

In this paper, a multi-source braking force system and its control strategy is proposed,
with the aim of improving the braking intensity, safety, and energy efficiency of the braking
process. The vehicle–road state observer makes the parameter accurate enough, resulting
in less than a 10 percent error, in order to meet the requirements of subsequent control. An
ENMPC-based brake force control strategy is developed and integrated into the proposed
strategy, accomplishing the stable braking force required instead of the traditional ABS
strategy, which requires a repeated fluctuation force. Additionally, a grey wolf allocation
is designed to achieve the distribution of the brake force from different sources, with the
aim of enhancing energy efficiency. Furthermore, the simulation results highlight the
improvement to the braking intensity, safety, and energy efficiency of the proposed strategy.
Compared to the traditional ABS strategy, the strategy in this paper increases the braking
intensity 25 percent on high-adhesion surfaces and 54 percent on low-adhesion surfaces
and reduces the fluctuation of the slip ratio by about 50 percent during the braking process.
Meanwhile, the strategy in this paper increases the amount of energy recovered by the
battery by about 60 percent during the braking process compared with the traditional brake
source distribution.

In summary, this paper analyzes the feasibility of power-consuming braking of the
drive motor, studies braking force control under emergency braking, improves braking
efficiency and braking stability, studies the distribution of braking force sources, and
improves the energy recovery rate.

However, the control strategy in this paper does not consider uneven-adhesion
road, such as docking and splitting road surfaces. Furthermore, this paper only fo-
cuses on distributed-brake centralized-drive vehicles and does not analyze vehicles with a
distributed-drive configuration. Moreover, this paper has not verified the safety of the motor
brake compensation. In future work, these issues will be considered to improve the strategy.
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