
Citation: Murugesan, N.; Velu, A.N.;

Palaniappan, B.S.; Sukumar, B.;

Hossain, M.J. Mitigating Missing Rate

and Early Cyberattack Discrimination

Using Optimal Statistical Approach

with Machine Learning Techniques in

a Smart Grid. Energies 2024, 17, 1965.

https://doi.org/10.3390/en17081965

Academic Editors: José Matas, Jorge El

Mariachet and Sen Tan

Received: 21 March 2024

Revised: 12 April 2024

Accepted: 15 April 2024

Published: 20 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Mitigating Missing Rate and Early Cyberattack Discrimination
Using Optimal Statistical Approach with Machine Learning
Techniques in a Smart Grid
Nakkeeran Murugesan 1 , Anantha Narayanan Velu 1,* , Bagavathi Sivakumar Palaniappan 1 ,
Balamurugan Sukumar 2 and Md. Jahangir Hossain 3

1 Department of Computer Science and Engineering, Amrita School of Computing,
Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; m_nakkeeran@cb.students.amrita.edu (N.M.);
pbsk@cb.amrita.edu (B.S.P.)

2 Department of Electrical and Electronics Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; s_balamurugan@cb.amrita.edu

3 School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia;
jahangir.hossain@uts.edu.au

* Correspondence: v_ananthanarayanan@cb.amrita.edu

Abstract: In the Industry 4.0 era of smart grids, the real-world problem of blackouts and cascading
failures due to cyberattacks is a significant concern and highly challenging because the existing
Intrusion Detection System (IDS) falls behind in handling missing rates, response times, and detection
accuracy. Addressing this problem with an early attack detection mechanism with a reduced missing
rate and decreased response time is critical. The development of an Intelligent IDS is vital to the
mission-critical infrastructure of a smart grid to prevent physical sabotage and processing downtime.
This paper aims to develop a robust Anomaly-based IDS using a statistical approach with a machine
learning classifier to discriminate cyberattacks from natural faults and man-made events to avoid
blackouts and cascading failures. The novel mechanism of a statistical approach with a machine
learning (SAML) classifier based on Neighborhood Component Analysis, ExtraTrees, and AdaBoost
for feature extraction, bagging, and boosting, respectively, is proposed with optimal hyperparameter
tuning for the early discrimination of cyberattacks from natural faults and man-made events. The
proposed model is tested using the publicly available Industrial Control Systems Cyber Attack Power
System (Triple Class) dataset with a three-bus/two-line transmission system from Mississippi State
University and Oak Ridge National Laboratory. Furthermore, the proposed model is evaluated for
scalability and generalization using the publicly accessible IEEE 14-bus and 57-bus system datasets of
False Data Injection (FDI) attacks. The test results achieved higher detection accuracy, lower missing
rates, decreased false alarm rates, and reduced response time compared to the existing approaches.

Keywords: blackouts; cascading failures; cyberattacks; feature extraction; intrusion detection system;
machine learning; smart grid

1. Introduction

The mission-critical infrastructure of Cyber–Physical Power Systems [1] (CPPS), such
as a smart grid, has been targeted for cyberwarfare to cause physical sabotage, large-scale
load loss, blackouts, and cascading failures [2–4]. In most cases of power grid disturbances,
fault analysis and diagnosis [5] are conducted using state estimation methods [6] and
time-series analysis [7]. However, the continuously increasing rate of network traffic makes
it difficult for cyber analysts to spot new patterns of behavior in the network. The current
data volume, velocity, and variety across firewalls make it more difficult for cyber analysts
to monitor successfully. Moreover, 61% of firms admit that, without Artificial Intelligence
(AI), they cannot spot critical threats [8]. In the current era of Industry 4.0, researchers and
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scientists have started to apply AI in cybersecurity to employ Intelligent IDS in Wide Area
Measurement Systems (WAMS) to protect smart grids from advanced cyberattacks [9,10].
These challenges have motivated researchers to provide a defensive in-depth approach to
predict anomalies earlier for smart grids with machine learning techniques [11–14] and
deep learning techniques [15,16]. Moreover, to enhance the cybersecurity aspects in smart
grids, a study on False Data Injection (FDI) attacks provides insights into the paradigm
shift in power systems to digitalization, the vulnerability of the protocols, various detection
methods, and a mitigation strategy [17].

Generally, an IDS is broadly classified into one of three distinct groups: Signature-
based IDS, Specification-based IDS, or Anomaly-based IDS [18,19]. A Signature-based
IDS will not be sufficient for the growing cyber threats from motivated attackers since it
often needs to be updated. It is limited to known attacks and fails to recognize unknown
attacks. A Specification-based IDS is complex and resource-intensive, and it requires system
expertise, which is partially effective in identifying unknown attacks [20]. In comparison,
an Anomaly-based IDS can detect and recognize unknown attacks but with a high FPR.
So, a robust Anomaly-based IDS is required to detect anomalies with higher accuracy,
low false negatives (missing rate), and low false positives (false alarms) with decreased
response times. In the mission-critical infrastructure of a smart grid, even a few instances
of misclassification might have fatal consequences regarding the power system’s stability
and reliability, which necessitates thorough investigation [21]. Our proposed SAML-Triple
approach is an alternative solution to the existing Specification-based IDS (state estimation
approach) and Signature-based IDS.

The scope of this paper includes developing a robust Anomaly-based IDS that discrim-
inates cyberattacks from natural faults and man-made events with an early attack detection
mechanism with reduced missing attacks, increased specificity, and fewer false alarms with
high detection accuracy. This work will support the nation’s smart grid mission and private
industries to provide in-depth defense in detecting cyberattacks at the physical layer when
the system is in a critical situation compromised by an attacker or intruder within the
system or externally. The significant contributions of this paper are presented below:

• The novel mechanism of a Statistical Approach with a Machine Learning (SAML) clas-
sifier based on Neighborhood Component Analysis (NCA), ExtraTrees, and AdaBoost
for feature extraction, bagging, and boosting, respectively, is proposed with optimal hy-
perparameter tuning for the early discrimination of cyberattacks in a smart grid with
the three-bus/two-line transmission system of triple-class datasets (No Events/Natural
Events/Attack Events);

• The proposed model is evaluated for generalization and scalability with IEEE
14-bus and 57-bus system datasets of False Data Injection (FDI) attacks to prove
the robustness;

• The missing rate is handled in this paper through INFinity Attack Records as Zero
(INFAZ) to avoid blackouts and cascading failures and INFinity Attack Records by
Dropping (INFAD) to improve the accuracy;

• The early response time is set to less than 8.3 ms on 120 samples/a second system to
detect the attack before the system collapses.

The proposed SAML-Triple approach considers the preprocessing aspects of both INFAZ
and INFAD. The two distinct aspects of comparison are aimed at overcoming the existing
drawbacks, as discussed in the related work in Section 2. SMOTE is applied to balance the
dataset by considering an equal number of samples from each class with stratified sampling.
The train–test split of an 80:20 ratio is taken for the SAML-Triple approach.

This paper is split into seven sections: Section 2 discusses the related work regard-
ing triple-class classification with the proposed techniques, drawbacks of the existing
approaches, and challenges addressed. Section 3 describes the proposed approach with
a process flow diagram of the preprocessing techniques of feature engineering: handling
“INFinity” Attack Events records with two preprocessing aspects (INFAZ and INFAD),
feature scaling, handling imbalanced data using SMOTE, and the statistical approach of
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NCA with a hyperparameter optimization strategy combined with a machine learning clas-
sifier. Moreover, the description of the publicly available ICS Cyber Attack Power System
datasets with operational scenario categories is presented in detail. Section 4 describes
the proposed methodology, which deals with the statistical approach of feature extrac-
tion techniques using NCA and optimal parameter/hyperparameterized tuning with the
(ET + AdB) ML classifier. Algorithm 1 represents the Pseudocode for Data Preprocessing
and NCA transformation, whereas Algorithm 2 represents the Pseudocode for Optimal
Hyperparameter tuning to find the ‘N’ Component, and Max. Iteration ‘I’ of NCA with the
best parameters for each ML classifier is applied. Section 5 provides the implementation
details of the data preparation, hyperparameter settings for the models, test case scenarios,
tools for implementation, and evaluation metrics. Section 6 includes the results analysis
and discussion of the three-bus/two-line transmission system (triple-class dataset) and
IEEE 14- and 57-bus systems datasets of FDI attacks for generalization and scalability in
detail using tables, graphs, and a confusion matrix. The performance metrics of FNR (or
missing rate), response time, FPR (or false alarm), and accuracy are considered to compare
the results. Finally, Section 7 discusses the conclusion and the scope of future work.

2. Related Works

In the related works, some researchers recently addressed the problem of discrimi-
nating cyberattacks from Natural Events and No Events with their proposed techniques
and approaches.

Upadhyay et al. [22] used Gradient Boosting Feature Selection (GBFS), an ensemble
learning technique, to reduce the features from 128 to 15 features and obtained an accuracy
of 96.50% with a tree-based machine learning classifier. GBFS combines multiple weak
learners’ predictions to create a strong predictive model. The removal of the features
based on feature importance scores provided by GBFS may not necessarily imply the
improvement of the model. Some features might be important in combination with others,
and removing them individually might not result in a better-performing model. GBFS relies
solely on feature importance scores, which limits the feature selection in the triple-class
dataset. Also, each of the 15 datasets yields a different combination of 15 features from
the 128 features in Table 1. The authors were not convinced as to which 15 features were
the best among the 15 datasets to discriminate Attack Events from Natural Events and No
Events. Furthermore, the same author group, Upadhyay et al. [23], proposed an integrated
framework for an IDS for SCADA-based power grids, in which they used Recursive Feature
Elimination (Feature Selection Technique) to reduce the features from 128 to 30 features
and nine heterogeneous ensemble classifiers with the majority voting stacking concept to
achieve improved accuracy of 97.95% for the same triple-class dataset. Recursive Feature
Selection (RFE) removes the least important features based on a model’s performance until
the desired number of features is selected. The drawback of the RFE approach is that it
may struggle when dealing with highly correlated features, and removing one of a set of
correlated features might not necessarily improve the model’s performance. It could lead to
the loss of valuable information, with degraded performance in extracting the features and
discriminating the Attack Events from Natural Events and No Events. The first drawback
of [22,23] is that the authors’ perspectives on preprocessing the “INFinity” Attack Events
records are contradictory. Moreover, the second drawback is that, in [22], the author group
mentioned the top 15 promising influenced features for attack classification; in contrast,
in [23], they did not list the top 30 influencing features, which contradicts the statement of
promising features from 15 to 30. However, they achieved a slight improvement in accuracy
of 97.95% in [23] compared to [22], with an accuracy of 96.50% for the triple-class datasets.

Hu et al. [24] used a Stacked Denoising Autoencoder (SDAE) to extract the features
from 128 to 60 features. They classified them using an Extreme Gradient Boosting (XG-
Boost) classifier for the triple-class dataset with an accuracy of 90.48%. The authors used
the deep learning model of SDAE to learn the complex input data representation to extract
the features. SDAEs have several hyperparameters, including the number of layers, the
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number of nodes in each layer, learning rates, and corruption levels. Selecting appropriate
hyperparameters is challenging, and suboptimal choices result in the model’s poor per-
formance in extracting the features and discriminating the Attack Events from Natural
Events and No Events. Moreover, the same author group, Hu et al. [25], used Multiple
Autoencoders (AE) to extract the features from 128 to 30 features and classified them using
a Random Forest machine learning classifier to discriminate the triple-class dataset, with
an improved accuracy of 91.78%. Multiple Autoencoders (AE) learn the complex represen-
tation of input data to extract features. Hyperparameter tuning of Multiple Autoencoders
and the adaptive boosting mechanism is challenging. It requires extensive experimentation
to find an optimal combination. This results in the degradation of model performance in
extracting the features and discriminating the Attack Events from Natural Events and No
Events. The first common drawback of both works [24,25] is that they have not mentioned
the preprocessing of “INFinity” Attack Events records. The second drawback is that the
feature selection is inconclusive, with wide variation in selecting optimal features, as they
mentioned 60 features in [24] and 30 features in [25], a slight improvement in accuracy
from 90.40% to 91.78%.

Gumaei et al. [26] used the Correlation-based Feature Selection Technique for selecting
the optimal features with KNN as a machine learning classifier to discriminate the triple-
class datasets with an accuracy of around 91.87%, where each of the 15 datasets was
processed individually to select the optimal features, with variation regarding eight to
eleven features. Correlation-based feature selection measures linear relationships between
variables, and it may not capture the true association between the features and the target
variable if the relationships are non-linear. Also, it may not capture complex interactions
or dependencies involving multiple features simultaneously. It results in a poor choice
of feature selection, which may not be accurate enough to discriminate Attack Events
from Natural Events and No Events. Moreover, this paper recommended the future
scope of increasing the accuracy with less computational time based on hybrid feature
selection techniques.

Ankitdeshpandey and Karthi, R. [27] applied Principal Component Analysis (PCA) as
an unsupervised feature extraction technique to reduce the dimensionality to 31 principal
components to discriminate the triple-class dataset using ML and DL classifiers with an
accuracy of 91.14% for Random Forest, 89.91% for DNN, and 76.90% for SVM, where
all three of the classifier results demonstrated meager detection rates. PCA focuses on
capturing the global variance in the data along the principal components in which the data
vary. It does not preserve the local structure or relationships within the data, which might
result in misclassification between the three classes. The limitation of this paper is that
they tested only for the reduced amount of around 13,200 samples with random selection
from the entire 15 datasets.

Hink et al. [28] developed the original datasets by considering the scenario of an
insider attack (or compromised system) in a smart grid. They investigated power system
disturbances and cyberattack discrimination using machine learning applications. This
author’s group’s dataset provides the first proof for carrying out research in machine
learning applications to develop an IDS. The limitation of this paper is that they tested
only for 1% of the randomly sampled records from the entire 15 datasets across all three
classification formats: Binary Class, Triple Class, and Multiclass. The sample measurement
considered 294 records of “No Events”, 3711 Attack Events, and 1221 Natural Events
records used across all three classification formats. Using the Information Gain as a Feature
Selection Technique, 40 features were selected as optimal features and discriminated against
the triple-class dataset using the Adaboost + JRipper ML classifier with an accuracy of 95.0%.
Information Gain assumes that features are independent, and this assumption is often
violated in the case of highly correlated triple-class datasets. As a result, Information Gain
may not accurately reflect the true importance of features, leading to suboptimal feature
selection, which may not be efficient in discriminating between the three classes. This
original author group recommended evaluating the future scope of work with a broader
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range of power system data, learning algorithms, classification strategies, and labeled
data amounts.

Agrawal et al. [29] applied the concept of dynamic retraining with drift detection
toward robust power grid attack protection using LightGBM. They classified the triple-class
dataset with an accuracy of 95.30% for the complete 128 features and 97.1% for the top
selected ten features using the ExtraTrees approach as the feature selection technique. The
drawback of this paper is that they removed the “INFinity” Attack Events records, which
may lead to missing rates or SCADA inoperability. The feature importance scores provided
by ExtraTrees as a feature selection method may not always reflect the true importance
of features, especially in the presence of highly correlated features. The algorithm may
arbitrarily assign importance to one of the correlated features, leading to potential bias in
feature selection and misclassification between the three classes.

Sunku Mohan et al. [30] investigated the problem using Power Domain Knowledge.
These authors employed manual feature selection by filtering out features of positive-,
negative-, and zero-sequence components and logs. They selected 36 features manually for
this triple-class dataset for discriminating cyberattacks, Natural Events, and load variation
in SCADA smart grid systems. They applied a Rule-based Machine Learning Adaboost
classifier to discriminate the triple-class dataset with an accuracy of 97.25%. The limitation
of this paper is that manual feature selection is more domain-specific, which is a partial
specification-based IDS, even though the classification was performed through a machine
learning classifier. This manual feature selection may not be suitable for the generaliz-
ability and scalability of the model for different architectures and may require complex
logical calculations.

Bitirgen K and Filik ÜB [31] developed a hybrid model by combining particle swarm
optimization (PSO) with convolutional neural network (CNN) and long short-term mem-
ory (LSTM), PSO-CNN-LSTM, to optimize the features for better triple-class classification,
with an accuracy of 96.92%. The authors utilized PSO as a metaheuristic optimization
algorithm for better search space, along with CNN to develop input features with compli-
cated mathematical operations and LSTM to preserve both the short-term and long-term
dependencies of time-series data. The drawback of this paper is that they did not mention
the preprocessing of “INFinity” Attack Events records and the number of feature selections,
even though they achieved better detection accuracy. In the case of a highly correlated
triple-class dataset, the effectiveness of PSO is influenced by the starting positions and
velocities of particles, and it may struggle to handle redundant features effectively. If
multiple features are highly correlated, PSO might select only one, leading to potential
bias in the feature selection and misclassification between the three classes. The graphical
representation shown in this paper is a mere feature representation before applying the
model and does not better represent the cluster of the labels.

In the solving approaches, NCA indirectly involves eigenvalues and eigenvectors in
the computation of transformation matrix A. In [32], the author efficiently used eigenvalues
and eigenvectors for optimal sensor placement with multi-objective robust optimization.
In [33], the author incorporated Adaptive PCA (A-PCA) for extracting the best features from
the network traffic for the IDS. The eigenvalues and eigenvectors of the covariance matrix
provide valuable information regarding the principal axes and magnitudes of variation in
the data. This information can guide the selection of appropriate dimensions or components
for representation.

2.1. Drawbacks and Challenges of the Existing Approaches

• The drawbacks and challenges faced by most of the researchers are that they tried
to discriminate the No Events/Natural Events/Attack Events of triple-class datasets
with different feature selection numbers varying from eight to sixty features with
their adopted feature selection techniques [22,23,26,28,29,31] to improve the detection
accuracy. The feature importance scores obtained from the suboptimal feature selection
of the existing methods indicate poor choices of features, leading to potential bias in
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feature selection and a lack of model performance when discriminating against attacks.
The authors [24,25,27] used Autoencoders as dimensionality reduction techniques of
feature extraction to reduce the features using unsupervised techniques. The feature
extraction using deep learning methods lacks the optimal combination of extracting the
features due to several hyperparameter factors. Moreover, dimensionality reduction
techniques (feature extraction) using PCA [27] fail to capture the local structure or
relationships within the data, which might result in misclassification between the
three classes.

• The other major drawback is that dropping the feature column of “PA: Z” (Apparent
Impedance for Four Relays) or removing the “INFinity” Attack Events records rows
seems to be quite contradictory as those researchers attempted to avoid the attack
scenarios, which might lead to increases in the missing rate or false negative rate.
If left unprocessed, it may have a massive impact on the SCADA systems, making
them inoperable. It might result in fatal consequences regarding the power system’s
stability and reliability. We have addressed this problem in our proposed SAML-Triple
approach by considering it zero (INFAZ).

2.2. Research Gap Identified

Due to the highly complex correlation between the features of the Triple Class Power
System Cyberattack Dataset, the existing approaches are ineffective in selecting the optimal
subset of features. The existing approaches [22,23,26,28,29,31] do not select the suboptimal
features with feature importance scores, leading to potential feature selection bias. The
existing approaches do not effectively discriminate cyberattacks from Natural Events
and No Events. The rest of the existing approaches [24,25,27] use the feature extraction
techniques of deep learning methods like Autoencoders and PCA. Such techniques do not
result in the optimal combination of extracting the features due to several hyperparameter
factors. Moreover, the existing approaches provide less accuracy in the discrimination
of cyberattacks. We propose an alternative approach of SAML-Triple to overcome the
shortcomings of the existing approaches in discriminating cyberattacks from natural faults
and man-made events. The proposed work focuses on improving the accuracy as well as
mitigating the missing rates with earlier cyberattack detection.

2.3. Addressing the Challenges through the Proposed Approach

• To avoid ambiguity regarding the different number of feature selections, we utilized
the NCA as a supervised feature extraction method for dimensionality reduction.
This method does not rely on feature importance scores; instead, it converts high-
dimensional data into lower-dimensional data in a new transformation space suitable
for complex and highly correlated data. It preserves both the global and the local
neighborhood structure relationship between the data records in the dataset. The
proposed SAML-Triple adopts NCA as a feature extraction technique by optimal
parameter/hyperparameter tuning with the (ET + AdB) ML classifier in discriminating
cyberattacks from natural faults and man-made events.

• We addressed the “INFinity” Attack Events records in the feature column of “PA:Z”
(Apparent Impedance for Four Relays) by replacing them with “Zero” (INFAZ). In
the context of the power domain, the “PA:Z” – INFinity value can be processed either
as “Zero” or the range of value above its limit to avoid the missing rate [21]. Here,
two preprocessing aspects of INFAZ (Zero) and INFAD (Dropping) in the SAML-Triple
work were performed to compare the results with those of other existing works.

3. Proposed Approach

The Process Flow Diagram in Figure 1 stands for the steps involved in the SAML-Triple
involving feature engineering aspects and the hyperparameter optimization strategy of the
model for discrimination of cyberattacks from natural faults and man-made events.
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In SAML-Triple, the source of datasets considers the publicly available ICS Cyber At-
tack Triple Class (No Events/Natural Events/Attack Events) Power System
Datasets [34]. In SAML-Triple, the data preprocessing steps in feature engineering are
carried out with two aspects: handling “INFinity” Attack Events records as zero (INFAZ)
and dropping “INFinity” Attack Events records (INFAD) for the feature columns of “PA:Z”
(Apparent Impedance for Four Relays). Adopting two distinct data preprocessing aspects
in the SAML-Triple is to compare the results with the existing approaches. In continuation
with feature engineering, Standard Scalar, and Label Encoders were applied, followed by
SMOTE to balance the dataset, considering the equal number of records from each class
label with stratified sampling. For both aspects, optimal features are extracted by utilizing
NCA as a feature extraction technique to find the Optimal ‘N’ Component with a Maximum
number of Iterations ‘I’. In SAML-Triple, the train–test split of an 80:20 ratio was applied. Af-
ter the train–test split process, optimal hyperparameter tuning with GridSearchCV (10-fold
cross-validation) for each of the ML classifiers is applied to exhaustively search for the best
parameters from the grid of provided parameters.

Figure 1. Process flow diagram of the SAML-Triple approach of Anomaly-based IDS in a smart grid
using dataset [34].

A pool of ML classifier algorithms [35] is applied for training and testing the datasets
with ExtraTrees with AdaBoost classifier (ET + AdB), ExtraTrees (ET), Random Forest (RF),
Decision Tree (DT), K-Nearest Neighbor (KNN), and XGBoost (XGB). The
SAML-Triple approach of NCA with the (ET + AdB) ML classifier performs well in discrim-
inating cyberattacks on both aspects with better performance metrics. The performance
metrics of FNR (or missing rate), Response time, FPR (or false alarm), and Accuracy were
compared in this work with various ML classifiers.

3.1. Industrial Control Systems (ICS) Cyber Attack Power System Dataset Testbed Description

The publicly available ICS Cyber Attack Power System Dataset [34] was developed by
Mississippi State University in collaboration with Oak Ridge National Laboratory in 2014.

Figure 2 represents the power system framework configuration of a 3-Bus/2-generator
system developed by the authors [36]. The assumptions are made that an intruder has already
compromised the system, acquired access to the substation network, and sent commands to the
substation switch. The intruder (or attacker) could be a former employee of the company or
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present employee or an external source from outside the network. Since the IEDs (Intelligent
Electronic Devices) lack an internal validation system to distinguish between genuine and
fraudulent faults, they employ a distance protection technique to trip the breakers on detected
faults. Operators can manually trip breakers BR1 through BR4 by sending orders to IEDs
R1 through R4. Usually, manual overriding is performed during line maintenance or when
other system components fail. SAML-Triple considers this framework, which comprises various
operational scenarios [34], such as Single Line-to-Ground, line maintenance, remote tripping command
injection attack, relay setting change attack, and FDI attack to ensure that cyberattack discrimination
is valid during normal routine operations, including manipulated breakers.

Figure 2. The power system framework configuration (3-bus/2-line transmission system) [34].

The SAML-Triple considers 15 triple-class datasets for evaluation to discriminate
cyberattacks from Natural Events and No Events. Each of the 15 datasets has an approxi-
mately equal number of 5000 records with 128 feature columns and one marker column
as the target label for classification. Table 1 provides the dataset’s feature description of
128 features. A detailed description of the features dataset is available in [34]. Various
types of operation scenarios (37 power system events) are categorized into three labels
(No Events (1)/Natural Events (8)/Attack Events (28)). Table 2 shows the SAML-Triple
class with detailed 41 event scenario splits into three class labels, namely—No Events (41),
Natural Events (1 to 6, 13, 14), and Attack Events (7 to 12, 15 to 20, 21 to 30, and 35 to 40).

• No Events—stands for the normal system operation with changes in loads.
• Natural Events—stands for the system with Single Line-to-Ground (SLG) with various

percentages of fault location in L1 and L2 with the addition of Line Maintenance (L1
and L2).

• Attack Events—stands for the data injection attack (SLG fault replay), remote tripping
command injection attack, and relay setting change attack with various percentages of
fault location.

Table 1. Dataset feature descriptions [34].

Feature Description

PA1:VH – PA3:VH Phase A – C Voltage Phase Angle
PM1:V – PM3:V Phase A – C Voltage Phase Magnitude
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Table 1. Cont.

Feature Description

PA4:IH – PA6:IH Phase A – C Current Phase Angle
PM4:I – PM6:I Phase A – C Current Phase Magnitude
PA7:VH – PA9:VH Pos. – Neg. – Zero Voltage Phase Angle
PM7:V – PM9 :V Pos. – Neg. – Zero Voltage Phase Magnitude
PA10:IH – PA12:IH Pos. – Neg. – Zero Current Phase Agle
PM10:I – PM12:V Pos. – Neg. – Zero Current Phase Magnitude
F Frequency for relays
DF Frequency Delta (df/dt) for relays
PA:Z Apparent Impedance for relays
PA:ZH Apparent Impedance Angle for relays
S Status Flag for relays
Control Panel Log Control Panel for Remote Tripe Status
Relay Log Relay Status (R1 – R4)
Snort Log Snort Alert Status (R1 – R4)
Marker Target Column with Label (Triple Class)

Table 2. SAML-Triple with event scenario split for triple class.

Dataset Used 3-Bus/2-Line Transmission
System [34]

Types of Scenarios Multiclass
Labels

Binary
Class

Triple Class

Normal Operation 41

Normal

No Events

Single Line-to-Ground Fault 1 to 6
Natural Events

Line Maintenance 13, 14

False Data Injection Attack 7 to 12

Attack Attack Events
Remote Tripping
Command Injection Attack

15 to 20

Relay Setting
Change Attack

21 to 30,
35 to 40

3.2. Various Types of Operational Scenarios

• SLG or Short-circuit fault. A short circuit in the power line can occur anywhere along
the line; the percentage range specifies the fault location.

• Line maintenance. This event category is performed when one or more relays are
disabled on a specific line so maintenance can be completed for that line.

• FDI Attack. Here, the intruder imitates a valid fault by changing values of parameters
such as current, voltage, sequence components, etc. The intruders mimic the valid
SLG fault by synchronizing with the phasor measurements, followed by sending an
illicit trip command to relays at the ends of the transmission line. This attack involves
altering the parameters of current, voltage, phase angles, sequence components, and so
on to blind the operator without raising the alarm and inducing a blackout. This attack
imposes a physical or large-scale load loss and substantial economic loss. Similar
to SLG faults, faults can occur at any location in the transmission line with various
percentage ranges (10–19%, 20–79%, and 80–90%).

• Remote tripping command Injection attack. This attack type arises when an in-
truder’s system on the communications network sends unauthorized relay trip com-
mands to relays at the terminals of a transmission line. The command injection attacks
are performed against a single relay (R1 to R4) or two relays (R1 and R2 or R3 and R4).

• Relay setting change attack. The intruders alter the relay settings in a distance
protection scheme to cause a malfunction in the relay operation. This type of attack
fails to recognize valid faults or commands. The faults can occur in any location on
the transmission line with R1/R2/R3/R4 disabled and faults.
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In this framework [34], a PMU device estimates the magnitude and phase angle of a
phasor quantity (such as voltage or current) by synchronizing with a common time source.
Each of the four PMU/relays is integrated and measures 29 features, each constituting
116 PMU measurement columns. Following the PMU measurement columns, there are
12 columns for control panel logs, snort alerts, relay logs, and the marker/target column.

4. Methodology

Neighborhood Components Analysis [37] is a supervised non-parametric statistical
feature extraction technique based on the K-Nearest Neighbor (KNN) method. KNN makes
classifications by grouping an individual data point with the distance between two points
using the closest neighbor with a given Euclidean distance (default) metric. The drawbacks
of KNN are that it is a computationally memory-expensive training and modeling problem
to evaluate the data for a larger dataset, which becomes a lazy learner. On the other hand,
NCA uses Mahalanobis distance as a distance measure to optimize (maximize) the selection
accuracy and minimize the leave-one-out (LOO) classification error on the training dataset
using a stochastic nearest neighbor approach, which reduces the prediction complexity. It
classifies any given test well and speeds up the procedure for faster discrimination. The
computation complexity comparison is described in detail under Section 4.3.

4.1. Comparison of Feature Extraction Techniques

• Both NCA and PCA are linearly transformed to lower dimensionality.
• NCA [37] (Supervised Learning) of the statistical approach is a feature extraction

technique that employs a method similar to k-Nearest Neighbor in which the neigh-
borhoods of records with the same labels are packed together more densely than those
with different labels.

• PCA [27] (Unsupervised Learning) of the statistical approach is a feature extraction
technique that projects the matrix into a linear space of lower dimensionality. It
transforms a set of correlated variables into a new set of uncorrelated variables called
principal components. These principal components are sorted in descending order of
variance, capturing the maximum amount of information from the original data in the
first few components.

• NCA takes this further by clustering data based on the matrix’s dimensionality reduc-
tion results with the label.

• Overall, NCA aims to optimize the selection of local neighborhood relationships
for maximum classification accuracy, whereas PCA focuses on capturing global
variance without optimization.

4.2. Neighborhood Components Analysis in the Context of Power Domain

NCA [37] effectively classifies multivariate data into different classes based on the
Mahalanobis distance metric computed across the data, based on the distance between
a data point and a distribution. It is beneficial for multivariate anomaly detection and
classification on highly imbalanced datasets when a correlation between distinct groups or
clusters of data is required. It works well when two or more features have high correlations
and different scales of values. It matches the power domain context of the ICS Cyber Attack
Triple-Class dataset taken with the relationship between associated features of Voltage (V)
and Current (I).

NCA accomplishes the same goal as the K-Nearest Neighbor algorithm with a differ-
ent distance measure of Mahalanobis distance, employing stochastic nearest neighbors
selection approach by maximizing the selection accuracy and minimizing the training
data’s leave-one-out (LOO) classification error. In the power domain context of cyberattack
detection, the analysis combines multiple dependent variables (features) to predict the
classification’s single outcome (target column). In SAML-Triple, the dataset contains multi-
variant data with the features of Voltage Phase Angle and Magnitude, Current Phase Angle
and Magnitude, Frequency for relays, Frequency Delta (df/dt) for relays, Appearance
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Impedance and its angle for relays and logs feature results in predicting the single outcome
(target column) of attack discrimination and classification.

For the triple-class dataset taken, let ‘X’ represent the matrix of the original feature
vector of the dataset. Each row of ‘X’ is denoted as xi corresponds to the feature vector
of a single data point. The matrix ‘A’ represents the linear transformation applied to the
original feature vectors to obtain transformed feature vectors. NCA aims to optimize a
linear transformation matrix ‘A’ for the triple-class dataset. The dataset comprises data
records categorized into three distinct classes, each represented by feature vectors. Through
iterative optimization with conjugate gradient descent, NCA aims to learn the matrix ‘A’
that maximizes the probability of accurate classification in a transformed feature space.
This transformation enhances the discrimination between classes, facilitating more effective
classification. The gradient-based optimization process involves updating the elements of
‘A’ to maximize a predefined cost function, typically measuring the preservation of nearest
neighbor relationships in the transformed space. Therefore, maximizing the objective
function corresponds to minimizing the leave-one-out (LOO) classification error, leading to
better performance of the NCA algorithm on the triple-class dataset. Ultimately, the result-
ing matrix ‘A’ encapsulates the learned transformation, enabling improved classification
performance on the triple-class dataset.

Let, pij be the probability that point xj is selected as a point xi’s neighbor. The
probability that points are correctly classified when xi is used as a reference is

pi = ∑
j∈Ci

pij where, Ci =
{

xj class
(
xj
)
= class(xi)

}
(1)

To maximize the pi of (1) for all xi means to minimize LOO error. Then, pij of (2) is
defined using the softmax function of the squared Euclidean distance between a given LOO
classification point and every other point in the transformed space:

pij =
e−dij

∑k ̸=i e−dik
, pii = 0 (2)

where dij is defined as a distance measure with between points xi and xj provided by

dij = d(x, y)

= (x− y)TQ(x− y)

= (Ax− Ay)T(Ax− Ay)

= ∥Axi − Axj∥2

(3)

Here, x and y are the original feature vectors of matrix ‘X’ projected into another vector
space with the transformation matrix ‘A’, where ‘Q’ is a symmetric, positive semi-definite
covariance matrix of the transformed feature space, represented as ’Q’= ATA. Here, xi and
xj , are the transformed feature vectors obtained by multiplying the original feature vectors
x and y by the transformation matrix ‘A’, i.e., Axi and Axj, respectively.

Substituting (3), dij in (2), pij is represented below in (4):

pij =
exp

(
−
∥∥Axi − Axj

∥∥)2

∑k ̸=i exp(−∥Axi − Axk∥)2 , where pii = 0 (4)

Now, the objective function of NCA is maximized using LOO classification with
stochastic neighbor selection rule, which can be expressed in terms of the cost function
f (A) in (5). This cost function f (A) pulls points from the same class closer together.

f (A) = ∑
i

∑
j∈Ci

pij =
n

∑
i=1

pi (5)
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where Ci is the class label of sample i. Since the cost function is differentiable concerning
A, it is optimized using gradient descent. Maximizing the objective function f (A) using a
“gradient-based optimizer” such as “conjugate gradient descent” is represented below in (6):

∂y
∂x

= 2A
n

∑
i=1

(
pi

n

∑
k=1

pikxikxT
ik − ∑

j∈Ci

pijxijxT
ij

)
(6)

The terms used in (6) are presented below

• ∂y
∂x represents the gradient of the objective function f (A) with respect to the elements
of the transformation matrix ‘A’.

• n is the total number of samples.
• pi is the probability associated with sample i.
• pik is the probability that sample i belongs to class k.
• xi represents the feature vector of sample i.
• xij is the j-th element of the feature vector of sample i.
• Ci is the class label of sample i.
• y represents the output of the transformation Ax.

The larger the f (A) during training, the better the test performance. The convergence
criteria in NCA are met by observing the changes in the objective function across iterations
and stopping the optimization process when the change becomes negligible or the threshold
is reached, in addition to setting the maximum number of iterations to prevent the algorithm
from running indefinitely.

In the smart grid context, NCA is utilized to detect or discriminate cyberattacks in ICS
power system datasets; the transformation matrix ‘A’ plays a crucial role in mapping the
input features to a lower-dimensional space where attack detection or discrimination tasks
are performed. In this scenario, the input features from the ICS power system cyberattack
dataset, such as voltage, current, phasor values of voltage and current, and frequency,
etc., of all 128 features considered are represented in Table 1 as feature description. The
transformation matrix ‘A’ is utilized to transform these high-dimensional input features
into a lower-dimensional space, where the inherent structure of the data relevant to attack
detection or discrimination is captured better. The parameters of the transformation matrix
‘A’ correspond to the individual elements of the matrix denoted as Aij, which determine
the contribution of each input feature to each dimension of the reduced space. During the
optimization process in NCA, these parameters are adjusted iteratively to maximize the
discriminative power of the reduced space for discriminating cyberattacks from natural
and normal instances in the power system data. This optimization typically involves using
gradient-based optimization algorithms to update the parameters of ‘A’ iteratively, aiming
to maximize the objective function that quantifies the effectiveness of the reduced space in
detecting or discriminating cyberattacks.

The final values of these parameters after convergence represent the optimized trans-
formation matrix ‘A’, which provides an effective representation of the power system data
for attack detection or discrimination purposes.

The significance of the proposed SAML-Triple approach is that it utilizes NCA, a
supervised non-parametric statistical feature extraction (dimensionality reduction tech-
nique), which considers the local neighborhood structure relationship between data
points belonging to each of three classes (No Events, Natural Events, and Attack Events)
and employs Mahalanobis distance measure (3) and the transformation matrix ‘A’ to
transform into a newer dimension preserving the global variance of the data along
the principal components. The probability of selecting the closest data points to each
class (1) is calculated using the SoftMax function (2) or (4). It leverages class labels to learn
a transformation that not only reduces dimensionality but also enhances discriminative
information for classification tasks. The objective function of NCA (5) is maximized using
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LOO classification with stochastic nearest neighbors selection approach. So, it pulls points
from the same class closer together for each of the three classes.

Further, the cost function (5) is optimized using conjugate gradient descent (6) for
a better training process for faster convergence. The algorithm aims to learn a linear
transformation represented by the weight matrix ‘A’ that improves the accuracy of the k-
Nearest Neighbor classifier (non-linear) with Mahalanobis distance measure on the training
data. Therefore, NCA effectively maintains both the local and global variance associations
of the data, making it particularly well-suited for extracting features from complex datasets
that exhibit both linear and non-linear dependencies. The optimal number of components
from NCA is hyperparameter tuning with ML classifier parameters, which helps for clear
discrimination between Attack Events and Natural Events and No Events.

4.3. Comparison of Computation Complexity

The computational efficiency of both KNN and NCA algorithms involves two phases:
training complexity and prediction complexity.

In the case of the KNN algorithm, it stores all the training instances (n) in the memory
and requires a memory-intensive training phase, and its prediction complexity increases
with the number of training instances and the dimensionality of the feature space (d),
which is less scalable for large datasets due to curse of dimensionality. For each test
instance, KNN calculates the distances to all training instances, which requires computing
the distance metric (Euclidean distance by default) between the test instance and each
training instance. The memory complexity of KNN is O(n ∗ d) since all training instances
need to be stored in memory. This KNN algorithm comes under the family of lazy learners.
Beyond a point, KNN is not effective in the discrimination of attacks due to the Euclidean
distance metric.

NCA involves a more computationally intensive training phase due to a gradient-
based optimization algorithm used to learn the transformation matrix ‘A’. The compu-
tational complexity per iteration depends on the number of training instances (n) and
the dimensionality of the feature space (d). Once the transformation matrix A is learned,
making predictions with NCA involves applying this transformation to new instances,
which have a computational complexity of O(d ∗m), where ‘m’ is the reduced dimension-
ality. NCA uses Mahalanobis distance as a distance measure to optimize (maximize) the
selection accuracy in the training phase using the stochastic nearest neighbor approach
and minimizing the leave-one-out (LOO) classification error while offering lower predic-
tion complexity and better generalization performance by learning a transformation to
optimize a specified objective function. The memory complexity of NCA depends on the
size of the transformation matrix ‘A’, which is typically O(d ∗m), where ‘d’ is the original
dimensionality and ‘m’ is the reduced dimensionality.

Overall, the NCA is better in prediction complexity compared to KNN. KNN requires
a more memory-intensive training phase, whereas NCA requires more computationally
intensive training. Comparatively, NCA achieved better results in terms of accuracy in
discriminating the cyberattack, and it outperforms KNN. Using the Mahalanobis distance
in the NCA algorithm further improves accuracy. This has also been demonstrated through
our results provided below.

The complexity results for the proposed SAML approach using NCA achieved 97.51%
accuracy compared to KNN with 90.64% accuracy, which shows an improvement of 6.87%
accuracy in the classification of attack, which is represented through the line graph in
Figure 3.
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Figure 3. SAML-Triple (INFAZ)—accuracy vs. response time comparison across ML classifiers.

4.4. Proposed Algorithm-SAML

Algorithm 1 depicts the pseudocode for data preprocessing and NCA transformation.
The input for Algorithm 1 consists of triple class for SAML-Triple. The output of Algorithm
1 is used to obtain the fitted N-Component List (N-CompList) and Iteration List (ItrList) for
the given datasets. For SAML-Triple, it is carried out with an 80:20 train–test ratio. For
SAML-Triple, Step 1 reads the input dataset into a data frame, which iterates separately
for 15 individual datasets. In Step 2, the data wrangling is carried out with INFAZ and
INFAD. In Step 3, the features were split into independent columns (X) and the dependent
column as the target column (y). Step 4 involves standardization (standard scalar) to bring
down all the features to a standard scale without distorting the difference in the range
of values. In Step 5, a label encoder applies the target/marker column as y_label. In
Step 6, SMOTE is applied for X′ and y_label to balance the dataset into X′′, y′′. Step 7
used stratified sampling to perform a train–test split with equal samples from each class.
Steps 8 and 9 involve performing fit and transform on the train data and transform on the
test data, respectively, with the ranges specified in Table 3. Finally, Step 10 stores the train
and test records in the pickle format fitted and transformed with the Optimal N-CompList
and ItrList. The pickle format stores the object in the file in byte format and can reload
whenever necessary.

Algorithm 2 depicts the Pseudocode for Optimal Hyperparameter tuning to find the
‘N’ Component (N) and Iteration (I) of NCA with the best parameters for each of the ML
classifiers applied. The ML classifiers (Ci) pool is used to evaluate the performance with
(ET + AdB) ML classifier, ET, DT, RF, KNN, and XGBoost. The input for Algorithm 2
was obtained from the output of Algorithm 1 with N-CompList and ItrList of stored NCA
train and test in the pickle format. The output includes the optimal hyperparameters for
each classifier applied to classify Attack Events from Natural Events and No Events. In
Step 1 of SAML-Triple, the stored pickle NCA data (train and test) are loaded and assigned
to NCA_X_train, NCA_y_train, NCA_X_test, and NCA_y_test, respectively, for each of the
15 datasets separately. Step 2 is used to find the Optimal ’N’ Component (N) and Iteration
(I) of NCA through GridSearchCV (10-fold cross-validation) to exhaustively search for the
best parameters from the given specified parameters provided in Table 3 separately for
each of the ML classifiers applied. In Step 3, find the best hyperparams from the trained
model on each ML classifier (Ci) applied. Step 4 is used to perform the predictions on
the test data with various performance metrics on each of the ML classifiers (Ci) applied.
Finally, the test result prediction is used to discriminate the Attack Events from Natural
Events and No Events in the triple class.
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Algorithm 1 Pseudocode for Data Preprocessing and NCA Transformation
INPUT : ICS/SCADA Cyberattack 15 Datasets of TRIPLE Class with 80:20 train–test split
OUPUT : N-Component List (N − CompList),

Iteration List (ItrList) of storing NCA Train and Test Data

BEGIN
for i : 0 to 14 do

1. Dataframe ← Reading dataset
2. INFAZ/INFAD ← Replacing with Zero/Dropping "INFinity" Attack Events records
3. X, y ← Splitting input features (X) and "Marker"/Target Label (y)
4. X’ ← Standard Scalar
5. y_label ← Applying Label Encoder
6. X′′, y′′ ← Applying SMOTE on (X’, y_label)
7. (X_train, y_train) ← Train–Test Split of X′′, y′′ with Stratisfied Samplling

(X_test, y_test)
for i : product of N − CompList and ItrList with ranges specified

8. NCA_train ← NCA fit and transform on train data (X_train, y_train)
9. NCA_test ← NCA transform on test data (X_test, y_test)
10. Storing NCA_X_train, NCA_y_train, NCA_X_test, NCA_y_test

end
end

END

Table 3. Parameter specifications and optimal hyperparameter tuning of SAML-Triple with NCA.

ML Classifiers Parameter
Specifications

INFAZ
(On Average)

INFAD
(On Average)

ExtraTrees with
AdaBoost Classifier

(ET + AdB)

learn. rate =
{0.001,0.01,0.1,1},
Base classifier =
ExtraTrees,
N-Estimator =
{50 to 100},
GridSerachCV = 10,
Random State = 3

N-Comp = 31
Iterations = 7
learn. rate = 0.001
N-Estimator = 95

N-Comp = 29
Iterations = 6
learn. rate = 0.001
N-Estimator = 95

ExtraTrees
(ET)

N-Estimator =
{50 to 100},
Criterion = ‘entropy’,
GridSerachCV= 10,
Random State = 3

N-Comp = 26
Iterations = 5
N-Estimator = 85

N-Comp = 29
Iterations = 6
N-Estimator = 81

Random Forest
(RF)

N-Estimator =
{50 to 100},
Criterion = ‘entropy’,
GridSerachCV= 10,
Random State = 3

N-Comp = 27
Iterations = 7
N-Estimator = 81

N-Comp = 28
Iterations = 6
N-Estimator = 86

Decision Tree
(DT)

Max Depth =
{50 to 100},
Criterion= ‘entropy’,
GridSerachCV=10,
Random State = 3

N-Comp = 26
Iterations = 6
Max Depth = 95

N-Comp = 28
Iterations = 8
Max Depth = 95

K-Nearest Neighbor
(KNN)

K Neighbors =
{15 to 70},
GridSearchCV = 10,
Random State = 3

N-Comp = 28
Iterations = 8
K Neighbors = 15

N-Comp = 28
Iterations = 9
K Neighbors = 15

Extreme Gradient
Boosting

(XGB)

learn. rate =
{0.001,0.01,0.1},
N-Estimator =
{50 to 100},
GridSerachCV = 10,
Random State =3

N-Comp = 33
Iterations = 6
learn. rate = 0.1
N-Estimator = 100

N-Comp = 34
Iterations = 7
learn. rate = 0.1
N-Estimator = 100
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Algorithm 2 Pseudocode for Optimal Hyperparameter tuning to find the ‘N’ Component
and Iteration ‘I’ of NCA with the best parameters for each (Ci) classifier applied

INPUT : N − CompList , ItrList of stored NCA Train and Test Data in pickle format
OUPUT : Discrimination of Attack Events from Natural Events and No Events in TRIPLE
Class
BEGIN
Classifiers C = [Ci , i ϵ 1 to n]

for i : 0 to 14 do
1. (NCA_X _train, NCA_y _train, ← Reading stored NCA data

NCA_X _test, NCA_y _test)
2. Finding the Optimal ← GridSearchCV(k=10 fold) Analysis on each

‘N’ Component and ML (Ci) applied.
Iteration ’I’ of NCA

3. Finding the best params ← Training on each of the ML classifiers (Ci)
from each of the for tuning the parameters
trained ML models with the ranges specified.

4. Comparing Performance ← Predictions on the Test Data with the trained
Metrics various ML classifiers (Ci).

end
END

A pool of machine learning classifier algorithms [35] used for training and testing the
datasets are (ET + AdB), ET, RF, DT, KNN, and XGB. For the proposed approach of SAML-
Triple, the classification algorithm applied is the ExtraTrees (bagging) classifier as a base
classifier with the AdaBoost (boosting) technique. ExtraTrees classifier works conceptually
like Random Forest but differs in the construction of decision trees. ExtraTrees classifier
uses a random selection of features and thresholds at each decision tree with an initial
training sample and aggregates the output of multiple decision trees as a “forest”. This
randomness makes the ExtraTrees classifier less prone to overfitting. Based on the Entropy
Index’s mathematical criteria, the data partition with the best features is constructed for
each decision tree. Further, the AdaBoost technique is applied to transform weak learners
into stronger ones by reassigning weights to each incorrectly classified instance.

5. Implementation Details

The proposed approach of SAML-Triple is implemented to discriminate triple-class
events such as No Events, Natural Events, and Attack Events.

Table 4 represents SAML-Triple (INFAZ)—SMOTE records (before and after) for the
15 datasets. Each of the 15 datasets is highly imbalanced, with the uneven distribution of
Attack Events records from 64.73% to 78.13% and normal records (Natural Events and No
Events) varying from 21.87% to 35.27% of the distribution. The imbalanced original dataset
(without SMOTE) constitutes 4405 rows of No Events records, 18309 rows of Natural
Events records, and 55,663 rows of Attack Events records, totaling 78,377 of the triple-class
datasets. Meanwhile, with SMOTE (balanced dataset), all three classes are equal to Attack
Events records of 55,663, constituting 166,989 records. As per the Pareto principle, an 80:20
ratio of train–test split is performed for both the before and after SMOTE process cases.
The original dataset (without SMOTE) constitutes 62,695 records of training samples and
15,682 records of testing samples. SMOTE (balanced dataset) constitutes 133,587 records of
training samples and 33,402 records of testing samples.

Table 5 represents preprocessing aspects, train–test split ratio, and SMOTE records
(before and after). The preprocessing aspects for SAML-Triple are shown with an example
for the first dataset out of fifteen datasets. A similar process is followed for the rest of
the datasets.
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Table 4. SAML-Triple (INFAZ) before and after SMOTE with the train–test split of the 15 datasets.

Dataset
Used

3-Bus/2-Line Transmission System [34]

Feature En-
gineering

Without SMOTE
(Original Dataset,

Imbalanced)

With SMOTE
(Balanced Dataset)

Event
Types/

Datasets

No
Events
Records

Natural
Events
Records

Attack
Events
Records

Total
Records

(1+2)
(100%)

Training
Sample

(1)
(80%)

Testing
Sample

(2)
(20%)

No
Events
Records

Natural
Events
Records

Attack
Events
Records

Total
Records

(1+2)
(100%)

Training
Sample

(1)
(80%)

Testing
Sample

(2)
(20%)

Dataset 1 173 927 3866 4966 3972 994 3866 3866 3866 11,598 9278 2320

Dataset 2 322 1222 3525 5069 4055 1014 3525 3525 3525 10,575 8460 2115

Dataset 3 354 1250 3811 5415 4332 1083 3811 3811 3811 11,433 9146 2287

Dataset 4 403 1397 3402 5202 4161 1041 3402 3402 3402 10,206 8164 2042

Dataset 5 270 1211 3680 5161 4128 1033 3680 3680 3680 11,040 8832 2208

Dataset 6 190 1287 3490 4967 3973 994 3490 3490 3490 10,470 8376 2094

Dataset 7 208 1118 3910 5236 4188 1048 3910 3910 3910 11,730 9384 2346

Dataset 8 356 1188 3771 5315 4252 1063 3771 3771 3771 11,313 9050 2263

Dataset 9 478 1292 3570 5340 4272 1068 3570 3570 3570 10,710 8568 2142

Dataset 10 326 1322 3921 5569 4455 1114 3921 3921 3921 11,763 9410 2353

Dataset 11 145 1137 3969 5251 4200 1051 3969 3969 3969 11,907 9525 2382

Dataset 12 384 1387 3453 5224 4179 1045 3453 3453 3453 10,359 8287 2072

Dataset 13 203 950 4118 5271 4216 1055 4118 4118 4118 12,354 9883 2471

Dataset 14 79 1274 3762 5115 4092 1023 3762 3762 3762 11,286 9028 2258

Dataset 15 514 1347 3415 5276 4220 1056 3415 3415 3415 10,245 8196 2049

Total 4405 18,309 55,663 78,377 62,695 15,682 55,663 55,663 55,663 166,989 133,587 33,402

Table 5. SAML-Triple with preprocessing aspects and train–test split ratio before and after SMOTE
records for the first dataset.

Dataset Used 3-Bus/2-Line Transmission System [34]

Preprocessing
Aspects

INFAZ INFAD

Applying SMOTE on each of the
15 Datasets Separately

(e.g., Dataset-1)

Applying SMOTE on Each of the
15 Datasets Separately

(e.g., Dataset-1)

Train–Test Split 80:20 ratio

Event Types No Events
records

Natural
Events
records

Attack
Events
records

Total
Records

No Events
records

Natural
Events
records

Attack
Events
records

Total
Records

Before SMOTE 173 927 3866 4966 173 835 3610 4618

After
SMOTE

Training
Samples

3093 3093 3092 9278 2888 2888 2888 8664

Testing
Samples

774 773 773 2320 722 722 722 2166

No. of records 3866 3866 3866 11,598 3610 3610 3610 10,830

Table 6 represents the terminology used in the specifications of the parameters.

Table 6. The terminology used in the specifications of the parameters.

Name of
the Parameter Meaning

N-Estimator Number of trees in the forest
Criterion The quality measure of the split
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Table 6. Cont.

Name of
the Parameter Meaning

Cross-validation Stratified K-Fold Cross-validation
Random State Controls the randomness of the estimator
Max Depth The maximum depth of the tree.
classifier Base classifier to be specified
learning_rate Weight is applied to each classifier at each boosting iteration.
K Number of nearest neighbors

Table 7 represents the parameter specifications of the feature extraction technique
(NCA) with the specified range to find the optimal ‘N’ Component and maximum Iteration
‘I’. The parameter specification range for SAML-Triple lies between 20 and 35 components
in the NCA component list, and iterations range from 2 to 10 with a two-step increment.
The range is set based on trials and broad studies in related work in Section 2.

Table 7. Parameter specifications of feature extraction technique (NCA).

Dataset Used 3-Bus/2-Line Transmission System [34]
Individual 15 Datasets

Feature Extraction Technique of
NCA

NCA components list = [20,25,30,35]
Max iterations = [2,4,6,8,10]

Table 3 represents the parameter specifications and optimal hyperparameter tuning of
the SAML-Triple with NCA. For the SAML-Triple, optimal hyperparameter tuning results
were obtained from Table 8 on an average of 15 datasets, and similar approaches were
performed for other ML classifiers to obtain the same.

Table 8. SAML-Triple—performance metrics comparison of NCA with AdaBoost (ET*) classifiers in
two preprocessing aspects.

DS
Preprocessing as INFAZ Preprocessing as INFAD

N-
Comp

Iter. Learning
Rate

N-
Esti.

Prec. Recall F1-
Score

Acc. N-
Comp

Iter. Learning
Rate

N-
Esti.

Prec. Recall F1-
Score

Acc.

1 35 6 0.001 95 98.84 98.84 98.84 98.84 30 4 0.001 95 98.48 98.48 98.48 98.48

2 20 8 0.001 95 97.26 97.26 97.26 97.26 30 10 0.001 95 97.97 97.97 97.97 97.97

3 35 8 0.001 95 97.86 97.86 97.86 97.86 35 2 0.001 95 98.72 98.72 98.72 98.72

4 35 6 0.001 95 97.16 97.16 97.16 97.16 20 10 0.001 95 98.40 98.40 98.40 98.40

5 35 8 0.001 95 97.61 97.60 97.60 97.60 35 2 0.001 95 98.13 98.13 98.13 98.13

6 30 8 0.001 95 96.94 96.94 96.94 96.94 20 6 0.001 95 97.39 97.37 97.37 97.37

7 35 8 0.001 95 97.66 97.66 97.66 97.66 25 4 0.001 95 97.93 97.93 97.93 97.93

8 25 4 0.001 95 97.17 97.17 97.17 97.17 30 6 0.001 95 99.10 99.10 99.10 99.10

9 25 8 0.001 95 96.60 96.59 96.60 96.59 30 6 0.001 95 97.88 97.88 97.88 97.88

10 35 4 0.001 95 97.64 97.62 97.62 97.62 30 2 0.001 95 98.33 98.33 98.33 98.33

11 30 4 0.001 95 97.86 97.86 97.86 97.86 35 6 0.001 95 98.10 98.10 98.10 98.10

12 25 8 0.001 95 96.52 96.48 96.49 96.48 35 10 0.001 95 98.20 98.20 98.20 98.20

13 35 8 0.001 95 98.63 98.62 98.63 98.62 35 4 0.001 95 99.22 99.21 99.21 99.21

14 35 10 0.001 95 97.79 97.79 97.79 97.79 30 10 0.001 95 98.58 98.57 98.57 98.57

15 35 4 0.001 95 97.23 97.22 97.22 97.22 20 10 0.001 95 97.38 97.35 97.36 97.35

Avg. 31 7 0.001 95 97.52 97.51 97.51 97.51 29 6 0.001 95 98.25 98.25 98.25 98.25

Table 9 represents the possible test case scenarios. SAML-Triple has seven test cases
with an Attack Events label as (0), Natural Events label as (1), and No Events label as (2).
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Table 9. SAML-Triple—possible test case scenarios.

Test Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
ine Labels 0, 1, and 2 0 1 and 2 1 0 and 2 2 0 and 1

Types of Scenarios
Attack Events vs.
Natural Events vs.
No Events

Attack Events
Natural Events vs.
No Events

Natural Events
Attack Events vs.
No Events

No Events
Attack Events vs.
Natural Events

Tools for Implementation and Evaluation Metrics

The tool used for implementation is the Online Google Colab Data Analytics platform
(free subscription). It uses Python 3 Google Compute Engine utilizing 13 GB RAM, a 2-core
Xeon CPU @ 2.20 GHz, a processor, and 108 GB of hard disks.

SAML-Triple utilizes the NCA algorithm that requires this configuration to find the
optimal ’N’ Component and maximum Iteration ’I’ for the specified range, as provided in
Table 3. The confusion matrix represented in Figure 4 is used to evaluate the performance
of a machine learning model on the testing data for triple class. It summarizes the model’s
predictions and the actual values for the classification problem. For the performance
evaluation of IDS, SAML-Triple adopts standard metrics, such as accuracy, FNR, FPR,
response time, precision, recall, and F1-score. Figure 4 represents the confusion matrix
of SAML-Triple between actual versus predicted classes. True positive cases for three
scenarios (marked in green) TP(AE) is correctly classified as Attack Events, TP(NaE) is
correctly classified as Natural Events, and TP(NoE) is correctly classified as No Events,
whereas true negatives occur for three cases regarding the respective left and right diagonal
elements (marked in red). The false negatives for the three cases were respective horizontal
rows, and false positive cases for the three were vertical columns. In the attack scenario
case, F(AE-NaE) and F(AE-NoE) Attack Events were misclassified as Natural Events and No
Events, respectively. In the case of the Natural Events scenario, F(NaE-AE) and F(NaE-NoE)
were misclassified as Attack Events and No Events. In the case of the No Events scenario,
F(NoE-AE) and F(NoE-NaE) were misclassified as Attack Events and Natural Events.

Figure 4. General representation of confusion matrix for SAML-Triple [34].

6. Results Analysis and Discussion

SAML-Triple provides a robust solution for discriminating Attack Events from Natu-
ral Events and No Events, represented by tables, graphs, and a confusion matrix.
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6.1. SAML-Triple: Triple-Class Datasets (No Events/Natural Events/Attack Events)—Test Results

Table 10 represents the potential impact of the SMOTE operation on datasets. The
SMOTE operation achieved higher accuracy for all 15 triple-class datasets with an equal
number of records considered from each class through stratified sampling, specified in
Table 4 in Section 5, Implementation Details.

Table 10. SAML-Triple (INFAZ)—comparison between without SMOTE and with SMOTE.

Feature Extraction
Techniques with

ML Classifier

SAML-NCA with
(ET + AdB) Classifier (Without

SMOTE)

SAML-NCA with
(ET + AdB) Classifier (With

SMOTE)

Datasets Acc. (%) Acc. (%)

1 97.08 98.84

2 94.08 97.26

3 95.75 97.86

4 96.83 97.16

5 95.45 97.60

6 95.37 96.94

7 95.61 97.66

8 94.92 97.17

9 94.94 96.59

10 96.32 97.62

11 96.00 97.86

12 95.41 96.48

13 97.35 98.62

14 95.60 97.79

15 95.27 97.22

Avg. 95.73 97.51

From Figure 5, it is indicated that, without SMOTE, the dataset is imbalanced with
three label records, showing decreased accuracy for all 15 datasets marked with a blue line,
with an average accuracy of 95.73% compared to the SMOTE operation, with an average
accuracy of 97.51%, marked with a red line.

Figure 5. SAML-Triple (INFAZ) graph comparison of imbalanced (original dataset without SMOTE)
vs. balanced (with SMOTE).

Table 11 represents the SAML-Triple accuracy metric comparison of feature extraction
techniques—NCA vs. PCA with the (ET + AdB) classifier with two preprocessing aspects,
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INFAZ and INFAD. The NCA with the (ET + AdB) classifier provides an average higher
accuracy of 97.51% and 98.25% for INFAZ and INFAD, respectively, than the PCA with
the (ET + AdB) classifier of 97.25% and 97.69%. The accuracy for the SAML-NCA with
(ET + AdB) with INFAZ and INFAD was obtained from Table 8, and a similar approach
was carried out for the PCA technique.

Table 11. SAML-Triple—comparison of NCA vs. PCA with two preprocessing aspects.

Feature Extraction Techniques
with ML Classifier

PCA [27] with
(ET + AdB) Classifier

SAML-NCA with
(ET + AdB) Classifier

Preprocessing Aspects INFAZ INFAD INFAZ INFAD

Datasets Acc. (%) Acc. (%) Acc. (%) Acc. (%)

1 98.23 98.34 98.84 98.48

2 97.16 97.21 97.26 97.97

3 97.60 98.06 97.86 98.72

4 96.87 96.64 97.16 98.40

5 96.42 98.08 97.60 98.13

6 97.13 96.34 96.94 97.37

7 97.95 97.93 97.66 97.93

8 97.44 98.43 97.17 99.10

9 96.36 96.66 96.59 97.88

10 97.32 97.63 97.62 98.33

11 97.19 98.10 97.86 98.10

12 96.62 97.67 96.48 98.20

13 98.50 98.78 98.62 99.21

14 97.17 98.14 97.79 98.57

15 96.73 97.30 97.22 97.35

Avg. 97.25 97.69 97.51 98.25

Figure 6 shows the SAML-Triple accuracy (bar) graph of the NCA vs. PCA with
the (ET + AdB) ML classifier with two preprocessing aspects of INFAZ and INFAD.
Figure 6 implies that NCA_INFAZ (blue bar) is comparatively higher in accuracy than
PCA_INFAZ (yellow bar) across 15 datasets, and the same is true for NCA_INFAD (red bar)
vs. PCA_INFAD (green bar). From another perspective, NCA_INFAD (red bar) performs
comparatively better than NCA_INFAZ (blue bar), which is not an ideal case that may lead
to a missing attack rate; hence, NCA_INFAZ (blue bar) provides good accuracy of more
than 96% across 15 datasets.

Figure 6. SAML-Triple—accuracy (bar) graph comparison of NCA vs. PCA with ExtraTrees with
AdaBoost (ET + AdB) classifier.
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Figure 7 depicts the SAML-Triple (INFAZ) approach using the PCA representation of
three events with the (ET + AdB) ML classifier (e.g., Dataset-1). The three axes, x, y, and
z, represent PCA-1, PCA-2, and PCA-3, respectively. These three axes’ values represent
the top three components with high variance from the transformed 128 features, which
retain the maximum relative information. Figure 7a represents the Attack Events training
samples, Figure 7b represents the Natural Events training samples, and Figure 7c represents
the No Events training samples. Figure 7d represents the test samples that are tedious to
discriminate between the Attack Events and Natural Events that might belong to any of
the three events.

(a) Attack Events training sample (b) Natural Events training sample

(c) No Events training sample (d) Testing samples

Figure 7. SAML-Triple (INFAZ) using PCA Representation of (a) Attack Events training sample;
(b) Natural Events training sample; (c) No Events training sample; (d) testing samples.

Figure 8 depicts the SAML-Triple approach using NCA representation with discrim-
ination of three events using the (ET + AdB) ML classifier (e.g., Dataset-1). The three
axes, x, y, and z, represent NCA-1, NCA-2, and marker (target) columns. The first two
axes’ values represent the top two components with high variance from the transformed
128 features, which retain maximum relative information. In contrast, the third axis is
a marker (target)-labeled column. It clearly shows the discrimination of Attack Events,
Natural Events, and No Events since the third axis is a marker (target)-labeled column,
which aids in discriminating the processed component level values per the mathematical
objective defined in Section 4. Figure 8a,b show the training and testing samples of Attack
Events. Figure 8c,d show the training and testing samples of Natural Events. Figure 8e,f
show No Events’ training and testing samples.

Table 8 represents a comparison of the performance metrics of SAML-Triple using
NCA with the (ET + AdB) ML classifier in two preprocessing aspects. The testing samples
of 20% were taken for evaluation across 15 datasets with INFAZ and INFAD. The accuracy,
precision, recall, and F1-score performance metrics were compared. On average, 97.51%
and 98.25% were achieved by considering INFAZ and INFAD, respectively. Each of the
15 datasets is executed with optimal hyperparameter tuning to find the optimal ‘N’ Compo-
nent and maximum Iteration ‘I’ for NCA as a feature extraction technique and optimal ‘N’
estimator for the (ET + AdB) ML classifier.
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(a) Attack Events training sample (b) Attack Events testing sample

(c) Natural Events training sample (d) Natural Events testing sample

(e) No Events training sample (f) No Events testing sample

Figure 8. SAML-Triple (INFAZ) using NCA Representation: (i) discrimination of Attack Events:
(a) training sample ; (b) testing sample; (ii) discrimination of Natural Events: (c) training sample;
(d) testing sample; (iii) discrimination of No Events: (e) training sample; (f) testing sample.

Table 12 compares the SAML-Triple classification accuracy comparison of various test
cases with two preprocessing aspects of INFAZ and INFAD. The test results across various
test cases achieved more than 96% average accuracy for both the preprocessing aspects.

Table 13 represents the SAML-Triple performance metrics comparison of NCA with
the (ET + AdB) ML classifier obtained from Table 8. The results were obtained using a simi-
lar approach to the rest of the ML classifiers. The performance metrics of precision, recall,
F1-score, accuracy, FPR, FNR, and testing time results were compared with distinct prepro-
cessing aspects of INFAZ and INFAD.
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Table 12. SAML-Triple—classification accuracy of various test cases with two preprocessing aspects.

Test Case
Scenarios

of 15 Datasets

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Attack Events vs.
Natural Events

vs.
No Events

Attack Events Natural Events
vs.

No Events

Natural
Events

Attack Events
vs.

No Events

No Events Attack Events
vs.

Natural
Events

Average of 15
Datasets

Accuracy (%)

INFAZ INFAD INFAZ INFAD INFAZ INFAD INFAZ INFAD INFAZ INFAD INFAZ INFAD INFAZ INFAD

97.51 98.25 96.66 97.82 97.94 98.46 96.40 97.21 98.07 98.77 99.48 99.71 96.53 97.52

Figure 9a represents the accuracy (bar) graph comparison of SAML-Triple with two
preprocessing aspects, INFAZ and INFAD. Figure 9a implies that the (ET + AdB) ML
classifier (blue bar) achieved a higher accuracy of 97.51% and 98.52% for INFAZ and
INFAD, respectively, than the rest of the ML classifiers. Figure 9b is an FNR graph (missing
rate) comparison of SAML-Triple with two preprocessing aspects. Figure 9b implies that the
(ET + AdB) ML classifier (blue bar) achieved the lowest FNR values of 2.49% and 1.75% for
INFAZ and INFAD, respectively, compared to the rest of the ML classifiers. Figure 9c is an
FPR graph (false alarm) comparison of SAML-Triple with two distinct preprocessing aspects.
Figure 9c implies that the (ET + AdB) ML classifier (blue bar) achieved the lowest FPR
values of 1.24% and 0.88% for INFAZ and INFAD, respectively, compared to the rest of the
ML classifiers.

(a) Accuracy Graph (b) False Negative Rate

(c) False Positive Rate

Figure 9. SAML-Triple—comparison of various ML classifiers with two preprocessing aspects:
(a) accuracy graph; (b) false negative rate; (c) false positive rate.
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Table 13. SAML-Triple—performance metrics comparison of various ML classifiers with two prepro-
cessing aspects.

Proposed
Work

vs.
Other ML

Alg.

Precision
(%)

Recall
(%)

F1-score
(%)

Accuracy
(%)

FPR
(%)

FNR
(%)

INFAZ INFAD INFAZ INFAD INFAZ INFAD INFAZ INFAD INFAZ INFAD INFAZ INFAD

(ET + AdB) 97.52 98.25 97.51 98.25 97.51 98.25 97.51 * 98.25 * 1.24 0.88 2.49 1.75

ET 97.41 98.13 97.40 98.13 97.40 98.13 97.40 98.13 1.30 0.93 2.60 1.87

RF 97.02 97.79 97.01 97.78 97.01 97.78 97.01 97.78 1.50 1.11 2.99 2.22

DT 93.17 94.28 93.17 94.28 93.16 94.27 93.17 94.27 3.42 2.86 6.83 5.73

KNN 90.77 92.45 90.65 92.38 90.57 92.32 90.64 92.37 4.68 3.81 9.36 7.63

XGB 88.80 90.50 88.81 90.51 88.75 90.44 88.81 90.51 5.59 4.74 11.19 9.49

*—represents the highest accuracy achieved through proposed approach.

Table 14 represents the SAML-Triple (INFAZ) average response time comparison across
various ML classifiers for 120 samples/second system [36]. The average response time
was obtained with batch processing of 120 samples/second test records for 10 rounds of
batch processing.

Table 14. SAML-Triple (INFAZ)—average response time of various ML classifiers for 120 sam-
ples/second system.

10 Rounds of Batch Processing
Response Time (ms) for 120 Samples/s System [36]

(ET + AdB) ET RF DT KNN XGB

Round-1 31.68 58.72 34.66 10.70 109.62 42.02

Round-2 24.52 46.10 36.70 11.87 41.28 45.61

Round-3 26.20 47.89 35.12 11.52 43.11 47.72

Round-4 26.00 61.02 34.54 10.67 35.06 39.12

Round-5 23.62 59.68 36.43 12.02 38.49 42.25

Round-6 38.23 46.46 44.46 9.77 29.35 40.37

Round-7 39.23 46.57 34.97 9.54 36.67 37.75

Round-8 23.32 47.44 34.44 9.04 35.63 17.68

Round-9 24.07 53.46 33.99 8.74 39.94 18.67

Round-10 23.72 54.09 34.25 11.4 100.04 17.99

Average Response Time (ms) 28.06 52.14 35.96 10.53 50.92 34.92

The data generated from the power system framework [34] were collected in the PDC
(Phasor Data Concentrator). For a synchrophasor system [36] with 120 samples/second,
there are 8.3 ms between samples; this time could be employed to process the samples
with the SAML-Triple (INFAZ) approach, and it can detect anomalies with less than 8.3 ms
between samples. Table 15 represents the SAML-Triple (INFAZ) accuracy with average
response time and per sample response time comparison across various ML classifiers.

The proposed SAML-Triple (INFAZ) IDS can process within 0.23 ms between samples
and less than 8.3 ms between samples for a 120 samples/second system [36]. The Attack
Events records of “INFinity” are processed in the SAML-Triple (INFAZ) approach, whereas
other existing approaches are lagging in this aspect, as discussed in Section 2. If the Attack
Events records are unprocessed (INFAD), it might have fatal consequences for the stability
of the power system and cause the system to collapse. The SAML-Triple (INFAZ) approach,
with a response time of 0.23 ms per sample, can alert the prevention system to take further
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action to regain the power system’s stability. This crucial response time is more critical in
the mission-critical infrastructure of the smart grid to undertake faster decision operations,
which is achieved through our proposed work of SAML-Triple (INFAZ).

Table 15. SAML-Triple (INFAZ)—accuracy vs. average response time—graph comparison across
various ML classifiers.

Comparison
with Various

ML Classifiers

Accuracy
(%)

Average Response Time
(ms) for 120 Samples/s

System [36]

Response Time (ms)
between two Samples

of 8.3 ms [36]

(ET + AdB) 97.51 28.06 0.23

ET 97.40 52.14 0.43

RF 97.01 35.96 0.30

DT 93.17 10.53 0.09

KNN 90.64 50.92 0.42

XGB 88.81 34.92 0.29

Figure 3 has an x-axis with various ML classifiers and two y-axes, with the left y-axis
representing the accuracy metric and the right y-axis representing the response time metric.
Figure 3 implies that the SAML-Triple (INFAZ) NCA with the (ET + AdB) ML classifier
performs better, with an accuracy of 97.51% and a response time of 0.23 ms, detecting an
attack that is less than 8.3 ms between samples (120 samples/second) [36]. Even though
the DT classifier has a lower response time of 0.09 ms compared to the (ET + AdB) ML
classifier of 0.23 ms, the accuracy of the DT classifier remains low at 93.17%.

Figure 10 represents the confusion matrix of SAML-Triple (INFAZ) for the first dataset
out of 15 datasets after the SMOTE operation represented in Table 5. The total number
of samples in the first dataset before SMOTE is 4966, with 173 (No Events), 927 (Natural
Events), and 3866 (Attack Events). After applying SMOTE to the first dataset, the total
number of sample records was 11,598, with an equal number of 3866 records for each of the
three events (No Events, Natural Events, and Attack Events). Out of the 11,598 records,
9278 were taken for training, and 2320 were taken for testing, with a ratio of 80:20 as per
the Pareto principle. Moreover, 80% of the training samples’ 9278 records contain almost
an equal number of 3093 samples from the three events.

Figure 10. Confusion matrix of SAML-Triple (INFAZ) after SMOTE on testing samples (e.g., Dataset-1).

For the remaining 20% of the testing samples, 2320 records containing almost equal
numbers of 774 samples from the three events were considered. With the testing samples
of 2320 records, the confusion matrix in Figure 10 depicts the True Label vs. Predicted
Label reference to the confusion matrix in Figure 4. The labels in the confusion matrix
in Figure 10 represent Attack Events (0), Natural Events (1), and No Events (2). From
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the confusion matrix of SAML-Triple (INFAZ) in Figure 10, in the attack scenario case,
758 samples (marked in yellow) were correctly classified as Attack Events (true positive),
whereas 16 samples (marked in violet) were misclassified as Natural Events (false negative).
In the case of the Natural Events scenario, 762 samples (marked in yellow) were correctly
classified as Natural Events (true positive), whereas 11 samples (marked in violet) were
misclassified as Attack Events (false negative). In the case of the No Events scenario,
773 samples (marked in yellow) were correctly classified as No Events, and there were no
misclassifications. Furthermore, the false positives are the opposite for the three scenarios
concerning false negatives.

Table 16 compares the SAML-Triple accuracy metrics of NCA with the (ET + AdB) ML
classifier vs. other existing approaches. SAML-Triple achieved a higher accuracy of 97.51%
and 98.25% by considering INFAZ and INFAD, respectively. The INFAZ aspect can address
the missing rate, whereas the INFAD aspect will not deal with the missing rate. Both aspects
of comparison were conducted with the existing approaches with the number of features
selected or extracted for classification. The SAML-Triple (INFAZ) approach outperforms
the other existing approaches with an accuracy of 97.51%. The proposed approach with
31 components preserves the data’s local and global variance associations, making it well-
suited for extracting features from highly complex correlated datasets that exhibit linear
and non-linear dependencies.

Table 16. Accuracy metric comparison of SAML-Triple with other existing approaches.

Reference Paper Feature Selection/
Extraction

Number of
Features

Selection or
Extraction

Machine
Learning
Classifiers

Accuracy (%)

INFAZ INFAD

SAML-Triple
(Proposed Work) NCA 31 (ET + AdB) 97.51 * 98.25 *

Upadhyay,
Darshana,

et al. [22,23]

GBFS 15 Tree Based - 96.50

RFE-XG 30 MV-EM - 97.95

Hu, Chengming,
et al. [24,25]

Stacked Denoising
Autoencoders

(SDAE)
60

XGBoost 90.48

Multiple
Autoencoders

(AE)
30

Random
Forest

91.78

Gumaei, Abdu,
et al. [26]

Correlation-Based
Feature Selection 8 to 11 KNN 91.87

Ankitdeshpandey,
Karthi, R. [27] PCA 31 Random

Forest
91.14

Hink, Raymond,
C. Borges, et al.

[28]
Information Gain 40

Adaboost +
JRipper 95.00

Agrawal, Anand,
et al. [29] ExtraTrees 10

LightGBM
- 95.30

Sunku Mohan,
Vamshi, and

Sriram Sankaran
[30]

Manually selected
the Features based
on Power Domain

Knowledge

36 Rule-Based
ML +

AdaBoost

97.25

Bitirgen K, Filik
ÜB [31] PSO Not Specified CNN-LSTM 96.92

*—represents the highest accuracy achieved through proposed approach.
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Specifically, we addressed the “INFinity” Attack Events records in the feature col-
umn of “PA:Z” (Apparent Impedance for Four Relays) by replacing them with “Zero”
(INFAZ), which avoids the missing rate, which can maintain the power system’s stability
and reliability. Meanwhile, the existing approaches [22,23,26,28,29,31] lack the selection
of suboptimal features with feature importance scores, leading to potential feature selec-
tion bias. They lack sufficient performance in discriminating Attack Events from Natural
Events and No Events. The rest of the existing approaches [24,25], which use the feature
extraction techniques of deep learning methods, lack the optimal combination of extracting
the features due to several hyperparameter factors. Moreover, the feature extraction using
PCA [27] fails to capture the local structure or relationships within the data, which might
result in misclassification between the three classes. Also, the author in [30] undertook
manual feature selection, which may not be suitable for the generalizability and scalabil-
ity of the model for different architectures and may require complex logical calculations.
Meanwhile, our SAML-Triple (INFAZ) can be scalable and generalizable to the IEEE ‘N’
bus system for different architectures.

The limitation of the ICS Cyber Attack Power System Triple-Class Dataset [34] is
that the data generated for the No Events records are less than the other two events.
Furthermore, the Natural Events records are less than the Attack Events records. Due to
the imbalance of the dataset, SMOTE is required to balance it, as depicted in Table 4. Its
potential impact is shown in Table 10, with the accuracy metric comparing those without
SMOTE vs. with SMOTE.

6.2. SAML-Triple: Generalization and Scalability for IEEE ’N’ Bus System

For the generalization and scalability of the proposed approach of SAML-Triple, we
have considered the IEEE 14- and 57-bus systems’ datasets from J. Sakhnini et al. [13],
generated with the MATPOWER library. The dataset is posted publicly as an open source
at the GitHub link [38]. The author simulated an FDI attack on the IEEE 14- and 57-bus
systems with 10,000 training records and 1000 records for testing on each bus system.
The IEEE 14-bus system has 34 feature columns, whereas the IEEE 57-bus system has
137 feature columns.

Table 17 represents the parameter specifications of the feature extraction technique
(NCA) with the specified range to find the optimal ’N’ component and maximum iteration
’I’ for the IEEE 14- and 57-bus systems [38]. The parameter specification range for the IEEE
14-bus system lies between 2 and 10 NCA components, the iteration range from 5 to 20,
and a learning rate of 0.001. In contrast, the IEEE 57-bus system lies from 60 to 90 NCA
components, with an iteration range of 5 to 20 and a learning rate of 0.001. The choice of
range for each bus system is set below the number of actual features.

Table 17. Parameter specifications of feature extraction technique (NCA) for IEEE ’N’ bus system.

Dataset Used No. of
Features

NCA Components and
Iteration Range

IEEE 14
Bus System

[38]

34 NCA components list = [2, 5, 10]
Max iterations: [5, 10, 15, 20]
learning_rate = {0.001}

IEEE 57
Bus System

[38]

137 NCA components list = [60, 70, 80, 90]
Max iterations = [5, 10, 15, 20]
learning_rate = {0.001}
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Table 18 represents the generalization and scalability of the proposed SAML-Triple
approach to the IEEE 14- and 15-bus systems with accuracy metric comparison. The
IEEE 14- and 57-bus datasets [38] provided by the author [13] used the Binary Cuckoo
Search (BCS) optimization algorithm as a Heuristic Feature Selection approach to select
the optimal feature subset. BCS is susceptible of converging to local optima, especially
in complex and irregular fitness landscapes. It may struggle to select the features due to
premature convergence and suboptimal solutions. Identifying suitable parameter values
for this dataset [38] may require extensive tuning. This may limit its ability to find globally
optimal or near-optimal solutions. Our proposed SAML-Triple approach utilizing NCA
preservers the data’s local and global variance associations, making it well-suited for
extracting features from highly complex correlated datasets that exhibit linear and non-
linear dependencies. The detailed significance of the proposed approach is explained in
Methodology Section 4.

Table 18. Generalization and scalability of proposed SAML-Triple approach to IEEE ‘N’ bus systems
with accuracy metric comparison.

IEEE ‘N’ Bus Systems IEEE 14-Bus System [38] IEEE 57-Bus System [38]

Comparison of Proposed Work
with Existing Works

J. Sakhnini
et al. [13]

SAML-Triple J. Sakhnini
et al. [13]

SAML-Triple

Feature Selection/Extraction
Method

BCS NCA BCS NCA

ML Algorithm Applied SVM (ET+AdB) SVM (ET+AdB)

Actual No. of Features 34 137

No. of Features Selected/
Extracted 11 Features

2 Components,
15 iterations,

0.001 learning rate
94 Features

90 Components,
5 iterations,

0.001 learning rate

Accuracy (%) 90.69 93.94* 88.59 90.92*

*—represents the highest accuracy achieved through proposed approach.

Figures 11 and 12 represent the accuracy vs. parameter range graph for the IEEE 14-
and 57-bus systems, respectively. The proposed approach of SAML-Triple utilizing NCA
with the (ET + AdB) ML classifier outperforms the existing approach of BCS with Support
Vector Machine (SVM). Based on the parameter specification range from Table 18, the
proposed approach is fined-tuned to obtain a higher accuracy of 93.94% at two components,
fifteen iterations, and a 0.001 learning rate compared to 90.69% with eleven features for
the IEEE 14-bus system. For the IEEE 57-bus system, the proposed approach yields 90.92%
accuracy at 90 components and five iterations, with a 0.001 learning rate compared to
88.59% with 94 features.
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Figure 11. SAML-Triple —components range vs. accuracy for IEEE 14-bus system [38].

Figure 12. SAML-Triple—components range vs. accuracy for IEEE 57-bus system [38].

6.3. Overall Summary of the Proposed Work

Table 19 stands for the overall summary of the SAML-Triple approach with various
performance metrics. In the SAML-Triple approach, comparatively higher accuracy values
of 97.51% and 98.25% were obtained with INFAZ and INFAD, respectively. The FNR
(missing rate) values of 2.49% and 1.75% and FPR (false alarm) values of 1.24% and 0.88%
were obtained low with INFAZ and INFAD, respectively. The testing time of the IDS was
0.23 ms to detect an attack that is less than 8.3 ms between samples, by which the system
admin is alerted early to activate the prevention system. Hence, the SAML-Triple approach
of NCA with the (ET + AdB) ML classifier outperforms better in the discrimination of
cyberattacks in triple class (No Events/Natural Events/Attack Events). Based on the
comparison between the results of the existing approaches and our proposed work of
SAML-Triple (INFAZ), it is concluded that SAML-Triple (INFAZ) alone can conduct this
triple-class event discrimination with robustness.
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Table 19. Overall summary of SAML-Triple approach with performance metrics.

Dataset Used Proposed Work Accuracy (%)
(Detection Rate)

FNR (%)
(Missing Rate)

FPR
(%)

(False Alarm)

Response Time (ms)

A System [36] with 120
Samples/s Records

3-bus/2-line
transmission system

(Triple Class)
[34]

SAML—Triple
NCA with

(ET + AdB) classifier

INFAZ 97.51 2.49 1.24 0.23

INFAD 98.25 1.75 0.88 0.22

The robustness of the proposed SAML-Triple approach was tested for generalizability
and scalability with the IEEE 14-bus and 57-bus system datasets of the FDI attacks [38]. The
proposed approach outperformed with 93.94% and 90.92% for the IEEE 14-bus and 57-bus
systems, respectively, compared to the existing approach with 90.69% and 88.59% accuracy.

For both the ICS Cyber Attack Power System Triple-Class Dataset and the IEEE 14-
and 57-bus system datasets of the FDI attacks, the accuracy metric results were significantly
impacted by the NCA parameters of the N-components and Iterations. Tables 8 and 18
demonstrate that the parameters of the N-components and iterations have a significant
impact on the accuracy performance metrics.

7. Conclusions and Future Works

In the mission-critical infrastructure of a smart grid, the proposed approach of SAML-
Triple (INFAZ) addresses the specific problem of cyberattack discrimination from power
system disturbances with a reduced missing rate and decreased response time. This paper
proposes a novel mechanism of the statistical approach with Neighborhood Component
Analysis as a feature extraction technique by optimal hyperparameterized tuning with the
(ET + AdB) ML classifier. In the SAML-Triple approach, three events—No Events, Natural
Events, and Attack Events—were discriminated with the highest accuracy of 97.51% and
98.25% by preprocessing with INFAZ and INFAD, respectively, compared to the existing
approaches. The overall summary section provides insights into other performance metrics
such as FNR, FPR, and response time with better results. Several test cases were executed
to test the robustness of the model, which achieved more than 95%. Thus, the SAML-
Triple (INFAZ) approach performs as a robust Anomaly-based IDS with a low missing
rate of 2.49%, lower response time of 0.23 ms, decreased false alarm rate of 1.24%, and
high detection accuracy of 97.51%. Our proposed novel approach addresses the privacy
and access control violations of cyberattacks in the smart grid infrastructure to minimize
the processing downtime, large-scale load loss, blackouts, and cascading failures. The
robustness of the proposed model was evaluated with the IEEE 14-bus and 57-bus system
datasets of FDI attacks for generalization and scalability, and accuracy values of 93.94%
and 90.92%, respectively, were achieved.

In future work, the proposed approach will be extended to find the attack-specific
location and the type of attack established from the attacker’s end in the Multiclass dataset
available from the same data source. The proposed approach can also be extended for
scalability with other IEEE ‘N’ bus systems. Since data records are treated statistically with
the proposed approach, it can be extended to other cyber–physical systems for anomaly
detection. This proposed work can be extended to any WAMS Testbed as a smart grid by
including a few more attacks from generator-side faults and insider attacks. The potential
of insider attacks has not been investigated much in the context of a smart grid, and future
work could focus on defining such attacks and mitigating them.
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