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Abstract: This paper presents a methodology capable of measuring, processing, and extracting
contact resistance parameters that enable the identification of the contact degradation level inside arc
extinction chambers in medium- and high-voltage circuit breakers (CB). To determine the contact
degradation level, an algorithm was developed to extract the characteristic parameters from the
results of dynamic resistance measurement (DRM). To analyze the dataset parameters, this work
employs the combination of different statistical tools, such as boxplots and fuzzy logic, enabling
the evaluation to be conducted without the subjectivity inherent in human decision. Therefore, a
more objective and reliable diagnosis could be achieved. The DRM tests were performed on two
types of minimum-oil CB (MOCB), 800 A/15 kV/12.5 kA (CB-A) and 2000 A/72.5 kV/31.5 kA (CB-B
and CB-C). For CB-A and CB-B, three contacts were utilized for each CB, with significant contact
degradation. For CB-C, a single contact was employed without significant degradation. The DRM
curves of the CB-C contact were used as the reference for evaluation of the CB-B contacts. For
this purpose, a new DRM system was developed. The proposed methodology can be defined as
a complement for other diagnostic techniques, serving as a non-subjective asset management tool,
supporting decisions regarding equipment interventions.

Keywords: monitoring; diagnostic; circuit breakers; fuzzy logic; statistical analysis; dynamic resistance

1. Introduction

Circuit breakers (CBs) are protective electromechanical equipment designed to con-
duct, re-establish, and interrupt electrical currents at a certain point of a circuit. Generally,
they are used to isolate a circuit section in case of overloads or fault currents due to short
circuits. CB malfunctioning might provoke serious problems in electrical systems, such as
a large area without power delivery or a CB explosion (with its respective consequences).

During the CB breaking operations, the arcing contact (AC) is slightly ablated due to
the electric arc effects. The ablation makes the contact increasingly short [1]. Therefore, the
ablation/degradation of the AC is a critical parameter for CB condition monitoring [2].

Condition-based monitoring (CBM) can more accurately estimate the degree of CB
wear-out [3]. Other studies [3–6] have proposed analyzing CBs using various characteristic
parameters and the application of CBM techniques. Specifically, for analyzing the contact
operating status, most electric companies use static resistance measurement (SRM) to
assess the CB contact degradation level. However, this technique can only analyze the
main contacts (MC), failing to provide information regarding the arcing contacts (AC).
Furthermore, this procedure is often carried out using inadequate test equipment [7–12].
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For these reasons, the need arises for the application of more efficient monitoring tech-
niques capable of accurately evaluating the chamber operating state. In the last two decades,
research has been directed towards contact DRM as a way of evaluating both the AC and
the MC. During DRM tests, a resistance curve is generated. From the DRM curves, the
main and arcing contact resistances can be assessed individually, allowing the evaluations
of all parts of the contacts [7–9].

In recent years, several studies have been developed on this theme [4–22]. However,
these studies do not present an agreed methodology for measurement and analysis to
define reference parameters to correlate the DRM results to the level of contact wear. Pa-
rameters such as timing measurements, travel curve measurement, and dynamic resistance
measurement are utilized by references [4,7,14–18,22], timing measurements, travel curve
measurement, and contact temperature are used by reference [5], dynamic resistance mea-
surement is used by references [7–13,20,21], and dynamic resistance measurement and
vibration analysis are used by references [7,10,11].

Moreover, it was reported by [8,19,21,22] that DRM curves obtained at the rated
speed of contacts opening are not reproducible from one test to another. In addition, the
research conducted by [23–25] included experimental studies, and the authors developed
measurement systems to diagnose the contact ablation status.

In the work of [26], an analysis was conducted on alternative parameters extracted
from the DRM technique, such as amplitude and variance. These parameters provided
reliable diagnostics for the contact degradation level, verified through visual inspection
of the contacts. In [27], the results of various faults inserted into a CB were investigated
through multi-physical simulations and experiments, identifying that DRM exhibits specific
behavior for each type of failure.

DRM parameters are used to estimate the contact degradation level. However, this
process is not trivial, since technical managers must make use of assumptions, approxi-
mations, or simplifications. Thus, this study presents a new methodology for measuring,
processing, and extracting DRM parameters and a system to support decision-making. For
the developed methodology, the boxplot statistical method is proposed to deal with the
effects of the DRM curve variations during the global analysis of DRM parameters.

The particularity of this work compared to others lies in the utilization of two comple-
mentary techniques to analyze the DRM parameters in order to estimate the degradation
level of CB contacts. In the first analysis, a boxplot was employed to define the value that
best represents a set of data points, and then fuzzy logic was employed to estimate the
level of contact degradation.

In addressing the subjective judgment, uncertainty, and imprecision during the
decision-making process, adaptive tools for uncertainty situations are necessary. Ac-
cordingly, fuzzy logic was employed to provide more reliable, and accurate results. The
choice to use fuzzy logic was made due to the limited quantity of available CB samples for
research purposes. According to [5], diagnosis using fuzzy logic overcomes the difficulties
that expert systems present in acquiring knowledge; for example, neural networks require a
large number of data to be trained. The main advantage of system diagnosis based on fuzzy
models is that it allows the adoption of a limited number of input data while focusing on
the essential characteristics of the device being tested, thereby considering the uncertainties
and inaccuracies associated with all input data.

This system enables the classification of contact degradation level in medium- and high-
voltage CBs. This method is applicable to CBs in operation and can maximize operational
time and minimize maintenance costs, thereby assisting in maintenance scheduling and
supporting maintenance crews in decision-making regarding the need for interventions.

2. Proposed Technique

The proposed technique presented in this study comprises the integration of a mea-
surement technique with a post-processing procedure applied to the measured signals,
providing a comprehensive and reliable diagnostic of CB extinction chambers. The tech-
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nique is based on the DRM and serves as the basis for the boxplot analysis, which functions
as a parameter extraction tool. Subsequently, these parameters are used as input variables
of a fuzzy logic algorithm designed to provide the final diagnosis. The schematic diagram
presented in Figure 1 represents the proposed methodology.
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Figure 1. Block diagram of the proposed diagnostic technique.

2.1. Data Acquisition

The data acquisition technique selected for the proposed methodology is DRM. Two CB
models were used in this research, a medium-voltage and two high-voltage MOCBs. The
specifications of the used CBs are as follows:

- CB-A-MOCB of 800 A/15 kV/12.5 kA;
- CB-B-MOCB of 2000 A/72.5 kV/31.5 kA;
- CB-C-MOCB of 2000 A/72.5 kV/31.5 kA.

The CB contacts were previously degraded due to electrical, mechanical, and thermal
stress in service. In order to provide grants for the diagnosis of CBs, DRM tests were
performed on samples CB-A, CB-B, and CB-C. The tests aimed to identify, from the results
obtained, which DRM characteristic parameters can be monitored for quantifying the
contact degradation level.

To conduct contact resistance tests on circuit breakers, a system developed for this
purpose was adopted, as depicted in Figure 2. The system consists of a stationary battery of
12 V/220 Ah serving as a current source and resistors produced from Kanthal DS wires (Cr-
Al-Fe) to limit the test current from the battery. To measure the voltage and current signals
in the CB, a 2-channel digital oscilloscope was used. The current signal is obtained from a
current shunt (500 A/60 mV) and a DC-DC analog voltage transducer (0–60 mV/0–5 V),
model W153, manufactured by Kron Instrumentos Elétricos Ltda., São Paulo, SP, Brazil. The
output signal from the voltage transducer is sent to channel 1 of the oscilloscope through a
200 MHz/300 V voltage probe, model P2220, manufactured by Tektronix Inc., Beaverton,
OR, USA. The voltage signal obtained at the circuit breaker terminals is sent to channel
2 of the oscilloscope through a second 200 MHz/300 V voltage probe, model P2220. A
schematic diagram of the selected DRM system is shown in Figure 2. The measuring system
has the following capabilities:

- Direct current injection of up to 300 A (voltage source: 12 V stationary battery);
- Adjustment of the battery current through Cr-Al-Fe resistor (40 mΩ–1.3 Ω/4 kW);
- Measurement of the current with current shunt (500 A/60 mV) and voltage/voltage

transducer (60 mV/5 V) and voltage probe;
- Acquisition of the information captured in the DRM (current and voltage drop across

the contacts) using voltage probes and digital oscilloscope.
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Figure 2. Block diagram of the DRM system—adapted from [17].

In Figure 3, a typical DRM curve is presented in which the resistance regions regarding
the main and arcing contacts are indicated. The parameter Rm is the resistance of the main
contact, determined with the contacts completely closed. The parameter Ra is the average
resistance of the arcing contact, determined as the average of the resistances related to the
arcing contact region. The transition zone between these regions (Rt) were not considered
in the calculation of the parameter Ra since it is possible that mechanical imperfections in
the contact surface produce small separations of the contacts during the opening process,
generating masked resistance values.
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Figure 3. Typical DRM curve.

The parameters Rm and Ra were obtained through the following procedure:

- Calculation of the mean resistance on the main contact region (Rm) considering the
first 1000 samples;

- Identification of the main contact separation instant by locating a resistance increase of
5% from the calculated Rm value;

- Identification of the arcing contact separation instant by locating a resistance increase
of 500% from the calculated Rm value;

- Classification of the initial 10% of the arcing contact region as a transition zone, in
which mechanical imperfections may cause measurement errors;

- Calculation of the mean resistance on the arcing contact region (Ra), disregarding the
transition zone.
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To evaluate the contacts, each CB pole was subjected to 10 DRM tests. For each
DRM curve, the parameters Rm and Ra were extracted. Afterwards, the obtained dataset
underwent an analysis that used boxplots to define the best values to represent the Rm and
Ra from each contact.

The DRM tests were conducted in the laboratory on CB-A and CB-B, for which pho-
tographs of the laboratory setup are shown in Figures 4 and 5, respectively. Subsequently,
the poles of each CB were dismantled in order to evaluate the relationship between the
DRM curves and the contact degradation level (visually assessed).
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Figure 5. Laboratory setup of DRM in circuit breakers CB-B and CB-C. 1—MOCB; 2—oscilloscope;
3—resistor, current shunt, voltage transducer; and 4—stationary battery.

The contacts of CB-A were labeled as CB-A1, CB-A2, and CB-A3. Photographs of these
fixed and mobile contacts, from left to right, respectively, are shown in Figure 6. Similarly,
the contacts of CB-B were labeled as CB-B1, CB-B2, and CB B3. In Figure 7, photographs of
the fixed and mobile contacts from CB-B are depicted, with AC being the arcing contact
and MC the main contact.
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Figure 7. Samples of contacts CB-B1, CB-B2, and CB-B3, from bottom to top, respectively. (a) Fixed
contact; (b) moved contact.

Subsequently, another contact (CB-C1) without significant degradation from a third
CB, named CB-C, was submitted to DRM studies. Its DRM curves were the reference
for evaluation of the CB-B contacts. To reduce the risks of fault insertion, the CB-C was
not dismantled.

2.2. Parameter Extraction

In this section, the procedure employed for data analysis and DRM parameter extrac-
tion is presented. The boxplot analysis was the chosen method since this approach allows
the visualization, comparison, and measurement of the data dispersion, symmetry, and
behavior [28].

The boxplot is defined in terms of five quantities/statistics: minimum value of the
dataset, maximum value of the dataset, Q2 (median value of the dataset), Q1 or first quartile
(the dataset sample that has 25% of the data at or below it), and Q3 or third quartile (the
dataset sample that has 75% of the data at or below it). In Figure 8, a typical representation
of the boxplot chart is shown.

Additionally, the boxplot encompasses the following characteristic parameters: the
interquartile range (IQR), upper limit (UL), lower limit (LL), and outliers. The IQR is
estimated by the difference between the third and first quartiles (Q3 − Q1), which serves
as a metric of sample dispersion. The UL (Q3 + 1.5(Q3 − Q1)) and LL (Q1 − 1.5(Q3 − Q1))
define values from which the samples are considered possible outliers. The outliers might
indicate samples that were incorrectly measured or recorded, but they may also indicate
exceptional behaviors in the dataset.
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Thus, the boxplot analysis was applied to the datasets composed of the Rm and
Ra parameters from each CB. The third quartile was adopted as an input parameter of
the decision-making tool because it represents most of the measured data, ensuring that
decisions cover the general behavior of the data. Variations in the median and IQR values
can also indicate failures in the CB poles, as will be shown later.

2.3. Contact Classification

The classification of the contact degradation level is often not trivial or even simple
to evaluate since there are numerous factors that can influence the final decision on the
contact status, such as contact vibration, test current level, and the state of the extinction
medium. Regardless of the analyzed equipment, the consideration of factors with some
degree of uncertainty depends on prior knowledge of these factors, for which approxima-
tions and calculations can be used to achieve a mathematical model, providing a relevant
conclusion [29–33]. For the troubleshooting of these peculiarities, fuzzy logic has been
applied to the data processing.

The developed fuzzy-logic-based system aims to quantify the contact degradation
level considering the DRM characteristic parameters and CB characteristics. Two param-
eters were established in the configuration of the fuzzy system. The first concerns the
manufacturer-recommended limits for contact resistances according to the CB character-
istics. The second concerns the importance attributed to each of the processing rules
considering operating time, operating conditions, and how critical the CB is to the electri-
cal system. The correct system configuration will provide more reliable results, thereby
providing more reliable diagnosis for the equipment operating status.

When assessing the implementation of the proposed methodology, the fuzzy system
developed and presented in [34] was utilized, as depicted in Figures 9–11. The Q3 values of
the parameters Rm and Ra, obtained from the boxplot analysis, are the fuzzy system input
data. For each value of Rm and Ra, at least one input membership function is activated. As
described in [34], five linguistic input variables were established for the proposed system,
designated as Low (L); Moderately Low (ML); Median (M); Moderately High (MH); and
High (H).
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Figure 9. Membership functions of linguistic variables of Rm entry [34].



Energies 2024, 17, 1869 8 of 15

Energies 2024, 17, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 9. Membership functions of linguistic variables of Rm entry [34]. 

 

Figure 10. Membership functions of linguistic variables of Ra entry [34]. 

To estimate the degradation level of each contact, the standard values adopted as 

reference were the maximum contact resistances provided by the default values of [35]. In 

the parametrization of the fuzzy system and for the definition of the fuzzy rules, first, the 

contact resistance limits in the main and arcing contacts regions were established. For 

sample A, the resistance of the main contact region ranges from 150 µΩ to 300 µΩ for a 

new and a degraded contact, respectively. For samples B and C, the resistance of the main 

contact region ranges from 40 µΩ to 80 µΩ for a new and a degraded contact, respectively. 

As there is no reference in the literature for the resistance of the arcing contact region, 

values from laboratory tests were adopted. In these cases, it was estimated that, for sample 

A, the resistance of the arcing contact region ranges from 500 µΩ to 750 µΩ for a new and 

a degraded contact, respectively. For samples B and C, the resistance of the arcing contact 

region ranges from 80 µΩ to 160 µΩ for a new and a degraded contact, respectively. 

Then, for the fuzzy analysis, the minimum and maximum ranges established for CB-

A contact resistance values were Rm = [150, 300] and Ra = [500, 750], while, for CB-B and 

CB-C, they were Rm = [40, 80] and Ra = [60, 120]. Table 1 presents the parameters of (Rm1 

… Rm5, Ra1 … Ra5) for the linguistic variables input for each sample type. 

Table 1. Parameters limits of Rm and Ra for CB-A, CB-B, and CB-C. 

Parameters CB-A CB-B CB-C 

Rm1 150.0 40 40 

Rm2 187.5 50 50 

Rm3 225.0 60 60 

Rm4 262.5 70 70 

Rm5 300.0 80 80 

Ra1 500.0 60 60 

Ra2 562.5 75 75 

Ra3 625.0 90 90 

Ra4 687.5 105 105 

Ra5 750.0 120 120 

Average main contact resistance (μΩ)

µ
(R

m
)

1.0

0 R 1m Rm3Rm2 Rm5Rm4

Rm-L Rm-HRm-ML Rm-M Rm-MH

Average arcing contact resistance (μΩ)

µ
(R

a
)

0 Ra1 Ra3Ra2 Ra5Ra4

Ra-L Ra-HRa-ML Ra -M Ra-MH
1.0

Figure 10. Membership functions of linguistic variables of Ra entry [34].
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The weights of the maximum interval and the formats of the input and output member-
ship functions were heuristically defined considering that the contact degradation increases
linearly and that it is directly proportional to the contact resistance value; thus, it can
be represented by linear functions. For all linguistic variables, an overlay of 50% was
established. A graphic illustration of membership functions representing each linguistic
variable depending on Rm and Ra entries is presented in Figures 9 and 10, respectively.

To estimate the degradation level of each contact, the standard values adopted as
reference were the maximum contact resistances provided by the default values of [35].
In the parametrization of the fuzzy system and for the definition of the fuzzy rules, first,
the contact resistance limits in the main and arcing contacts regions were established. For
sample A, the resistance of the main contact region ranges from 150 µΩ to 300 µΩ for a
new and a degraded contact, respectively. For samples B and C, the resistance of the main
contact region ranges from 40 µΩ to 80 µΩ for a new and a degraded contact, respectively.

As there is no reference in the literature for the resistance of the arcing contact region,
values from laboratory tests were adopted. In these cases, it was estimated that, for sample
A, the resistance of the arcing contact region ranges from 500 µΩ to 750 µΩ for a new and a
degraded contact, respectively. For samples B and C, the resistance of the arcing contact
region ranges from 80 µΩ to 160 µΩ for a new and a degraded contact, respectively.

Then, for the fuzzy analysis, the minimum and maximum ranges established for CB-A
contact resistance values were Rm = [150, 300] and Ra = [500, 750], while, for CB-B and
CB-C, they were Rm = [40, 80] and Ra = [60, 120]. Table 1 presents the parameters of (Rm1
. . . Rm5, Ra1 . . . Ra5) for the linguistic variables input for each sample type.

To quantify the degradation level, five linguistic output variables were established
and defined as follows: Low Degradation (DL-L); Moderately Low Degradation (DL-
ML); Median Degradation (DL-M); Moderately High Degradation (DL-MH); and High
Degradation (DL-H). In Figure 11, a graphic illustration of the membership functions for
the output variables is shown.
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Table 1. Parameters limits of Rm and Ra for CB-A, CB-B, and CB-C.

Parameters CB-A CB-B CB-C

Rm1 150.0 40 40
Rm2 187.5 50 50
Rm3 225.0 60 60
Rm4 262.5 70 70
Rm5 300.0 80 80
Ra1 500.0 60 60
Ra2 562.5 75 75
Ra3 625.0 90 90
Ra4 687.5 105 105
Ra5 750.0 120 120

In the proposed system, weights Wm and Wa are assigned to Rm and Ra, respectively,
to take into consideration the CB operating condition and how significant the degradation
of each contact part is. As a rule, if the degradation of Rm is greater than Ra, Wm is used;
otherwise, Wa is used. An exception is created when the contact is initially classified as
highly degraded (H) since, in this case, a different weight is not imposed. The set of rules
has been set according to the fuzzy relationship matrix presented in Table 2.

Table 2. Fuzzy relationship matrix.

Ra = L Ra = ML Ra = M Ra = MH Ra = H

Rm = L DL = L DL = Wa × ML DL = Wa × M DL = Wa × MH DL = H

Rm = ML DL = Wm × ML DL = ML DL = Wa × M DL = Wa × MH DL = H

Rm = M DL = Wm × M DL = Wm × M DL= M DL = Wa × MH DL = H

Rm = MH DL = Wm × MH DL = Wm × MH DL = Wm × MH DL = MH DL = H

Rm = H DL = H DL = H DL = H DL = H DL = H

The inference process adopted in the proposed system was the max–min, with the
output defuzzification method being the Mean of Maximum (MoM). For the proposed
system, the set of rules was defined as:

1. If Rm = L and Ra = L, then DL = L;
2. If Rm = L and Ra = ML, then DL = ML
3. If Rm = L and Ra = M, then DL = M;
4. If Rm = ML and Ra = L, then DL = ML;
5. If Rm = ML and Ra = ML, then DL = ML;
6. If Rm = ML and Ra = M, then DL = M;
7. If Rm = M and Ra = L, then DL = M;
8. If Rm = M and Ra = ML, then DL = M;
9. If Rm = M and Ra = M, then DL = M;
10. If Rm ̸= H and Ra = MH, then DL = MH;
11. If Rm = MH and Ra ̸= H, then DL = MH;
12. If Rm = H or Ra = H, then DL = H.

3. Results and Discussion

To classify the contact degradation levels, DRM tests were performed on CB-A, CB-B,
and CB-C. To quantify the degradation levels, the parameters Rm and Ra were extracted
from the DRM curves following the procedure described in Section 2.1. The curves were
obtained at the rated contact opening speed and under application of a test current of 300 A.
The tests were performed using the arrangement designed and developed in this research.
Figures 12 and 13 show the DRM curves obtained for each CB pole.
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Analyzing the DRM curves obtained for CBs A and B, and comparing the three curves
to each other, one can observe that there are different degradation levels among the three
contacts of each CB even though they belong to the same breaker and are basically subjected
to the same load conditions. Additionally, upon reviewing the DRM results of CB-A, it is
evident that the contact CB-A3 exhibited a higher degradation level. Both the arcing and
main contact regions displayed resistance values surpassing those of the other contacts, as
confirmed by visual inspection of the fixed and mobile contacts depicted in Figure 6.

For CB-B, the contact CB-B3 presented significantly higher resistance values in the
main contact region. Moreover, it can be observed that all contact samples presented higher
resistance values than the new contact used as reference (CB-C1).

From the DRM curves shown in Figure 12, it can be observed that the degradation
of the main and arcing contacts (of all contact samples) happened proportionally, that is,
the greater the degradation of the main contact, the greater the degradation of the arcing
contact. However, the results presented in Figure 13 indicate that this does not necessarily
happen in all CBs. The DRM curve for CB-B1, for example, has one of the least degraded
main contacts but, at the same time, has the most degraded arcing contacts. The differences
between the degradation process of the main and arcing contacts occur due to particular
CB usages. In cases of CBs used in industries, for instance, where load current is relatively
high and short circuits rarely occur, the main contacts suffer more severe degradation than
arcing contacts.

Tables 3 and 4 present a summary of the results obtained in the DRM tests for each
contact of CB-A and CB-B, respectively. To quantify the degradation levels, Rm and Ra
parameters were extracted from each of the DRM curves according to Figure 3. From the
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dataset presented in Tables 3 and 4, a boxplot analysis was carried out. Figures 14–17
present the boxplot for each contact of CB-A and CB-B.

Table 3. Summary of the parameters of the DRM curve for contacts CB-A1, CB-A2, and CB-A3
degraded in service.

DRM Test
Rm (µΩ) Ra (µΩ)

CB-A1 CB-A2 CB-A3 CB-A1 CB-A2 CB-A3

1 200 228 310 423 543 718
2 198 227 313 430 517 701
3 196 228 314 479 493 686
4 197 228 315 405 531 697
5 198 224 314 477 521 692
6 197 221 315 427 585 676
7 197 220 315 424 541 672
8 193 220 312 418 535 661
9 192 219 314 459 509 631

10 196 219 313 476 529 633

Table 4. Summary of the parameters of the DRM curve for contacts CB-B1, CB-B2, and CB-B3
degraded in service and CB-C1 without significant degradation.

DRM
Test

Rm (µΩ) Ra (µΩ)

CB-B1 CB-B2 CB-B3 CB-C1 CB-B1 CB-B2 CB-B3 CB-C1

1 51 73 104 49 103 91 91 76
2 51 70 102 47 109 95 108 77
3 50 73 101 49 114 94 110 77
4 51 71 102 50 111 93 107 75
5 50 71 94 49 113 90 101 72
6 50 74 103 48 112 96 112 67
7 50 72 91 48 112 90 95 78
8 50 75 97 50 112 94 107 78
9 50 72 97 49 112 90 101 79

10 50 73 85 50 112 88 93 77
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From the results presented in Figures 14–17, it can be observed that the boxplot charts
are a good representation of the data behavior. The median or the third quartile can be
used as an indicator of contact degradation level. The correlation between the Q3 value
and the contact degradation level was confirmed by visual inspections of the contacts.

Additionally, the IQR can also be used as an indicator of the operating state of the
CB mechanical system. For highly degraded contacts, the erosion process may change the
contact geometry. Therefore, during opening and closing operations, mechanical defects
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might cause microseparations of the contacts, generating masked resistance values. Thus, a
larger IQR is obtained. Hence, the IQR can be used as an evaluating parameter to detect
mechanical defects.

As previously mentioned, the third quartile values of the parameters Rm and Ra,
obtained from the boxplot analysis, are the fuzzy system input data. Variations in the
median and IQR values can also indicate failures in the CB poles, as will be shown later.
Table 5 presents a summary of Rm and Ra for each sample, obtained from the boxplot
analysis, along with the degradation level obtained in the fuzzy analysis.

Table 5. Summary of the parameters of the DRM curve and degradation levels for contacts CB-A1,
CB-A2, CB-A3, CB-B1, CB-B2, and CB-B3 degraded in service.

Contact Rm (µΩ) Ra (µΩ) Level of Degradation (%)

CB-A1 198 472 32
CB-A2 228 539 52
CB-A3 314 695 100
CB-B1 50 78 30
CB-B2 73 94 81
CB-B3 102 108 100
CB-C1 50 78 reference

For the proposed fuzzy system, in all cases, Wm = 1 and Wa = 1 were assigned as each
specific part of the contacts has its respective function and, if highly degraded, might cause
CB malfunction.

From the results presented in Table 5, it can be observed that the proposed technique
successfully provided a quantitative indicator of contact degradation levels, including
separated results for the main and arcing contacts.

4. Conclusions

The proposed technique provides a quantitative assessment of CB operational status.
The combination of various statistical tools, such as the boxplot and fuzzy logic, enables an
evaluation to be conducted without the subjectivity of human decision-making. Therefore,
a more objective and reliable diagnosis can be achieved.

Adopting the methodology of obtaining DRM parameters through a sequence of
10 DRM tests enabled the identification of the following DRM result characteristics: each
of the 10 curves is similar to each other, as expected, but they are not identical; there is no
specific curve that best represents dynamic resistance; and the utilization of the boxplot
facilitates the identification of DRM parameters that best represent the operational state
of the contact, overcoming the challenge of curve variation between tests. Boxplot charts
proved to be valuable visual aids for analyzing dataset behavior. Moreover, the third
quartile, also utilized as an input parameter for the fuzzy-logic-based classification system,
yielded percentage degradation values consistent with the evaluation obtained by the
traditional DRM method.

The proposed technique stands out as being a good asset management tool, provid-
ing an objective and non-subjective information regarding CB contact degradation level.
However, a prior analysis of the CB model to be analyzed is required since there may be a
significant difference in the maximum contact resistance suggested by the equipment manu-
facturer. Moreover, the classification of contact degradation level provides complementary
information to other diagnostic techniques, serving as a tool to support the decision to take
equipment out of operation.
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