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Abstract: A major goal of the “14th Five-Year Plan” phase is to promote the green transformation of
industrial enterprises to address the ‘dual carbon’ challenge. Utilizing the China Industrial Enterprises
Database and the Polluting Enterprises Database, this paper calculates the carbon emissions of
Chinese industrial enterprises from 2001 to 2010 at the micro level. It presents an analysis of the
heterogeneity of carbon emission efficiency (TPI) in industrial enterprises, as well as the factors
influencing corporate TPI. This study finds that enterprises within a subdivided industry exhibit
heterogeneous levels of TPI, with carbon emissions largely affected by the structure of energy
consumption. The researchers suggest accelerating the transition of industrial enterprises to green
technology and argue that carbon emission policies should shift from controlling direct total targets
to strengthening market-oriented policy tools. Carbon reduction targets should be more stringent
for enterprises with lower TPI, considering the heterogeneity among enterprises. To meet the
challenges of emission reduction, industrial enterprises are encouraged to actively reform their
energy consumption structure. Government policies should aim to reduce clean energy costs and
encourage the use of clean energy by industrial enterprises.

Keywords: industrial enterprises; carbon emission efficiency; heterogeneity; carbon emission policy

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) has reported in its Fifth
Assessment Report that global ocean and land temperatures have increased by 0.85 ◦C from
the end of the 19th century to the beginning of the 21st century, and this trend is on the
rise. Between 2000 and 2012, the average global ocean and land temperature was 0.78 ◦C
higher than during the period of 1850–1900. Climate warming has brought significant
impacts to human society, including increasingly frequent natural disasters, rising sea
levels, and the melting of perennial snow mountains, continuously eroding the foundations
of human existence. The mainstream view, supported by the IPCC’s Fifth Assessment
Report, holds that global warming is caused by human activities [1]. However, some
scholars, like Singer [2], hold different opinions. They argue that, considering the Earth’s
evolutionary cycle, it cannot be proven that global warming is solely caused by human
activities, and suggest that solar activity is a main reason for the Earth’s climate warming.
Despite the lack of conclusive evidence directly linking greenhouse gas emissions to global
warming, objective data support that human activities have significantly contributed to
carbon emissions that have led to global warming. In order to slow down climate change,
reducing carbon emissions is vital. Several climate change agreements have been formed
in recent years: the Kyoto Protocol in 2005, the Bali Roadmap for emissions reductions in
2007, the Copenhagen Agreement in 2009, and the Paris Agreement in 2015, all committed
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to global cooperation to slow the trend in climate warming. China, currently the world’s
largest emitter of carbon dioxide, accounting for 28% of global emissions in 2015, has
committed to reducing its carbon emission intensity by 40–45% by 2020 and 60–65% by
2030 compared to the 2005 levels, and to peak its absolute emissions by 2030 or even
earlier. As an energy-intensive industry, industrial energy consumption and carbon dioxide
emissions account for about 70% of the national total, making the industry significantly
important for China to achieve its emission reduction targets.

Existing research on carbon emissions primarily focuses on the regional level, with
limited attention paid to the enterprise level. In reality, carbon emissions efficiency varies
greatly among enterprises. For instance, carbon emissions at the enterprise level have
been calculated by Xu et al. [3], indicating that the key to achieving coordinated emission
reductions lies in reducing the source of emissions. Increasing energy efficiency is more
effective than reducing output to reduce enterprises’ sources of pollution. However, the
scope of this study was limited to calculations and did not explore the underlying factors
that determine enterprise carbon emission reductions. In addition to calculating enterprise
carbon emissions, Wang et al. [4] analyzed a sample of Chinese industrial enterprises but
did not conduct further analysis. They found that the average energy intensity of major
industrial products, both domestically and internationally, is at or even higher than the
world’s advanced level when compared to the product energy intensity of super-large
companies and key energy-consuming firms in China. However, the average energy-saving
level of the industry lags behind. It is evident that enterprises within the same industry in
China emit significantly different levels of carbon dioxide [5].

The purpose of this paper is to examine the influencing factors and potential hetero-
geneity of carbon emission efficiency (TPI) as addressed in the existing literature, utilizing
the Industrial Enterprises Database and the Pollution Emission Database. The TPIs of
enterprises within subdivided industries show significant differences, with no trend to-
wards narrowing these gaps. These findings contribute to understanding the paradox of
China experiencing “micro-level technological catch-up” while overall carbon emission
reduction efficiency lags behind. Based on this discovery, there is a need for China to
further focus its capacity on more efficient enterprises to enhance its TPI in the future. Ad-
ditionally, this paper delves into the factors influencing the energy efficiency of enterprises,
investigating the determinants of TPI among enterprises within the same industry using a
matched sample of Chinese polluting enterprises and industrial enterprises from 2001 to
2010. Heterogeneity tests will be conducted based on industry, region, years of operation,
and industry agglomeration. The findings suggest that an enterprise’s scale significantly
explains its TPI, indicating that further improvements in TPI are likely to be influenced by
this factor.

This paper offers the following innovations and contributions: Unlike the existing
literature that focuses on regional and listed company carbon emissions, this study intro-
duces novelty in two key aspects. First, it leverages microdata from Chinese enterprises to
calculate carbon emission efficiency and explores the heterogeneity of efficiency among
these enterprises. Second, it goes beyond merely measuring carbon emissions by study-
ing the factors affecting the carbon emission efficiency of industrial enterprises and the
characteristics of the heterogeneity of carbon emission efficiency at the Chinese enterprise
level. It also investigates which factors have the most significant impact on the efficiency of
enterprise carbon emissions. These efforts enrich the understanding of carbon emission
efficiency characteristics in Chinese enterprises.

The remainder of the paper is structured as follows: The second part discusses the
factors that drive carbon emissions and their efficiency. The third part details the data
sources and processing methods for each variable, including the method for calculating
the TPI. The fourth part identifies the factors influencing the efficiency of enterprises in
terms of carbon emissions and conducts heterogeneity analyses of enterprise TPI from the
perspective of enterprise heterogeneity, providing a basis for the policy analysis presented
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in the subsequent sections. Conclusions and policy recommendations are presented in the
final part of the paper.

2. Literature Review

Carbon emissions productivity is defined by Jiang et al. [6], who propose the ratio of
carbon emissions to GDP as a measure of it, suggesting that as human production activities
expand, carbon emissions will increase, adversely affecting human production and life. A
carbon emission productivity measure was also developed by Sun [7]. Carbon emissions
have been measured as a percentage of the added value of industrial activities over a period
of time by Mielnik and Goldemberg [8]. Ang [9] considered energy intensity as an indicator
of a country’s TPI. Hampf and Rødseth [10] used industrial investment as a measure of
TPI. Based on a comprehensive review of existing research, Zhang et al. [11] have proposed
comparing various TPI indicators, including per capita carbon emissions and GDP per
capita carbon emissions. It is evident that the majority of the scholars mentioned above
have studied the efficiency of carbon emissions from the perspective of a single factor.
However, carbon emissions are not merely a function of one factor but also of the structure
of the economy, the industry, the energy system, and technological advancement. Zhou
et al. [12], who measured TPI by incorporating industrial structure, energy structure,
and technological progress, have therefore begun to take a multi-factor approach to the
measurement of carbon emissions.

The SBM-DEA model is used to analyze the effects of energy structure on the economy
and carbon emissions, drawing on sample data from 29 countries or regions. Lin et al. [13]
have utilized sample data from 29 countries or regions worldwide for their analysis using
this model. Kuang et al. [14] have applied the SBM-DEA model to estimate land use
efficiency in China, using provincial samples. Zhou et al. [15] have calculated China’s
construction industry’s TPI using the SBM-DEA model and examined the influencing
factors through the GVAR model. Zaim and Taskin [16] have suggested that the SFA model
could calculate a TPI index based on data from OECD countries. Zofio and Prieto [17]
have calculated TPI based on data from the European Union. Ramanathan [18,19] has
explored the efficiency of carbon emissions under total factor conditions, evaluating the
relationship between carbon emissions, energy consumption, economic development, and
other factors. Zhou et al. [20], using carbon emission data from 20 countries worldwide,
calculated TPI using the Malmquist index method and studied its dynamic changes and
influencing factors using the nonparametric Bootstrap method. Using carbon emission data
from 44 countries between 2000 and 2009, Talukdar and Meisner [21] have calculated TPI
and analyzed how changes in industrial structure have affected TPI from the perspectives
of agriculture, industry, and services.

Kortelainen [22] has analyzed the influencing factors of TPI using dynamic panel data
regression and utilized carbon emission data from the EU from 1990 to 2003 to calculate TPI
for 20 EU countries. Techniques such as CCR, BCC, three-stage DEA, and the Malmquist
index have been widely employed to calculate TPI amid the continuous development of
computer technology [23]. Ramanathan [24] has conducted a comparison of the CCR and
BCC models using inputs and outputs of greenhouse gas emissions for 17 African countries.
Yao et al. [25], analyzing carbon emissions for 30 provinces in China for 2011, calculated
energy efficiency, TPI, and carbon reduction potential of those provinces and suggested
countermeasures for reducing carbon emissions. The DEA model and fuzzy clustering
algorithms were combined by Xia et al. [26] based on emissions data from China’s industrial
sector from 2002–2007 to estimate the efficiency of various industries’ carbon emissions. A
study by Zhou et al. [27], using carbon emission data from 50 countries to calculate TPI
and predict the carbon emissions of these countries, employed the MCPI index method for
calculating TPI. Based on data on carbon emissions in 76 countries worldwide, Maradan
and Vassiliev [28] have estimated the marginal abatement cost of carbon emissions for
these countries using the nonparametric directional distance function in the DEA model.
A comparative study of SFA and DEA models, based on US carbon emission data, was
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conducted by Reinhard et al. [29]. To calculate the TPI of the industrial sector, Tone et al. [30]
have used data from the UK industrial sector. The DEA model was utilized by Hailu [31] to
estimate the marginal abatement cost of Canada’s papermaking sector based on Canadian
carbon emission data.

There has been considerable study on TPI from both regional and industry perspec-
tives, as evidenced by the aforementioned literature. However, with enterprises being the
main entities responsible for carbon emissions, few scholars have focused on calculating
and analyzing the factors affecting their TPI. This paper aims to calculate the carbon emis-
sions of industrial enterprises and analyze the factors affecting their TPI using the China
Industrial Enterprises Database and the Enterprise Pollution Emission Database.

3. Calculation of Enterprise Carbon Emission Efficiency
3.1. Data Sources and Processing

This paper compares enterprise-level TPI differences and analyzes the factors influenc-
ing them using data from China’s Polluting Enterprises (2001–2010) and China Industrial
Enterprises (2001–2009), matching these datasets. According to the China Polluting En-
terprises data, 85% of China’s major pollutants originate from enterprises that produce
industrial output, consume energy, and emit pollution. The monitoring system included
219,810 industrial enterprises between 2001 and 2010. Environmental protection depart-
ments compile these data based on self-reporting by polluting enterprises, with local
environmental protection departments conducting irregular inspections at the county level
to ensure data accuracy. These environmental microeconomic data are regarded as the
most comprehensive and reliable in China [32]. Since 2006, pollution emissions from the
thermal power industry have been excluded from environmental monitoring statistics due
to changes in the environmental statistics reporting system during the “11th Five-Year Plan”
period. To ensure data consistency and continuity, all sample firms in the fields of electricity,
heat production, and supply were excluded from the analysis. Additionally, following the
sequential matching method proposed by Brand et al. [33], and drawing upon the practices
of Cai and Liu [34] and Feenstra et al. [35], value-added data and financial information for
the sample enterprises were obtained. The first step involves processing the industrial and
pollution discharge databases according to Brandt [33]. The second step matches the data
according to the enterprise name and year with the pollution discharge database. The third
step uses the organization code and year for matching. The fourth step merges the matched
data from the second and third steps, removing duplicates. Finally, the industrial enterprise
database after matching is obtained. For industrial output, enterprise sales, and fixed
assets, extreme values within the top and bottom 5% quantiles were excluded from the
analysis. Overall, the sample matched 58% of enterprises with industrial outputs greater
than 10 million yuan, achieving a matching rate of 69% for enterprises with higher outputs.

3.2. Calculation of Carbon Emission Efficiency

By comparing carbon emissions to enterprise income, this paper measures the TPI of
enterprises following the approach of Lyubich et al. [36], which also makes this indicator
comparable with other efficiency measurement indicators. Specifically, this is detailed in
Formula (1).

TPI =
Output
Cabon

(1)

Coal, coke, fuel oil, diesel, and natural gas are included in the China Polluting En-
terprises database to account for enterprise carbon emissions. For this paper, the IPCC’s
carbon emission coefficients were utilized to calculate the carbon emissions from different
energy sources.

3.3. Calculation Results of Carbon Emission Efficienc Heterogeneity

This study examined the carbon emissions efficiency of different enterprises within sub-
divided industries, drawing on the approaches of Syverson [37] and Hsieh and Klenow [38].
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As a first step, the enterprises were subdivided into 320 subsectors based on the four-digit
codes of the national economy, of which 104 were classified as high-energy consumption
industries. This classification provided a reference for measuring the degree of difference in
other variables among firms within subdivided industries. Following this, we obtained the
distribution function of the natural logarithm of the efficiency of reducing carbon emissions
of companies within each subdivided industry. To quantify the heterogeneity of TPI within
each subdivided industry, the differences between the 90th and 10th percentiles, the 75th
and 25th percentiles, as well as the standard deviation within each subdivided industry,
were calculated. The 320 subdivided industries exhibited considerable heterogeneity in
the efficiency of carbon emissions. For example, when using the same amount of energy, a
company at the 90th percentile of the industry TPI distribution can increase its industrial
output by 53.9 times compared to a company at the 10th percentile (see Figure 1a).
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In addition, there has been no decrease in the significant disparity in carbon emissions
among enterprises within the same industry in China over time, as illustrated in Figure 1a.
TPI distributions within subdivided industries consistently show a difference of 7.39 times
between enterprises at the 90th percentile and those at the 10th percentile with the same
energy input. According to Figure 1b, since 2005, there has been a slight increase in the
heterogeneity of TPI across industries in China. The implementation of the ‘Top 1000
Energy-Consuming Enterprises Program’ by the Chinese government in 2006 as part of the
11th Five-Year Plan may explain this change. This program required the largest thousand
enterprises in nine key energy-consuming industries to save 100 million tons of coal and
established legal documents to set binding energy-saving targets for enterprises. As shown
in Figure 1c, the energy efficiency distribution of high-efficiency industrial enterprises
in China (at the 90th percentile of energy productivity distribution within subdivided
industries) shifted noticeably to the right in 2006, resulting in further improvements in
energy efficiency. On one hand, these large, high-efficiency enterprises implemented
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advanced technology and equipment to achieve energy-saving goals. On the other hand,
enterprises struggling to meet energy-saving tasks were forced to reduce production,
transferring demand to other enterprises in the market, thereby increasing market demand,
raising related industrial product prices, and leading to lower industry entry barriers and
an influx of low-productivity enterprises. Figure 1d shows how the TPI distribution in
low-efficiency industrial enterprises in China shifted from the right to the left between
2006 and 2007. Consequently, the increased carbon emissions efficiency of high-efficiency
enterprises and the inflow of low-efficiency enterprises into the market have contributed to
an increase in the disparity in carbon emissions efficiency within the industry.

Considering that the steel, coal, petrochemical, building materials, chemical, and
papermaking industries are generally regarded as high-energy-consuming industries, this
paper further analyzes these key subdivided industries. As depicted in Figure 2, the coal
mining and washing industry exhibits the greatest heterogeneity in TPI. With the same
energy input, the output of enterprises at the 90th percentile of energy productivity distribu-
tion within this industry is 396 times that of enterprises at the 10th percentile. This indicates
that the coal mining and washing industry contains a significant number of backward
capacities relying on resource-consuming expansion, urgently requiring the shutdown
of low-efficiency enterprises and the elimination of outdated capacities. Although the
heterogeneity of TPI in the steel industry has gradually decreased since 2004, there has
been a rising trend in recent years.
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4. Factors Influencing Enterprise Carbon Emission Efficiency
4.1. Model Construction

To analyze the driving factors of TPI in industrial enterprises, this paper utilized
samples generated from a comparison between the China Industrial Enterprises Database
and the Polluting Enterprises Database. This approach enabled a deeper understanding of
the differences in TPI among enterprises within various industries. The characteristics and
behaviors of industrial enterprises, along with regional factors such as geographical location
and economic development, can significantly affect their TPI. Consequently, the aim of
this study is to explore the factors that influence the carbon dioxide emission efficiency of
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industrial enterprises at both the company and regional levels. The econometric model
constructed for this purpose is as follows:

Ln(TPI i,j,k,t) =βXi,j,k,t + αi + λj,t + µk,t + εi,j,k,t (2)

In the above formula, TPIi,j,k,t represents the TPI of enterprises i in j industry in
k province in t year, Ln(TPIi,j,k,t) is its logarithmic value, Xi,j,k,t is the core explanatory
variable, β is the coefficient of the core explanatory variable, αi is the constant term, λj,t is
the industry and time effect, µk,t is the regional and time effect, and εi,j,k,t is the random
error term.

4.2. Variable Selection

Dependent variable (TPI): The results calculated in Section 3 were utilized. For the
selection of explanatory variables, this paper drew upon the findings of the related literature
and selected enterprise size, coal consumption, enterprise profit, export delivery value, and
total factor productivity as explanatory variables. The explanations for each are as follows:

Enterprise size (zczj): Carbon emissions are significantly influenced by an enterprise’s
size. A larger scale can lead to a more pronounced scale effect, lower cost per unit of output,
and lower carbon intensity per unit of output. This paper measures enterprise size by the
logarithm of total assets. Coal consumption(lncoal): China derives approximately 70%
of its energy from coal, and the structure of its energy consumption has not significantly
changed, as there has been no significant substitution of different energy sources. Therefore,
the quantity of coal consumed by Chinese industrial enterprises can serve as a good
indicator of their energy input. Enterprise profit (lnprofit): An increase in enterprise
profit may promote employee motivation and innovation, improve production efficiency,
encourage the adoption of environmentally friendly technology and management practices
by enterprises, reduce carbon emissions, and create favorable conditions for improving
TPI. Export volume (lnckihz): Numerous studies have confirmed that exports can enhance
enterprise productivity. This enhancement is primarily achieved through competition
mechanisms, technology spillover mechanisms, demonstration mechanisms, and reverse
incentive mechanisms. In this paper, export delivery value is used as a measure. Total factor
productivity (tfp): An increase in total factor productivity contributes to an improvement
in energy efficiency and, therefore, a reduction in carbon dioxide emissions. See Table 1
below with descriptive statistics for the variables.

Table 1. Descriptive statistics of variables.

Variable Obs Mean Std. Dev. Min Max

lneff 145,000 4.009 2.113 −0.815 11.017
lnzczj 145,000 10.696 1.654 0 18.81
lncoal 126,000 7.389 2.067 −0.336 16.109

lnprofit 109,000 7.411 2.324 0 16.563
lnckjhz 145,000 2.548 4.393 0 17.245

tfp 144,000 4.684 1.859 −7.666 12.706
Note: Obs is the number of samples, Mean is the average, Std. Dev. is the standard deviation, Min is the minimum,
and Max is the maximum.

4.3. Basic Regression

Tables 2 and 3 report the regression results for samples from all industrial sectors
and high-energy-consuming industries, respectively. The main explanatory variables
and enterprise TPI are significantly correlated, with regression coefficients consistent
with expectations.



Energies 2024, 17, 917 8 of 15

Table 2. Stepwise regression results of industrial enterprise TPI.

(1) (2) (3) (4) (5)
lneff lneff lneff lneff lneff

lnzczj 0.204 *** 0.287 *** 0.190 *** 0.189 *** 0.138 ***
(34.863) (71.469) (39.967) (39.842) (36.496)

lncoal −0.866 *** −0.908 *** −0.909 *** −0.912 ***
(−252.150) (−232.288) (−232.727) (−294.410)

lnprofit 0.105 *** 0.105 *** 0.052 ***
(51.283) (51.131) (31.231)

lnckjhz 0.012 *** 0.008 ***
(10.130) (8.640)

tfp 0.571 ***
(170.605)

_cons 1.798 *** 7.160 *** 7.930 *** 7.921 *** 6.065 ***
(28.531) (148.907) (144.928) (144.886) (135.507)

N 120,616 104,178 75,245 75,245 75,053
R2 0.894 0.952 0.957 0.957 0.973

t statistics in parentheses. 5, *** p < 0.01.

In industrial enterprises, economies of scale are evident from the size of the enter-
prise. This indicates that the size of an enterprise has a significant positive impact on
the comprehensive efficiency of carbon emissions. Energy efficiency can be enhanced by
upgrading equipment, which often requires substantial investments in fixed assets. Only
larger-scale enterprises have the financial capability to afford such expensive equipment.
Under financial constraints, some small- and medium-sized enterprises maintain basic
production without the luxury of advanced equipment, leading to lower energy efficiency
and higher carbon emissions. Conversely, enterprises with high carbon dioxide emissions
are predominantly found in industries that consume large amounts of energy, such as the
metallurgical and nuclear industries. These high-energy-consuming enterprises require
high-temperature environments in their production processes. Expanding production scale
helps reduce heat loss, thereby saving energy. Companies with more resources can engage
in circular production, which reduces carbon emissions per unit of product, thus enhancing
the overall efficiency of carbon emission utilization.

Table 3. The basic regression results of TPI for industrial enterprises with different fixed effects.

(1) (2) (3) (4)
lneff lneff lneff lneff

lnzczj 0.435 *** 0.505 *** 0.086 *** 0.138 ***
(197.679) (298.003) (20.288) (36.496)

lncoal −0.913 *** −0.908 *** −0.865 *** −0.912 ***
(−651.149) (−861.212) (−206.546) (−294.410)

lnprofit 0.179 *** 0.081 *** 0.133 *** 0.052 ***
(118.529) (68.395) (60.725) (31.231)

lnckjhz 0.023 *** 0.018 *** 0.002 0.008 ***
(36.420) (37.607) (1.511) (8.640)

tfp 0.188 *** 0.620 *** 0.098 *** 0.571 ***
(125.163) (276.039) (64.390) (170.605)

_cons 3.788 *** 1.615 *** 8.032 *** 6.065 ***
(206.653) (100.163) (161.185) (135.507)

N 94,907 94,907 75,053 75,053
R2 0.843 0.913 0.950 0.973

t statistics in parentheses. 5, *** p < 0.01.

It is crucial to acknowledge that China’s energy characteristics are marked by a
coal-dominated energy consumption structure, with limited oil resources and scarce gas.
Approximately 75% of the country’s total energy production comes from coal, and 65% of



Energies 2024, 17, 917 9 of 15

its total energy consumption is derived from coal. By 2030, it is expected that non-fossil
energy consumption will be optimized to 20%, and coal consumption will decrease by ap-
proximately 50% as a result of intensified energy structure adjustments. However, altering
the coal-dominated structure of energy consumption remains a challenge. Consequently,
carbon dioxide emissions are primarily caused by energy consumption based on coal.
TPI significantly improves when corporate profits are high, a phenomenon that can be
explained from two main perspectives: employee motivation and innovation, and social
responsibility and sustainable operation. On one hand, a positive relationship exists be-
tween profits and employee motivation and innovation. This incentive mechanism involves
not only material rewards but also the recognition of employees’ value, thereby inspiring
greater work motivation. In this context, employees are more likely to engage in innovative
activities, seeking new methods and technologies to reduce carbon emissions. On the other
hand, a company’s reputation for social responsibility plays a crucial role. Companies
known for their social responsibility are more likely to adopt environmentally friendly
production technologies, thus reducing carbon emissions. In summary, high profits not
only inspire employees’ enthusiasm and innovative potential but also reflect a company’s
commitment to social responsibility and sustainable operation. These factors collectively
drive companies towards more environmentally friendly and sustainable development,
ultimately enhancing TPI.

Improving TPI is significantly attributed to exports. The clientele of export enterprises,
often being developed countries, necessitate the continuous improvement in product
quality, as these countries maintain high standards for exported goods. To enhance product
quality, export enterprises frequently increase R&D investment, boost overall productivity,
and strengthen market competitiveness. In the market, inefficient enterprises tend to
lose their competitive edge. Higher-quality products are generally more energy-efficient,
consume less energy, and emit less CO2. Moreover, by engaging in exports, enterprises
can integrate into the global value chain, acquiring advanced management experience and
technology through international trade, which elevates their technical level and overall
productivity, and reduces energy input. Additionally, importing enterprises in developed
countries aiming to meet domestic standards and consumer demand for high-quality
products may transfer production equipment or provide technical guidance to exporting
companies. This ensures that the exported products meet environmental and quality
standards, fostering continuous technological innovation and enhanced R&D capabilities
in exporting companies, which in turn promotes the production of cleaner products and
thereby increases TPI.

It is possible to significantly improve an enterprise’s TPI by increasing total factor
productivity. Efforts to achieve high-quality economic development represent one of the
feasible approaches to reducing the currently high rate of carbon emissions in the country.
The primary drivers of China’s economic growth are labor, capital, and energy inputs.
Moreover, regarding internal mechanisms, industrial agglomeration has mediated the
relationship between total factor productivity and itself. Carbon emissions efficiency can
be enhanced by maximizing the benefits of scale in industrial agglomeration areas and
developing clean production technologies.

4.4. Heterogeneity Test

Based on the benchmark regression, this article incorporates control variables such
as regional differences and the degree of industry agglomeration to further explore the
reasons behind the heterogeneity in TPI among Chinese industrial enterprises. According
to column (1) in Table 4, after including regional control variables, the TPI tends to be
higher in the eastern regions, while it tends to be lower in the central and western regions.
A significant factor affecting the TPI of enterprises is the endowment of energy resources
in different regions. Due to lower TPI, companies are more likely to select resource-rich
western regions; however, in line with the ‘resource curse’ theory, an increased endowment
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of energy resources weakens enterprises’ awareness of energy savings, resulting in reduced
carbon emissions efficiency.

Table 4. Heterogeneity test of TPI in industrial enterprises.

(1) (2) (3) (4) (5)
lneff lneff lneff lneff lneff

lnzczj 0.138 *** 0.136 *** 0.138 *** 0.138 *** 0.138 ***
(36.455) (35.894) (36.471) (36.484) (36.426)

lncoal −0.912 *** −0.912 *** −0.913 *** −0.912 *** −0.912 ***
(−294.410) (−294.692) (−295.636) (−294.448) (−294.564)

lnprofit 0.052 *** 0.052 *** 0.051 *** 0.052 *** 0.052 ***
(31.219) (31.375) (30.952) (31.252) (31.269)

lnckjhz 0.008 *** 0.008 *** 0.008 *** 0.008 *** 0.008 ***
(8.623) (8.724) (8.731) (8.624) (8.625)

tfp 0.571 *** 0.570 *** 0.575 *** 0.571 *** 0.571 ***
(170.614) (170.298) (172.006) (170.574) (170.674)

dist −0.370 **
(−2.095)

hhi_gyzcz −0.162 ***
(−11.278)

soe 0.194 ***
(17.898)

ind 0.197 ***
(4.128)

maturity 0.002 ***
(6.077)

_cons 6.659 *** 6.143 *** 6.040 *** 5.679 *** 6.011 ***
(23.178) (135.802) (135.333) (54.808) (131.846)

N 75,053 75,053 75,053 75,053 75,053
R2 0.973 0.973 0.973 0.973 0.973

t statistics in parentheses. 0, ** p < 0.05, *** p < 0.01.

Column (1) in Table 4 shows that after adding the industrial agglomeration control
variable, industrial agglomeration does not play the expected role, suggesting no significant
spatial agglomeration effect in the industry. This lack of agglomeration reduces the level
of professional division of labor and specialization, leads to redundant investment in
infrastructure, increases the wastage of energy resources, and reduces the spillover effect of
technology, especially green technology. This scenario is not conducive to mutual learning
among enterprises and reduces both energy efficiency and TPI.

State-owned enterprises (SOEs) are more efficient at reducing carbon emissions than
other enterprises due to their greater financial capacity for research and development
innovation, exhibiting higher efficiency under the same conditions, as indicated in column
(3) of Table 4. Although SOEs face issues such as soft budget constraints, lack of incentives,
and limited operational autonomy, the government has intensified its assessment of SOEs
in recent years. This includes accelerating the construction of a unified national market and
ensuring equal treatment for all enterprises in aspects like loans and energy acquisition.
Especially with rising labor and other factor costs, the energy usage costs for SOEs have
increased, enhancing their TPI.

The TPIs of different industries also varies significantly. The manufacturing industry
exhibits a significantly higher TPI than the mining industry, as shown in column (4) of
Table 4. The low efficiency of the mining industry can be attributed to its focus on primary
processing products and the fact that most mining products are imported from overseas,
with limited exports from China. The manufacturing industry, being labor-intensive, can
boost employee efficiency and reduce carbon emissions by increasing wage levels. In
contrast, the mining industry, relying more on mechanized production, experiences a
relatively smaller impact on carbon emissions from wage increases, which are primarily
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determined by equipment and technological levels. In order to reduce carbon emissions
per unit of output value, enterprises optimize production processes and maximize resource
use to increase output value. As technology advances and efficient production methods are
developed, large-scale manufacturing becomes more efficient at reducing carbon emissions.
By increasing output value, the mining industry may be able to utilize resources more
effectively and reduce carbon emissions. Through improvements in production efficiency
and resource utilization, industrial enterprises can reduce carbon emissions while pursuing
economic benefits.

There is a relationship between the establishment duration of different enterprises
and their TPI. The longer an enterprise has been in operation, the lower its TPI, as shown
in column (5) of Table 4. This trend is primarily evident in enterprises that are in their
maturity or decline phases. Such enterprises usually have established mature markets with
less sales pressure and often benefit from a strong brand effect. As a result, their operations
are not significantly affected by outdated capacities or increased costs, leading to a lack
of motivation to reduce carbon emissions and improve energy efficiency. Additionally,
enterprises in the maturity and decline phases often have fixed investments in high-priced
equipment, which cannot be easily replaced, resulting in lower TPI. In contrast, emerging
enterprises entering the market face significant sales and competitive pressures. It is crucial
for them to increase their research and development funding and adopt more advanced
technologies to improve their product quality. Carbon emissions efficiency is improved
as a result of heightened awareness, leading to a reduction in carbon footprint per unit of
product and an overall improvement in greenhouse gas emissions.

4.5. Further Discussion

To determine the relative importance of the different factors influencing enterprise
TPI, this paper has identified the factors that significantly affect enterprise TPI. Figure 2
illustrates the effects of various variables on the TPI of enterprises within the same industry
between 2001 and 2010 using the Shapley value decomposition framework developed
by Shorrocks [39]. This model serves as a reference for distinguishing the importance of
different factors.

According to the Shapley value framework, Figure 3 presents the results of the de-
composition. Among all influencing factors, coal consumption, representing the energy
structure and the size of the enterprise, as the most significant factors affecting TPI within
an organization. Specifically, the structure of energy consumption is the most crucial factor
influencing the heterogeneity among enterprises regarding TPI. Economic growth and
emission reduction represent dual demands faced by contemporary Chinese industrial
enterprises. Carbon dioxide emissions tend to increase with economic growth, leading to
higher energy consumption, including both fossil and non-fossil fuels. Furthermore, as
China has integrated ‘dual carbon’ strategic goals into its comprehensive development
strategy for economic, social, and ecological civilization, the industrial sector must adhere
to policies aimed at reducing carbon dioxide emissions, given it is the largest source of
greenhouse gases.

Enterprises that do not meet the threshold of the carbon emission trading market
will seek alternative ways to improve, such as by adjusting their energy consumption
profiles. One strategy for adjusting the energy structure involves increasing the proportion
of clean energy in the energy consumption mix or cleaning up the energy consumption
structure. Additionally, diversifying the types of energy consumed and moving away from
non-clean energy sources can improve the balance of energy consumption. Theoretically,
these reforms in the energy consumption structure can reduce industrial carbon dioxide
emissions to some extent, thereby altering the decoupling state of the industrial economy
from carbon emissions. Especially in the context of energy conservation and emissions
reduction, statistics from China’s National Development and Reform Commission in
2022 indicate that China’s coal consumption did not decrease but instead grew by 4.3%.
Meanwhile, the consumption of crude oil and natural gas declined. Coal consumption
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accounted for 56.2% of total energy consumption, making up more than half of the overall
energy consumption.
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The scale of an enterprise significantly impacts TPI, in addition to the structure of
energy consumption. The fixed costs associated with advanced technology equipment that
is highly energy-efficient are typically high, which only ultra-large-scale enterprises can
address. Furthermore, the expansion of production scale helps decrease energy loss in
high-energy-consuming industries due to the need for high-temperature environments,
which reduces heat dissipation areas. Additionally, large enterprises can improve TPI
through waste heat recovery and utilization. For example, in the production of steel and
cement, waste heat can be used for power generation. However, small enterprises often
lack the relevant technology and equipment to recycle waste heat and energy, resulting
in considerable energy loss. According to the Environmental Kuznets Curve theory, the
relationship between carbon emissions and economic growth exhibits an inverted U-shaped
characteristic. The size of enterprises is a manifestation of this phenomenon, which has
been confirmed in numerous studies [40–42].

5. Conclusions and Policy Recommendations

Between 2001 and 2010, micro-level data from Chinese industrial enterprises within the
same industry were analyzed to measure heterogeneity in Total Factor Productivity (TPI).
The study finds substantial differences in TPIs within segmented industries. Industries
that consume high quantities of energy, including coal mining and washing, as well as
smelting and processing ferrous metals, exhibit significant disparity in TPI. The structure of
energy consumption and the scale of the enterprise are identified as the two most important
factors affecting TPI, suggesting a need for accelerating the energy transformation of
industrial enterprises.

This research suggests that future carbon emission policies by the government should
fully consider the potential impact of heterogeneity in enterprise TPI. Specific recommen-
dations include: 1⃝ Optimizing the Energy Structure: Carbon emission policies should
prioritize optimizing the energy structure, encouraging enterprises to reduce carbon emis-
sions by increasing the use of clean energy sources, such as solar, wind, and hydropower,
and reducing reliance on fossil fuels. Additionally, adopting energy recovery technologies
to enhance energy efficiency and reduce waste is recommended. 2⃝ Controlling Fossil Fuel
Consumption: It is crucial to control fossil fuel consumption and implement orderly coal
reductions in industries such as steel, building materials, petrochemicals, and non-ferrous
metals. This includes promoting efficient and environmentally friendly coal utilization
by developing a modern coal chemical industry that is stable and orderly, promoting the
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safe and efficient use of natural gas, and supporting the development of ‘photovoltaic
+ energy storage’ and other self-supplied power plants to improve access to clean en-
ergy locally. 3⃝ Optimizing the Capacity Scale of Key Industries: Revising the Industrial
Structure Adjustment Guidance Catalog and strictly implementing capacity-replacement
policies in industries such as steel, cement, flat glass, and electrolytic aluminum are advised.
Overcapacity analysis, early warnings, and guidance in key industries should be strength-
ened, with a focus on quickly resolving excess capacity. Establishing a comprehensive
standard system focused on environmental protection, energy efficiency, quality, safety,
and technology is also recommended. 4⃝ Coal Replacement in Key Areas: For new, modi-
fied, or expanded coal-using projects, the implementation of coal replacement with equal
or reduced amounts of coal or other energy sources is required by law. High-pollution
fuels like petroleum coke, coke, or blue coal should not be used as measures for reducing
coal consumption. Improving the management methods for reducing and replacing coal
consumption in key areas is essential, with support provided for existing self-supplied
coal-fired units to switch to clean energy. 5⃝ Considering Regional Heterogeneity in Car-
bon Emission Efficiency: If total carbon emission target control cannot be avoided, the
heterogeneity of carbon emission efficiency between regions should be fully considered.
Stricter energy-saving targets should be implemented for the eastern region and enterprises
with lower carbon emission efficiency to prevent the flow of backward production capac-
ity from efficient eastern regions to less efficient central and western regions, and from
high-efficiency large enterprises to less efficient small and medium-sized enterprises. Other
related carbon emission measures are outlined in Table 5.

Table 5. Carbon emission-reduction measures.

Path Content

Source Reduction Promote terminal electrification comprehensively, achieving source reduction

Energy Substitution Substitute traditional fossil energy with wind, solar, energy storage, hydrogen, etc.

Energy Saving and Efficiency Enhance energy efficiency in industries like manufacturing and construction

Recycling and Reuse Reduce carbon emissions in initial production processes, like steel scrap, battery
recycling, waste sorting, and solid waste treatment

Process Transformation Mainly focuses on upgrades in battery technology, smart grids, distributed power
sources, ultra-high voltage, energy internet, prefabricated construction, etc.

Carbon Capture and Storage
Separate carbon dioxide produced by industrial and related energy industries,

then use carbon storage methods to transport and store it in places isolated from
the atmosphere, like under the sea or underground

However, this paper has its limitations. Due to the availability of data, we were unable
to calculate the situation after 2011. Once updated data become available in the future,
we plan to extend this method to the period post-2011 to reflect the new changes and
characteristics in the development trend of China’s industrial carbon emissions. Since the
China Pollution Enterprise Database has not been updated after 2010, further research is
contingent upon its update. Moreover, this paper does not delve into the specific policies
discussed towards the end due to limitations in micro-level data availability and the
necessity to consider specific factors for evaluating each policy. It is hoped that this work
will alert policy-making bodies and the academic community to the impact of heterogeneity
in enterprise TPI on policy effectiveness, inspiring more follow-up research.
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