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Abstract: At this stage, the inspection of transmission lines is dominated by UAV inspection. Insula-
tors, as essential equipment for transmission line equipment, are susceptible to various factors during
UAV detection, and their detection results often lead to leakages and false detection. Combining
deep learning detection algorithms with the UAV transmission line inspection system can effectively
solve the current sensing problem. To improve the recognition accuracy of insulator detection, the
MS-COCO pre-training strategy that combines the FPN module with a cascading R-CNN algorithm
based on the ResNeXt-101 network is proposed. The purpose of this paper is to systematically and
comprehensively analyze mainstream isolator detection algorithms at the current stage and to verify
the effectiveness of the improved Cascade R-CNN X101 model by combining the mAP (mean Average
Precision) value and other related evaluation indices. Compared with Faster R-CNN, Retina Net,
and other detection algorithms, the model is highly accurate and can effectively deal with the false
detection, leakage, and non-recognition of the environment in online special detection. The research
in this paper provides a new idea for intelligent fault detection of transmission line insulators and
has some reference value for engineering applications.

Keywords: insulator; image processing; deep learning; target identification; neural network

1. Introduction

Insulators are hung on power lines, increasing the transmission distance, reducing
the current loss, and counteracting some of the capacitive effects of the circuit. When
isolators are exposed to the external environment for a long period, they are susceptible
to the environmental climate and other factors that can lead to rusting and breakages. To
ensure a stable power line operation, insulators in power lines must be inspected regularly
to eliminate fault factors early and minimize their impact [1-3]. The maturity of drone
inspection technology has greatly improved the efficiency of power line inspection while
placing immense strain on the work of inspection. Due to the huge amount of image data
collected by drones, the efficiency of manual inspection methods is extremely limited and
it is difficult to meet the requirements of the inspection task [4]. Therefore, there is a trend
toward the use of image processing technology and machine vision technology to carry out
automatic detection of aerial survey data.

Recent years have seen innovation in deep learning methods and rapid improvements
in computer hardware performance, and a variety of target detection methods based
on deep learning techniques have been proposed sequentially. The application of deep
learning methods to the field of electrical power sensing and the design of fault detection
algorithms for aerial inspection images using the corresponding techniques are of great
importance [5-7]. Here, we take insulators in the transmission line as detection objects and
combine the corresponding image processing and annotation methods to construct a new
isolator dataset to ameliorate the problem of poor detection accuracy due to an insufficient
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sample size. As well as comparing and analyzing the features and differences of the current
stage of deep learning algorithms, corresponding methods are used to improve them, and
the efficacy of the improved models is tested by a variety of evaluation indices. In the
research presented in this paper, we improve the accuracy of the detection algorithm, satisfy
the task requirement of accurately identifying insulators in aerial imagery, and provide a
new way of thinking to realize smart fault detection of transmission line insulators.

As computer graphics” computing capability has improved, machine vision technology
has been extensively used in the fault detection of power line isolators [8-10]. During the
inspection process, insulator images are first acquired using acquisition hardware such as
drones, followed by the construction of corresponding image-based datasets, and finally,
isolators are combined with target detection algorithms for localization as well as fault-type
analysis. There are two sorts of insulator fault detection algorithms available at this stage;
the first is the algorithm combined with traditional image processing technology, and
the second is the algorithm combined with deep learning. At this point, there are still
many problems with the traditional manual inspection method, and early research in this
area was carried out using image processing techniques for insulator fault detection. The
traditional methods focus primarily on isolators with different edge characteristics, such
as different texture characteristics, different grayscale characteristics, and different color
characteristics, by which the object is compared with the image parameters to be measured
and then calibrated based on the isolator data to predict whether the isolator belongs to the
fault class [11,12].

Several aspects of deep learning detection methods greatly outperform traditional
detection methods and are excellent concerning the effect of feature extraction on the
original image. To detect insulator faults, in the literature [13], CNN networks are applied
to image feature extraction by fusing the SOM network with the corresponding feature
maps and also by combining the superpixel algorithm to aggregate maps of pixels with
common visual features as a means of obtaining clearer images of the edges of objects.
In the literature [14], the feature extraction network makes use of U-Net, which merges
the deep and shallow images in the convolutional layer and then sequentially locates and
identifies the isolating objects for both shallow and deep images. This method makes
the detection effect enhanced up to a point but is susceptible to the influence of shallow
background complications. As a result, the search method in this paper for obtaining
excellent results is limited to datasets with clear backgrounds. In the literature [1], the
isolation detection algorithm uses SSD, which is first trained using the SSD algorithm to
achieve the initial training effect of the training set, and simultaneously begins training the
secondary optimization for objects with differing levels of interference and background
complexity depending on the weight ratio, which improves the robustness of the detection
method as well as the adaptivity of the network model, and this method can efficiently cope
with and handle multiple complex sensing environments. In the literature [15,16], they
propose a novel insulator detection algorithm with a YOLOv3-based network model, which
enhances its diversity on that basis and is endowed with more detector training angles.
This allows the detection algorithm to detect isolating objects facing different angles,
effectively improving the adaptive ability of the algorithm. They propose an isolation
detection algorithm based on the Faster R-CNN network model that has been proposed in
the literature [17], including the powerful performance of this model’s feature extraction
network, deepening the computational depth of the model while at the same time increasing
a lower computational pressure. In addition, the algorithm classifies the region of interest
and iteratively corrects the prediction framework based on the correction coefficient, which
effectively improves the accuracy of the algorithm in insulator identification. It can also
merge FCN networks to semantically segment isolator datasets in complex settings.

In summary, it is important to investigate efficient and accurate insulator fault detec-
tion algorithms using image processing and deep learning technologies to build a smart
power inspection system, determine insulator locations, and detect fault zones. In this
paper, we will apply the theory of deep learning to the industrial sensing system framework
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from the point of view of deep learning detection methods and propose an MS-COCO
pre-training strategy, combined with the FPN module and ResNeXt-101 network to en-
hance the Cascade R-CNN algorithm, to improve the recognition accuracy of insulator
detection algorithms.

2. Processing of Image Datasets

All of the image data used in this paper are obtained from data that are publicly
available on Github from the National Grid and transmission line research institutions.
There are problems with the data obtained by the above means, such as poor clarity and
low capacity, which make the study of image detection algorithms somewhat limited. This
is mainly due to the more tedious project of filming a power line inspection, due to the
difficulty of conducting and implementing it, as well as data privacy; it is not easy to obtain
a large, publicly available dataset of insulator images of the power line environment.

2.1. Image Pre-Processing

When a UAV inspection system acquires imagery, its work is typically outdoors and
shot at high altitudes, which is highly susceptible to interference by weather, light, and
other factors. The acquired images in this environment tend to be poor, including a lack of
clarity, uneven light and darkness, and other issues. This image data were directly used in
the subsequent study to train the deep learning detection algorithm, which would largely
affect the effectiveness of the model training due to a lack of obvious image characteristics.
Before training the detection model, suitable image preprocessing techniques are adopted
to improve the best image features as well as to remove interference information from the
images. This improves the image quality of the training dataset and allows the detection
model to be trained more efficiently.

For the dataset obtained in this paper, there are large differences in light and dark
as well as noise pollution due to environmental factors. In this paper, we adopt the
corresponding image preprocessing methods for both of these situations.

2.1.1. Image Enhancement

A variety of factors affect the image capture process during drone inspections of
transmission lines. If the background of the shot is too bright, if it is a sunny day, or if it
is facing the sun, the brightness of the image will be particularly high. If the background
of the shot is too dark, or if it is cloudy, the brightness of the image will be too low. If the
background is close to the color of the insulator, the isolating features in the image will
be less obvious. All of these situations will impact the effect of the detection algorithm.
This paper seeks to address this problem by first using the technical means of image
enhancement to adjust the contrast of image pixels and increase their luminance.

We choose to use histogram equalization in this paper. To draw the histogram, we
rely on the statistical probability of occurrence of different gray values and then maintain
a uniform distribution of the number of pixels in the region using a stretch operation,
as a means of reducing the bilateral valley contrast and enhancing the top contrast. The
histogram equalization of the color images is performed like that of the grayscale maps
when the three color channels in the image are processed independently. In the following
content, we describe the equalization of the grayscale map histograms.

If the variable r is used to denote the grayscale of the image to be processed and
s is used to denote the output grayscale value, the mathematical method of calculating
Equation (1) for this process is as follows:

s=T(r) ey

where the value domain of T in the mapping function T () has to satisfy two conditions
(L =256, T(r) lies between 0 and L — 1 and r is monotonically increasing on 0 to L — 1).
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The cumulative distribution function (CDF) accurately meets the above conditions
and is often used to express the probability distribution of random variables. Its function is
shown in Equation (2).

s=T() = (L= 1) [ po(w)dw @

where w is the dummy variable for the integration. The right-hand side of the equation is
the cumulative distribution function of the random variable r.

Because the image pixel distribution approximates a discrete function, Equation (2)
can again be converted to Equation (3) as follows:

S=T(r) = (L—1) ¥ pili) ©)
i=0

where the probability of occurrence of the i-th gray level in the image is represented
by p,(i).

Equation (3) can eventually be written in the form of Equation (4) as follows:

s=T(r) = (L-1) ) "0 @

—o N

where 7 is the total number of pixels in the image, and /(i) is the number of pixels of each
gray level in the histogram.

After the operation of the histogram equalization method for the image, the compara-
tive effect is shown in Figure 1.

Figure 1. Operation of histogram equalization method for images: (a) before adjustment;
(b) after adjustment.

2.1.2. Image Filtering

The process of generating, transmitting, and storing image data is susceptible to
noise, mainly impulse and Gaussian noise, when the UAV inspection system is acquiring
images. For the characteristics of this image dataset, this paper adopts Gaussian filtering
and median filtering methods to eliminate the noise in the images.

(1) Median filtering

Median filtering is a non-linear filtering method that is generally used as a method
to eliminate impulse noise (pretzel noise). Pixels in the neighborhood are first sorted by
their gray value and then the gray value of the central pixel is calculated based on this
result. The median filtering method adjusts the window value according to the variation
magnitude of the noise to obtain a better filtering effect. Its calculation, Equation (5),
is as follows:

8(x,y) = median{f(x —i,y —j)} (i,j) €W ®)

where f(x,y) and g(x,y) are the original image and the processed image, respectively, the
sliding window is denoted by W and the median is denoted by median{}.
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(2) Gaussian filtering

Gaussian filtering is a linear filtering method, which is generally used to eliminate
Gaussian noise. Gaussian noise has the characteristic that the probability density function
is Gaussian distributed. The output of Gaussian filtering takes the value of the weighted
average of the pixels in the neighborhood, and since the Gaussian function is single-valued,
the closer to the center of the image, the more the pixel weighs. The Gaussian function is
rotationally symmetric in two dimensions and has equal smoothness in all directions. Its
calculation, Equation (6), is as follows:

1 2. .2) /252
Glx,y) =5 e vy /20 (6)
where (x,y) is the point coordinate and ¢ is the standard deviation. The smoothing of the
filter as well as the width are determined by the parameter ¢. The larger the value of 7, the
smoother the image.

The effect after the filtering process is shown in Figure 2. Through the comparative
analysis of the effect graphs before and after the processing, it is found that the insulator
features in the image are more obvious after the filtering process, which improves the
detection effect of the subsequent experimental training model.

Figure 2. Filtering effect: (a) before adjustment; (b) after adjustment.

2.2. Dataset Augmentation

In the samples obtained in this paper, the number of normal insulators is much larger
than that of faulty insulators, resulting in a significant difference between the number of
positive and negative samples. The unbalanced samples will seriously affect the conver-
gence of the training model and the detection effect, so this paper expands the Matlab
database for the insulator data with obvious differences and constructs a dataset suitable
for the training model.

In this paper, rotation, translation, and fuzzy processing are used to expand the sample.
Since the insulator in the image is large in size and centrally located, a random range of
rotation angle parameters and translation parameters is set to prevent the object from
falling out of the image after processing. In the rotation processing, the corresponding
rotation center point is set, and the image is rotated around the center point to achieve the
corresponding effect map. The matrix representation, Equation (7), is as follows:

u cos@ —sinf 0] [x
v| = |sind cosd Of |y (7)
1 0 0 1( (1

where the coordinates of each pixel in the original image are represented by (x,y), and the
corresponding coordinates of each pixel in the rotated processed image are represented by
(u,v). The rotation angle is denoted by 6.
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The translation moves the original position of the image by a certain distance in four
directions: up, down, left, right, and center. Its matrix transformation shape, Equation (8),
is as follows:

u 1 0 t] |x
ol =10 1 t]|y ®)
1 0 0 1)1

where the horizontal travel distance is represented by t, and the vertical travel distance is
represented by .
The image is augmented by the Matlab database and the effect is shown in Figure 3.

Figure 3. Enlargement effect: (a) flip; (b) kernel ambiguity; (c) add square area; (d) rotate 180°.

To define the experimental dataset: images containing isolators that are normal are
used as the positive samples, and images containing insulators with defects are used as the
negative samples. There are 852 positive and 118 negative samples in the original dataset,
and the amplified samples are filtered to yield 6000 samples. To ensure the reliability of the
training model, when training and test set samples are made, the target with large image
and feature differences is chosen. Among them, 4800 images were taken for the training
set and 1200 for the test set, and the ratio of positive to negative specimens was 1:1 within
each dataset.

3. Improved Cascade R-CNN-Based Insulator Detection Algorithm

In this paper, we propose an MS-COCO pre-training strategy to improve the accuracy
of the insulator detection algorithm by combining the FPN module and ResNeXt-101
network to improve the Cascade R-CNN algorithm.

3.1. Cascade R-CNN

The Cascade R-CNN algorithm consists of four main modules, including the RPN
module (regional proposal network), convolutional neural network module, region of
interest pooling (ROI) module, multiple classifiers (Softmax1, Softmax2, and Softmax3),
and regressors (B1, B2, and B3). The input image is preprocessed and the features of the
image target are extracted in the convolutional layer. Based on the mapping relationship of
the features, the candidate frames of the probabilistic presence targets are calculated in the



Energies 2023, 16, 5560 7 of 17

region generation network. In the ROI pooling module, the feature map is scaled to a fixed
size and then sent to the fully connected layer to compute the low-dimensional feature
vectors, and the results are output to a detector in the form of a cascade. The structure of
the Cascade R-CNN algorithm is shown in Figure 4.

] ] Softmax1 Bl | |Softmax2 B2 | |Softmax3 B3
input image v \/ \/
conv FC layer FC layer FC layer

feature map

RPN ROI'1 ROI'1 ROI'1
feature map T

Figure 4. Cascade R-CNN.

The algorithm treats the target as a positive sample and the background as a negative
sample. To reduce the difference between the number of positive and negative samples in
the high-threshold network and improve the accuracy of the low-threshold network, in
each step, the algorithm sets the threshold intersection over union (IOU) for classification
and bounding box regression with stepwise augmentation. Except for the first detection
module of the algorithm, the input information of the subsequent detection modules is
adopted from the output information of the previous detection model. By increasing the
number of cascade layers, the IOU threshold is gradually increased and discredited, and
the accuracy of localizing the output and classifying the network at each level is gradually
improved, and each output is then output to subsequent networks with higher preci-
sion. As a result, the Cascade R-CNN algorithm is capable of performing higher-quality
detection tasks.

To explore the effect of stage number and IOU values on the experimental results,
the AP of COCO 2017 was used for the evaluation in this study, and as can be seen in the
table, adding a second stage significantly improved the baseline detector, and adding a
third stage also showed a small improvement. There is a small decrease in the AP with the
addition of the fourth step, which performs best at high levels of IOU, but the three-step
cascade achieves the best compromise between the cost and AP performance.

The Cascade R-CNN algorithm uses three cascade stages for classification and re-
gression, which can provide higher localization accuracy. As can be seen from Table 1,
the AP is highest when the IOU thresholds in the cascade stages are set at 0.5, 0.6, and
0.7, respectively.

Table 1. The impact of the number of stages in Cascade R-CNN.

Stages Test Stage AP AP50 AP60 AP70 AP80 AP90
1 1 34.8 57.0 51.9 43.6 29.7 7.1
2 1~2 38.2 57.9 53.6 46.7 34.6 13.6
3 1~3 38.8 57.8 53.4 46.9 35.8 15.8
4 1~3 38.8 57.4 53.2 46.8 36.0 16.0
4 1~4 38.5 57.2 52.8 46.2 35.5 16.3

The IOU threshold of the detection network is set to 0.5, and the anchor frame is input
into the network as follows:

(1) When the IOU between the target frame and the anchor frame is > 0.5, it is determined
that the detection target is included in the anchor frame. The regression loss is
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introduced to fine-tune the edge box positions and calculate the initial classification
score. After the correction of the regressor, the generated new region is sent to the
screening candidate box and finally output to the detection network with an IOU
threshold of 0.6.

(2) When the IOU of the target frame and the anchor frame is > 0.6, the target is de-
termined to be correctly detected. According to the loss function, the edge frames
are adjusted, the regression is corrected for the second time, and the score of the
second classification is also calculated. According to this law, the score and position
coordinates of the final classification of the target are calculated.

3.2. MS-COCO Pre-Training Strategy

As part of the process of building a network model to perform a specific task of image
classification and detection, we initialize the parameters randomly and then train and
tune the network until the network’s losses are continually reduced. The initialization
parameters fluctuate repetitively during model training. Once better results are obtained,
information, such as model parameters, is stored so that better results can be obtained the
next time that a similar task is performed, a process known as pre-training.

Task-related models (CNNs) for visual detection are typically obtained by training
on ImageNet, which has a fairly large dataset with considerable image variety, and it
is straightforward to directly apply CNN models to their datasets with corresponding
problems. However, the idea of using this data directly to train the network is not feasible
when the number of datasets is not sufficient, since the key factor for the efficient detection
of deep learning methods is a large number of labeled training sets. It will be difficult for
even the best network model to achieve high detection accuracy if only a small training set
volume is used. So the pre-trained model must be tuned accordingly.

The experiments in this paper introduce the pre-training strategy of the MS-COCO
while adapting the employed deep learning detection algorithm accordingly to its dataset
in order to obtain better results.

3.3. FPN Module

The target detection process typically faces the problem of multiscale variation. Many
networks at this stage use single high-level features to address this issue. The Faster R-CNN
algorithm performs target classification as well as regression processing by downsampling
the number of convolutional layers four times. The shortcoming of this processing method
is that when the object is a small target, it is easy to lose an object due to little pixel
information during downsampling. When there are large differences in the detection
objects, algorithms nowadays more commonly use the image pyramid method to improve
multiscale variations. This method solves the problems mentioned earlier to some extent
but greatly increases the computational effort of the algorithm.

The goal of this paper is to analyze the structure of each deep learning algorithm and
introduce the Feature Pyramid Network (FPN) structure to adapt to the presence of targets
with multiscale variations during detection. This method not only extracts low-resolution
feature maps with strong semantic information but also feature maps with high resolution
and low semantic information as well as rich spatial information can be extracted. Figure 5
shows the structure of the feature pyramid.

In semantic segmentation, this structure closely approximates the UNet structure.
To achieve a large number of feature layers containing strong semantic information, the
feature point downsampling operation is first performed continuously, and the upsampling
operation is then performed again to increase the scale of the feature layers and use the
feature maps at the largest scale to detect small objects. During this process, it is necessary
to stack feature layers with the same scale in both upsampling and downsampling to ensure
that the characteristics and information of the small targets are obtained efficiently. Its
features are as follows:

(1) Inthe feature pyramid, each layer is merged with features from the top layer.
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The top layer of the convolutional network undergoes (1 x 1) convolution to generate
the top layer of the pyramid, while the other layers are sampled over the features in
the top pyramid plus the corresponding convolution layer (1 x 1), and the pyramidal
features from each layer are computed and output to the convolution (3 x 3) to
compute the final features.

Each layer of pyramid features has a depth of 256 pixels.

None of the additional convolutions use non-linear activation functions.

Each layer in the feature pyramid is detected and classified according to
its characteristics.

The convolution layers are related to the feature pyramid by having the same
feature size.

===z
/Lm

1x1 Conv v

Figure 5. FPN module.

3.4. ResNeXt-101 Network

The ResNeXt-101 network still uses the repetition layer strategy, and the number of

paths is increased, based on which a novel split transform fusion strategy is proposed. In
this network, modules are correspondingly transformed in the low-dimensional embedding,
and all outputs are summed and aggregated while using the same topology for each
trajectory. Figure 6 shows the structure of the ResNeXt-101 lattice.

256-d in

[ 256,1x1,4 ] [ 256,1x1,4 ] 256,1x1,4
total 32
paths
[ 4,3x3,4 ] [ 4,3%x34 ] l 4,3x34 I
[ 4,1x1,256 ] [ 4,1x1,256 ] 4,1x1,256

I

D
v 256-d out

Figure 6. ResNeXt-101 network.
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In the above figure, each box represents one layer, where the (256, 1 x 1, 4) module
represents the channel of the input image, the (4, 3 X 3, 4) module represents the filter
size, and the (4, 1 x 1, 256) module represents the channel of the output data. The path
in the structure represents a measurable dimension, but it is different from the width and
depth of the channel in the input image. Introducing this measurable dimension can thus
effectively improve the accuracy of the detection algorithm when both the width and depth
of the objects being detected reduce the training gain of the present model.

The ResNeXt-101 network integrates the advantages of the inception network and
the ResNet network. The ResNeXt-101 lattice is equivalent to merging the two models,
which can achieve better results by taking advantage of the benefits of each model. These
improvements significantly improve the accuracy of the model while only increasing the
magnitude of the parameters by a small amount, since there is no difference in the topology
and the hyper-parameters are reduced, which facilitates porting of the model.

4. Experimental Setup and Model Training Methods

Firstly, the MS-COCO pre-training strategy is introduced for two-stage models (Faster
R-CNN and Cascade R-CNN) and single-stage models (FCOS, Retina Net, and YOLOV?),
and an experimental comparison analysis is conducted to verify the effect of the pre-training
strategy. The effect of the FPN model is then compared with the Faster R-CNN model
before and after the FPN module is equipped to analyze the effect of the FPN model. Lastly,
in combination with the ResNet-50, ResNet-101, and ResNeXt-101 backbone networks,
respectively, the changes in the loss for the improved algorithm are all registered using the
Tensor board to generate the corresponding lossy profile graphs. To determine the effect of
training, the same test set is used to test and score the experimental results of constructing
different base networks, introducing the FPN module and MS-COCO pre-training strategy
for each algorithm, respectively, as well as combining multiple evaluation indices for a
validation analysis of the enhanced algorithms.

The training in this experiment is accelerated by CUDA, and the 4000 images are
iteratively trained once per cycle, and the cycle is iteratively trained on four GPUs. Firstly,
in the training process, the learning rate is set to 2 x 1072, and the value is reduced to
0.1 epochs after 8 cycles and to 0.01 epochs after 11 cycles, and the value of the weight
decay is set to 0.0005. Since the minibatch value is set to 2, i.e., 2 images are trained on a
single GPU, the total number of iterations of the model is 12 x (4000 < 2 < 4) = 6000 s.
During the acquisition of the training samples, each image is sampled 256 times, and the
ratio of positive to negative samples is set to 1:1. Then, the branch parameters of the head
network and the region generation network are initialized at random, and the minimum
value of the IOU of positive samples extracted by the region generation network is set to
0.7 and the maximum value of the IOU of negative samples is set to 0.3 in the process of
anchor frame screening. Following experimental screening, if insufficient positive samples
are available, the shortage is filled by negative samples. We used group normalization to
globally normalize the network parameters.

5. Experimental Results and Analysis
5.1. Environment Environment

The main hardware configurations of the computers used in the experiments of this
paper are shown in Table 2.
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Table 2. Experiment environment.

Hardware/Software Parameter
Cpu Intel Xeon Silver 4210 2.201 GHz
Gpu GeForce RTX 2080 Ti (11 G)
Ram 64 G
System Ubuntu 16.04
Language Python
Deep learning framework PyTorch

5.2. Analysis of Experimental Results
5.2.1. The Effect of the Improved Module

(1) Introduction of the MS-COCO pre-training strategy

As can be seen in Table 3, the mAP values are higher than those of the original detection
algorithm for the three groups of models (Faster R-CNN and ResNet-50), (Faster R-CNN
and ResNet-101), and (FCOS and ResNet-50) after the introduction of the MS-COCO pre-
training strategy. This indicates that the above problems are improved to some extent after
the introduction of the MS-COCO pre-training strategy, and this improvement increases
the accuracy of the detection algorithm and has better detection effects. For this reason, the
MS-COCO pre-training strategy is introduced in all subsequent detection algorithms to
continue the experiments.

Table 3. Introduction of MS-COCO pre-training strategy.

Deep Learning Networks mAP mAP_50 mAP_75 mAP_s mAP_m mAP_1

* Faster R-CNN and ResNet-50 73.7% 89.9% 83.2% 30.8% 45.3% 77.0%
Faster R-CNN and ResNet-50 76.5% 89.9% 85.9% 47.6% 45.1% 81.5%
* Faster R-CNN and ResNet-101 75.0% 90.7% 84.1% 43.4% 46.1% 79.2%
Faster R-CNN and ResNet-101 76.9% 91.4% 86.6% 47 2% 52.4% 81.8%
* FCOS and ResNet-50 68.7% 88.5% 78.1% 25.7% 40.9% 71.2%
FCOS and ResNet-50 74.5% 91.1% 84.3% 41.2% 44.1% 78.7%

As shown in the table: those with * are the original detection algorithms and those without * are the detection
algorithms with the introduction of the pre-training strategy MS-COCO.

(2) Introduction of the FPN module

We can see from Table 4 that the enhanced FPN module for the (Faster R-CNN and
ResNet-50) algorithm improves the value of mAP by up to 0.5% over the original algorithm.
For medium and large targets, the mAP values do not differ much from the original
algorithm, but the mAP value for small detection targets improves by as much as 17.2%.
In the original algorithm, target classification and regression processing are performed by
downsampling the convolutional layer four times, which can easily result in object losses
due to the small amount of pixel information during the downsampling process when the
object is a smaller target. In terms of the features of the detection task in this paper, the
FPN module is introduced to detect better results, and the module continues to be fed into
the subsequent detection algorithm for the experiments.

Table 4. Introduction of FPN module.

Deep Learning Networks mAP mAP_50 mAP_75 mAP_s mAP_m mAP_l
* Faster R-CNN and ResNet-50 76.0% 91.8% 85.2% 30.4% 51.4% 82.4%
Faster R-CNN and ResNet-50 76.5% 89.9% 85.9% 47.6% 45.1% 81.5%

As can be seen in the table: those with * are the original detection algorithms, and those without * are the detection
algorithms after the introduction of the module FPN.
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5.2.2. Two-Stage Model Combined to Improve Backbone Network Effectiveness

It can be seen from Table 5 that the mAP values of the Cascade R-CNN algorithm
are significantly higher than those of the Faster R-CNN algorithm for the same network
as the baseline network. The reason for this is that in the structure of the Faster R-CNN
algorithm, only a single R-CNN network is introduced. On the other hand, the Cascade
R-CNN algorithm introduces multiple R-CNN networks while cascading them and setting
different thresholds for the IOU, which can improve the detection accuracy in a step-by-step
manner. Faster R-CNN has a slight advantage over Cascade R-CNN, both in terms of the
number of participants and the speedup. The YOLOv? algorithm has a significant speedup
advantage over other algorithms, but is 5.5% less precise than the highest Retina Net in
terms of precision. Using the same base network, the FCOS algorithm has a slightly higher
mAP value for detecting small-size targets than the other single-stage models when using
the ResNet-101 network, but for other sizes, Retina Net has a clear mAP advantage when
using the ResNeXt-101 network.

Table 5. Comparison of various models combined with different backbone networks.

mAP mAP mAP mAP

Deep Learning Networks mAP 50 75 s ‘m mAP 1 GFLOPs M FPS
Faster R-CNN andResNet-50 76.5% 899% 859% 47.6% 451% 81.5% 206.67 41.13 18.7
Faster R-CNN andResNet-101 76.9%  91.4%  86.6% 472% 524% 81.8% 28274 60.13 14.5
Faster R-CNN andResNeXt-101 77.8%  91.9%  88.1% 51.0% 57.8% 845% 43996  98.85 8.7
Cascade R-CNN andResNet-50 76.7%  90.3%  862% 469%  492% 834% 23447  68.93 15.9
Cascade R-CNN andResNet-101 77.5%  90.5%  86.0% 44.0% 49.1% 84.0% 31054 87.92 124
Cascade R-CNN andResNeXt-101 799%  91.7% 87.8% 49.7% 54.1% 842% 457.76 116.65 8.2
FCOS andResNet-50 745%  91.1% 843% 412% 44.1% 787% 196.76  31.84 22.7
FCOS andResNet-101 74.7%  89.7%  83.7%  44.6%  44.6% 79.6% 272.83  50.78 16.6
FCOS andResNeXt-101 754%  89.9%  84.6% 50.5% 522%  79.9% 434.8 89.61 10.7
Retina Net andResNet-50 75.5%  91.2% 84.7% 428% 47.1% 79.0% 20524  36.15 21.8
Retina Net andResNet-101 76.5% 91.3% 86.0% 43.6% 50.6% 80.5% 28132 55.14 16.3
Retina Net andResNeXt-101 786%  928% 874%  492% 53.6% 82.1% 43854  93.87 10.4
YOLOvV7 andCSPDarknet53 73.1%  92.0% 83.8% 42.6% 459% 774% 193.89 61.53 51.2

The introduction of the ResNeXt-101 lattice gives the best results with the same model,
but at the expense of a larger number of parameters and a slower speedup. For the
isolator detection task, however, the mAP value is more important and the image detection
accuracy is the kernel, and other metrics can be prioritized in terms of accuracy with a
small difference. We see that the Cascade R-CNN in the two-stage model performs better
with the introduction of the ResNeXt-101 network, so exploration continues for this model
in the following experiments.

5.2.3. Improving the Effect of the Cascade R-CNN X101 Model

In Tables 3 and 4, the Cascade R-CNN with the best detection effect in the two-stage
model is compared and analyzed using the Retina Net with the best detection effect in the
single-stage model. There are no significant differences in the computation, number of
parameters, or speedup between the two, but the former is superior to the latter in terms
of detection accuracy. The combination of task requirements and experimental features in
this paper thus selects the Cascade R-CNN model for improvement, and the MS-COCO
pre-training strategy, the FPN module, and the ResNeXt-101 network are presented.

(1) Enhanced mAP analysis of the model

Figure 7 shows the changes in mAP when the Cascade R-CNN detection algorithm
is introduced into the ResNet-50 network, the ResNet-101 network, and the ResNeXt-101
network, respectively.
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Figure 7. mAP changes.

Comparing the average accuracy, the introduction of the ResNeXt-101 array into the
Cascade R-CNN detection algorithm can be found to improve the recognition accuracy of
the faulty isolator targets in comparison with the other two arrays. The enhanced model
has a significant advantage over other network structures in terms of detection accuracy.
The enhanced model is shown to successfully enhance the feature information of the faulty
isolator targets in the feature maps generated by the feature extraction network.

(2) Better analysis of the loss curve model

As can be seen by comparing the loss curves of the three networks introduced, ResNet-
50, ResNet-101, and ResNeXt-101, in Figure 8, the overall oscillations of the ResNet-101
network are smaller.

r50
1.2 rlol
x101

1.0
0.8 ‘
0.6
0.4

0.2

0 1000 2000 3000 4000 5000 6000
iter

Figure 8. Loss curve.

Comparing the loss curves of the introduction of the ResNet-50, ResNet-101, and
ResNeXt-101 networks in Figure 8, it can be seen that the overall oscillation of the ResNet-
101 network is lower. By the time the number of samples reaches 2000, the overall fluctua-
tion of the ResNeXt-101 lattice has also weakened considerably, and the loss value for this
network is significantly less than the other two networks, which provides evidence that
introducing their networks does indeed improve the system stability and convergence.

(3) Analyzing the prediction results from the improved model

Figure 9 shows the comparison of the prediction effect between the improved Cascade
R-CNN X101 model and the original model for the same image, as can be seen in Figure 9,
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where the left-hand side is the prediction output of the original model and the right-hand
side is the improved prediction output.

Figure 9. Improved model prediction results.

From comparing the results in the top row of images, the original model can be seen
to have undetected the insulator fault detection at the top of the image and undetected
the normal insulation part as the failed insulation, which will affect maintenance work
efficiency to some degree. Our improved model effectively addresses this problem by
accurately detecting the number of defective insulator regions.

As can be seen by comparing the results in the second row of images, note that the
original model does not accurately identify the fault zones of the insulators above the figure,
and this detection loophole will influence the safety of the power system line components
to some degree. In contrast, the improved model accurately predicts all insulator fault
zones in the figure.

Comparing the results of the third row of images, we see that the original model is
unable to identify isolators on the left-hand side of the figure because they are occluded
by obstacles, and leak detection of the isolator will also bring some degree of threat to the
safety of the transmission line. However, the enhanced model can still perform recognition
detection when the isolator is occluded by an obstacle.

6. Discussion

In this paper, we first describe the development of the detection algorithms in this
experiment based on the PyTorch framework as well as the construction of the experimental
platform. The network structure is then analyzed for mainstream two-stage detection
algorithms (Faster R-CNN and Cascade R-CNN) as well as single-stage detection algorithms
(FCOS, Retina Net, and YOLOV?) in the current stage of the research, and the core network
compositing system is also being explored according to the pre-training strategies of
the MS-COCO, module FPN, and network ResNeXt-101, which are three methods of
improvement. The enhancement modules are then introduced for different deep learning
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detection algorithms, and the experimental results are compared and analyzed based
on the corresponding evaluation indices. Finally, the enhanced Cascade R-CNN X101
model is proposed and the effect of the enhancement is verified. Overall, the enhanced
detection algorithm ensures the reliability of the isolator detection and also improves the
detection of various special targets. While the improved algorithm increased the number
of parameters and increased the elapsed time for detection, this increase in delay does not
significantly affect the overall real-time performance of the system and may still satisfy the
technical requirements.

For UAV power inspection, this paper studies fault detection of aerial isolator images
based on prior research combined with deep learning methods. The rapid development of
artificial intelligence, machine vision, and other technologies is leading to the emergence
of efficient detection algorithms and network models. The following three aspects can be
performed in future research to obtain better results for isolator detection algorithms:

(1) Expanding the dataset. Due to the great difficulties of obtaining power inspection
images, isolators with failures and other types of faults are collected. Obtaining
high-definition, high-quality images becomes very challenging due to the presence
of the natural environment and other factors. Here, isolator image datasets become
rather lacking, resulting in training models with poor accuracy. Future research can
investigate more ways in which the image dataset can be extended and improved
based on the existing image dataset.

(2) Efficient network models and algorithms can be further explored in future work. We
can investigate the optimal choice of model architecture parameters and continue to
simplify the complexity of the sensing network and detection algorithms for the iden-
tification of faults such as rusty insulators and cracked insulators can be investigated
to achieve a high degree of intelligence in power line detection.

(3) Enhance the practical value of the model on various platforms and attempt to port
the lightweight computational platform into the UAV system to supplement real-time
insulator diagnostics by the inspection system, reduce image processing time, and
improve task efficiency.

7. Conclusions

China’s power system is developing rapidly at this stage, and transmission line
coverage is increasing, so the detection effect of the inspection system must be improved
to meet the corresponding needs. In this paper, we take transmission line isolators as our
research object and propose an enhanced Cascade R-CNN X101 isolator detection algorithm
to improve power inspection accuracy more efficiently, given some of the issues that exist
in UAV inspection system intelligence. In summary, the work performed in this paper is
as follows:

(1) The collection of aerial images of power line isolators for inspection, the use of
corresponding image preprocessing methods, the optimization of resolution, and
other image parameters by performing image enhancement and filtering operations
without reducing the precision of the algorithm. Based on this, the dataset is expanded
using the Matlab database, and then the isolator dataset in COCO format is built using
Labelbee software combined with a special annotation system. In a low-quality, low-
capacity situation, this technical means effectively improves the detection precision of
the training model.

(2) The structural characteristics of the two-stage detection algorithm, the single-stage
detection algorithm, and the backbone network are investigated for the current main-
stream insulator fault detection algorithms, and the experimental data are compared
and analyzed. In this paper, an MS-COCO pre-training strategy is proposed to im-
prove the Cascade R-CNN algorithm by combining the FPN module and the ResNeXt-
101 network, and a matching experimental training method is developed to facilitate
verification of improvement.
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(3) In the case of the enhanced Cascade R-CNN X101 network model, experimental
simulations are performed by combining several evaluation indices such as mAP
value and loss curve, and the efficacy of the enhanced model is effectively verified
through comparison and analysis of experimental data with detection algorithms such
as Faster R-CNN and Retina Net. The experimental results show that the complexity
of the enhanced model is slightly higher than that of the first model, with significantly
higher detection accuracies than the other models. When tested on the set of image
detection samples, the enhanced model effectively resolves the situation of false
detection, missed detection, and unrecognized due to the special environment in
patrol detection.
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