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Abstract: This paper establishes an accurate and reliable study for estimating the lithium-ion battery’s
State of Charge (SoC). An accurate state space model is used to determine the parameters of the
battery’s nonlinear model. African Vultures Optimizers (AVOA) are used to solve the issue of identi-
fying the battery parameters to accurately estimate SoC. A hybrid approach consists of the Coulomb
Counting Method (CCM) with an Adaptive Unscented Kalman Filter (AUKF) to estimate the SoC of
the battery. At different temperatures, four approaches are applied to the battery, varying between
including load and battery fading or not. Numerical simulations are applied to a 2.6 Ahr Panasonic
Li-ion battery to demonstrate the hybrid method’s effectiveness for the State of Charge estimate. In
comparison to existing hybrid approaches, the suggested method is very accurate. Compared to
other strategies, the proposed hybrid method achieves the least error of different methods.

Keywords: Li-ion batteries; battery management system (BMS); state of charge (SoC); battery model;
parameter identification; Kalman filters; coulomb counting method (CCM)

1. Introduction

Energy storage systems (ESS) are becoming essential in modern power networks to the
growing use of renewable energy sources, characterized by uncertainty and fluctuation [1].
In addition to their fundamental role in storage and retrieval, energy storage components
are crucial to providing auxiliary services to the hosting system. In numerous applications,
including those involving portable electronics, electric cars, satellite components, and
power systems, batteries of various kinds play a crucial role [2]. Compared to other
common battery types, Li-ion batteries have a high energy density, a low self-discharge
rate, and a long service life, making them a flexible and promising technology [3]. However,
overcharging or undercharging Li-ion batteries can permanently harm the battery cells,
reducing lifetime and degrading performance. Therefore, one of the critical purposes of
BMS is to accurately estimate SoC to lower safety risks and extend the battery’s health [4]. To
determine the battery’s SoC in real-time, the Battery Management System (BMS) observes
battery measurements such as voltage, current, temperature, and other variables. Then, to
prohibit overcharging and over-discharging the battery, preserve the battery’s health, and
extend its service life, it designs a reasonable approach to the charging and discharging
phenomena of the Li-ion battery [5].
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1.1. Problem under Study

Measuring the SoC of a Li-ion battery has proven to be a significant obstacle to cor-
rectly estimating it. Due to the intricate electrochemical processes taking place inside a
Li-ion battery [6], SoC is not directly measurable due to the nonlinear connection between
the SoC and OCV of the battery. It must be measured using voltage, current, and tempera-
ture measurements; hence why the precise calculation of SoC for battery simulation is a
current research topic [7]. Accurate SoC estimation is a primary task in BMS by helping
to improve the system implementation and precision and lengthening the service life of
the battery [8]. It can also prevent unexpected system outages, keep the Li-ion battery
from being overcharged or under-charged, which might permanently harm the battery’s
internal structure, and it enables the development of logical control schemes for energy
conservation [9].

Before estimating SoC, precisely modeling the Li-ion battery characteristics using an
Equivalent Circuit Model (ECM) is conducted, which include the battery’s series resistance—
the transient branch, which consists of polarization resistance and capacitance, and the
OCV of the battery at different SoC values—different temperatures, and different loading
and battery fading conditions, then estimating SoC by predicting the value of the state
of charge, and then correcting the value of state by using the measurements of voltage,
current, and temperature [10]. This will result in a precise state of charge assessment and
battery modeling, which aids in the process of researching the Li-ion battery’s dynamic
reaction.

1.2. Literature Review

SoC is indicated as the battery’s charge level, which reflects how much charge is still
available in the battery cell compared to its capacity [11]. The SoC value ranges from
0 to 100% and is a relative number given as a percentage [12]. A Li-ion battery’s SoC
may be calculated using various techniques, such as direct measurement, bookkeeping,
model-based, and hybrid methods [13].

Each strategy has unique traits and circumstances in which it works best. The Direct
Measurement method measures SoC indirectly by using physical battery properties such
as OCV and impedance, the most used being the Open-Circuit Voltage method [14], which
measures SoC through an indirect relation between the SoC and OCV relation curve.
However, to measure OCV correctly, it must be left unattended for a lengthy time, which is
impractical in actual operations. To obtain an accurate SoC value, Wu et al. [15] provided
the OCV calculation equation and estimated the OCV with voltage at a specific time after
the battery stopped discharging. However, this method is still impractical because the
battery must still stop discharging to measure SoC accurately. The impedance measurement
method has the same issue, and the battery life cycle lengthens the impedance changes.
Also, it is very responsive to temperature changes; SoC measurements are very challenging
when the battery temperature fluctuates significantly [16]. The internal impedance impact
when the battery drains cause a terminal voltage decrease, which is the basis for the terminal
voltage technique. Since each of these is precisely proportional to SoC, it is presumed that
the EMF of the Li-ion battery is direct to the terminal voltage. The predicted inaccuracy
of the terminal voltage approach is significant because of the abrupt decrease in terminal
voltage after the discharging phase, even though this method has been used at various
drainage currents and temperatures [17].

Battery discharge information is used as input in the bookkeeping estimate technique.
It enables several internal battery impacts in SoC estimation, such as self-discharge [18]. The
most used method is the CCM which is also called the (Ah) Integration Method [19]. This
technique works by multiplying the overall capacity by the current flowing and draining
from the Li-ion battery, and is simple and cheap, but its major disadvantages are that any
error in the current measurement will accumulate, making the measurements converge
from the actual value.
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Model-based estimation approach establishes a Li-ion battery model and combines
several state-of-charge estimation algorithms to estimate SoC. One of the most essential
estimation methods is that of adjustable systems [20]. These are self-designing systems,
also known as observers, that can be spontaneously modified to accommodate any system
changes. One of the most commonly used adjustable systems in batteries is the EKF [21],
which uses the Taylor expansion approach to extend the traditional Kalman Filter for
nonlinear models to estimate first and second-order derivatives. It estimates states of
discrete time by taking two points (mean and approximate). This method yields good
results, but due to only using the first term of expansion, the solutions in highly nonlinear
systems are not accurate; therefore, another filter named the UKF is used [22]. It is a
member of the more significant class of filters known as Sigma Point Kalman Filters, which
employ statistical linearization, and estimates states of discrete time by using a collection of
points called sigma points and approximate points. It then uses nonlinear transformations
on the set of sigma points that are chosen deterministically, with very accurate solutions in
highly nonlinear systems. For the standard EKF and UKF, they assume fixed uncertainties
in error parameters, and these uncertainties propagate through the filter, which limits its
effectiveness. Therefore, the Adaptive Kalman Filter (AKF) is used [23,24]. It adapts to
any changes in data or the uncertainties of the error by defining some parameters of the
model that are unknown, which makes it more accurate. It uses two independent models
to estimate the state of a dynamic system: an observation model that establishes a link
between measurements and the state vector, and a dynamic model that defines the behavior
of the state vector. Adaptive systems provide a valuable option for SoC estimation since
Li-ion batteries have nonlinear SoC relationships and are influenced by several chemical
effects.

Hybrid methods [25] are models between different estimation techniques. Since the
amount of information that can be gained from a single estimation approach is restricted,
hybrid models aim to combine the benefits of each method and achieve an optimal estima-
tion. A hybrid approach between several estimate algorithms may use the most significant
benefits of various SoC estimation approaches, merge single model inputs, and maximize
the available information, increasing estimation accuracy. There are several types of hybrid
methods. The first is a combination of the Coulomb Counting (CCM) and EMF method, an
innovative SoC estimating technique that has been devised and applied in an actual SoC
estimation system. It combines the use of direct measurements, battery EMF measurements
during the equilibrium stage, and bookkeeping estimations using the CCM approach dur-
ing the discharge condition [26]. The second method is a combination between CCM and
the Kalman Filter. Wang et al. [27] proposed an SoC estimation method where the Kalman
Filter corrects the initial value used for the CCM, and then the CCM estimates SoC for the
long working time. The third method is a combination between the Per-Unit System and
Extended Kalman Filter (EKF). Kim et al. [28] explained the application of this combination
to characterize the battery model parameters for very precise SoC estimation, using the
battery parameters that are impacted by the aging effect, according to the PU system. In
the equivalent circuit model, the terminal voltage of the battery and current, as well as the
absolute parameter values, are modified into dimensionless magnitudes concerning a set of
base magnitudes. The modified magnitudes are then applied to dynamic and observation
models in the EKF method.

These approaches have yielded good outcomes but are short in accuracy and consis-
tency. This study recommends the usage of the hybrid method by combining the CCM and
various Kalman Filter approaches to minimize the error of the simulated and experimented
SoC by using the Integral Square Error (ISE) method. First, defining the battery model
parameters ensures optimal battery performance and longevity since any SoC estimate
technique requires an accurate battery model. The battery parameters are established using
(AVOA) [29] under various loading, fading, and temperature situations. The OCVs under
various SoCs, Ro, and Rtr and Ctr are the design parameters that have been observed, then
the SoC is estimated by using the combination of the Coulomb Counting Method (CCM)
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and an Adaptive Unscented Kalman Filter (AUKF). AVOA validates the least error between
various optimization algorithms, and the hybrid method validates the Li-ion batteries
model’s primary purpose with the least error. These skills provide the most accurate
battery model with the best SoC estimation technique. Despite its advantages, it has not
yet been employed to solve technical problems.

1.3. Key Contribution

The critical contributions of this study are extracted as follows:

1. The unknown parameters of the Li-ion battery model are identified in this research
using the AVOA;

2. By studying the single-branch Li-ion battery dynamic model, a solid nonlinear con-
nection between the OCV and the SoC is demonstrated;

3. Experiments using Li-ion batteries and simulation-based research are combined;
4. The combination of the CCM and AUKF is compared to other combinations, such as

the CCM with EKF, CCM with UKF, and CCM with AEKF;
5. Concerning modeling Li-ion batteries for the SoC estimate, the study filled the gap by

excluding loads, battery aging, and temperature conditions.

1.4. Paper Coordination

The remainder of the paper is introduced as follows: Section 2 describes a dynamic
demonstration of a Li-ion battery. Section 3 introduces the Coulomb Counting and Adaptive
Unscented Kalman Filter methodology. Section 4 reveals the outcome of the hybrid method
simulation when applied to solve the issue with the SoC estimation of Li-ion batteries.
Section 5 discusses the simulation result and briefs it, and Section 6 outlines the main
results of the research.

2. Problem Attributions

In the literature’s previous study, nonlinear modeling’s impacts were not considered
while identifying the battery characteristics and estimating SoC and the effects of noise
and measurement errors and their variable uncertainties. The linear model’s parameter
identification process does not take much time to compute. Conversely, while nonlinear
models need more computation time, they can offer good parameter estimate accuracy.
Compared to conventional nonlinear models, the recommended approach has created a
simpler nonlinear model that offers good identification accuracy with shorter computation
times, with accurate SoC estimation that assumes any uncertainties in the error of SoC
estimation are variable, not fixed; the model can adapt to any changes. A reduced model
with enough precision for parameter estimation must be presented to resolve this problem.
This new study’s focus is on the previously noted gaps in the literature. A nonlinear
depiction of the link between OCV and the SoC is considered because the battery’s internal
chemical reactions are unstable.

2.1. Modeling of Li-Ion Battery

Different Li-ion battery models were shown and evaluated for their complexity and
precision; an ECM for battery with lumped parameters for single and double polarization
branches was the better option. The most popular one selected for this work is the single-
order branch model, also known as the single-time constant model of Li-ion batteries. The
battery is modeled in Figure 1 [30].

This Li-ion battery model consists of a battery OCV (Vocv), series ohmic resistance
(Ro), the battery’s transient resistance and capacitance (Rtr, Ctr), and (Ibatt) is the battery
terminal current.
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Figure 1. Model of the Li-ion battery [30].

The electric behavior of the single-time constant model may be characterized by
Equations (1) and (2):

Vtr
◦ =

−1
Rtr ∗ Ctr

Vtr +
1

Ctr
Ibatt (1)

Vt = Vocv −Vtr − Ro ∗ Ibatt (2)

The discrete-time explanation may be seen in Equations (3) and (4) as follows:

Vtr, k + 1 = Vtr, ke
−τs
τtr + Rtr

(
1− e

−τs
τtr

)
Ibatt, k (3)

Vt, k = Vocv (SoC, k)−Vtr, k− Ro ∗ Ibatt, k (4)

where (τs) is the sample time and (τtr) is the taw time constant of the transient branch.

2.2. State of Charge Equations

The battery cell’s SoC reveals how much energy is still available in the cell compared
to its capacity, as shown in Equation (5).

SoC = SoC0 −
1
Q

∫ t

0
Ibattdt (5)

where (Q) is the capacity of a Li-ion battery, (SoCO) is the initial state of charge value,
and (Ibatt) is the load current. Equation (5) is used to compute SoC to determine (Vocv) in
Equation (3) and to calculate the terminal voltage (Vt) in Equation (4).

The discretization of Equation (5) is shown in Equation (6):

SoCk = SoCk−1 − 100
Ibatt,k−1

3600 ∗Q
(6)

Now using Equations (1)–(4), the equations of the state space of the Li-ion battery
model are presented in Equations (7) and (8).

[
SoCk
Vtr,k

]
=

[
1 0

0 e
−τs

RtrCtr

][
SoCk−1
Vtr,k−1

]
+

 −100 1
3600∗Q

Rtr

[
1− e

−τs
RtrCtr

] Ibatt,k−1 (7)

Vt =

[
−1
0

]T

Vtr,k − Ibatt,kRo + Vocv,k (8)
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To brief the process of SoC estimation, Figure 2 demonstrates the SoC estimation
framework.
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2.3. Objectives and Constraints of Li-Ion Battery Model SoC Estimation Problem

The single-branch Li-ion battery model discussed in the prior section characterizes the
battery characteristics. To match the predicted SoC with the observed state of charge in the
experimental step, an objective function must be developed, and SoC must be estimated
accurately by using a reliable and accurate estimation method to make sure the Li-ion
battery is performing within a safe range, avoiding overcharging and over-discharging
problems. The developed objective function is based on decreasing the distinction between
the experimental SoC and the simulation results SoC. The proposed objective function is
represented in Equation (9).

MinuFi(u), i = 1, 2, . . . nob f
Umin ≤ U ≤ Umax

(9)

Fi (u) is the developed goal function, and (i and u) represent the estimated parameters
in the battery. The control variables of the parameters are (Umin) and (Umax), and nob f
consists of all possible objective functions. Using the results of the Li-ion battery experiment,
the parameters of the Li-ion battery model are established.

The goal is to reduce the average discrepancy between the simulated battery and the
experimented battery SoC Fi (u) by using Equation (10).

Fi(u) = ∑
(

SoCestimated − SoCexperimental

)2
(10)

where (SoCestimated) is the simulated battery SoC and
(

SoCexperimental

)
is the experimental

battery SoC.
Under the primary constraints, the objective function is solved:

0 ≤ SoC ≤ 1
Vocv min ≤ Vocv ≤ Vocvmax at T1 = 25 ◦C and T2 = 45 ◦C

Romin ≤ Ro ≤ Romax at T1 = 25 ◦C and T2 = 45 ◦C
Rtrmin ≤ Rtr ≤ Rtrmax at T1 = 25 ◦C and T2 = 45 ◦C
τtrmin ≤ τtr ≤ τtrmax at T1 = 25 ◦C and T2 = 45 ◦C

where (min) and (max) are the parameters’ restrictions operators.
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3. Coulomb Counting Method and Adaptive Unscented Kalman Filter
3.1. Coulomb Counting Method

According to Kiarash et al. [31], the Coulomb Counting equation is presented in
Equation (11).

SoC(t) = SoC(0) +
η

3600 Q

∫ t

0
i(t)dt (11)

where (η) is the Coulomb efficiency which is denoted as follows in Equation (12):

η =

{
ηcharge, i(t) > 0

ηdischarge, i(t) < 0
(12)

where (t) is time in seconds, (i(t)) is the current flowing through in the battery amperes
(A) at the time (t), (SoC(t)) is the SoC at a time interval (t), (SoC (0)) is the SoC at time
instant (t = 0), and (Q) is battery capacity in (Ahr).

After discretizing the Coulomb Counting equation, we obtain Equation (13):

SoC(j) = SoC(j− 1) +
η

3600 Q

∫ t(j)

t(j−1)
i(τ) dτ (13)

where (SoC(j)) denotes the SoC at time instant (t(j)), (SoC(j− 1)) indicates SoC value at
time instant (t(j− 1)), and (i(τ)) indicates the current measured at time instant (τ). The
integration in Equation (14) is approximated using the rectangle (backward difference)
approach in Equation (13).

∫ t(j)

t(j−1)
i(τ)dτ ≈ ∆ji(t(j)) = ∆ji(j) (14)

where ∆j = t(j) − t(j− 1). Equation (15) illustrates the simplified Coulomb Counting
equation as follows:

SoC(j) = SoC(j− 1) +
η∆ji(j)
3600 Q

(15)

In Equation (15), the following inaccuracies are present in the Coulomb Counting
equation:

1. Current measurement inaccuracy i(j);
2. An error result from the integration’s approximation in Equation (14);
3. Knowledge of battery capacity (Q) is unreliable;
4. A lack of understanding regarding the efficiency of Coulomb Counting η;
5. Sampling time (∆) measurement error.

Therefore, to limit these errors, the AUKF is initially employed to lead the starting
value to the actual value.

3.2. Adaptive Unscented Kalman Filter (AUKF) Methodology

When turning a nonlinear system into a linear system, unscented transformation
should be used instead of the Taylor expansion to boost the accuracy of the Unscented
Kalman Filter (UKF) approach. Although the noise from the system model and observa-
tions in the UKF method is specified as constants, they cannot accurately represent the
impact of actual noise on the filter, leading to an increase or even a divergence in the SoC
estimate error. The AUKF algorithm, an improved version of the UKF algorithm, addresses
the issues above. The algorithm computes the innovation variance and residual variance
using the Moving Window approach, and it continuously observes the evolution of inno-
vation and residual in the filter. While the residual variance adjusts the observation noise
covariance instantaneously, the innovation variance adjusts the system noise covariance
instantaneously [32].
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The process of the AUKF is presented as follows:
Step (1): Define the initial state value (x̂0) and state error covariance initial value (P0) in
Equations (16) and (17).

x̂0 = E[x0] (16)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (17)

Step (2): Calculate the Sigma point through Equation (18).
x0

j = x̂j−1

xi
j−1 = x̂j−1 +

√
(L + λ)Pj−1, i = 1, 2, . . . , L

xi
j−1 = x̂j−1 −

√
(L + λ)Pj−1, i = L + 1, L + 2, . . . 2L

(18)

where (L) is the state vector length, the calculation of the weight value is presented in
Equation (19). 

λ = α2(L + ji)− L
W0

m = λ
L+λ , Wi

m = 1
2(L+λ)

, i = 1, 2, . . . , 2L
W0

c = λ
L+λ + 1− α2 + β, Wi

c =
1

2(L+λ)
, i = 1, 2, . . . 2L

(19)

Step (3): Time update.

1. Update the value of the predicted status
(

xj
)

from Equations (20) and (21).

xi
j|j−1 = F

(
xi

j−1

)
(20)

xj =
2L

∑
i=0

Wi
mxi

j (21)

2. Update the value of the predicted observation
(
yj
)

from Equations (22) and (23).

yi
j|j−1 = G

(
xi

j|j−1

)
(22)

yj =
2L

∑
i=0

Wi
m

[
G
(

xi
j|j−1

)
+ υ
]
=

2L

∑
i=0

Wi
m yi

j|j−1 (23)

3. Update the predicted value of system covariance
(

Pxx|j

)
from Equation (24).

Pxx|j =
2L

∑
i=0

(Wi
c (xi

j|j−1 − xj)
(

xi
j|j−1 − xj

)T
) + Qj−1 (24)

4. Calculate innovative value
(
dj
)

and innovative variance value
(

Cdj

)
from

Equations (25) and (26).
dj = yj − yj (25)

Cdj
=


j− 1

j
Cdj−1

+
1
j

djdT
j , j ≤W

1
W

j

∑
i=j−W+1

didT
i , j > W

(26)
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5. Update system noise covariance
(
Qj
)

from Equation (27).

Qj = Kj−1 Cdj
KT

j−1 (27)

Step (4): A status update.

1. Update the prediction value of observation covariance
(

Pyy|j

)
from Equation (28).

Pyy|j =
2L

∑
i=0

(Wi
c

(
yi

j|j−1 − yj

)(
yi

j|j−1 − yj

)T
) + Rj−1 (28)

2. Update covariance
(

Pxy|j

)
from Equation (29).

Pxy|j =
2L

∑
i=0

Wi
c

(
xi

j|j−1 − xj

)(
yi

j|j−1 − yj

)T
(29)

3. Calculate Kalman gain from Equation (30).

Kj =
Pxy|j
Pyy|j

(30)

4. Update the value of the estimated state
(
x̂j
)

from Equation (31).

x̂j = xj + Kj
(
yj − yj

)
(31)

5. Update the value of the estimated observation
(
ŷj
)

from Equation (32).

ŷj = Hj x̂j (32)

6. Update the value of error covariance
(

Pj
)

from Equation (33).

Pj = Pxx|j − Kj Pyy|j KT (33)

7. Calculate the value of the residual
(
rj
)

and the value of residual variance
(

Crj

)
in

Equations (34) and (35).
rj = yj − ŷj (34)

Crj =


j− 1

j
Cdr−1 +

1
j

rj rT
j , j ≤W

1
W

j

∑
i=j−W+1

rirT
i , j > W

(35)

8. Update the value of the observation noise covariance
(

Rj
)

from Equation (36).

Rj = Cr j + Hj Pj HT
j (36)

3.2.1. System Noise Covariance of Adaptive System
(
Qj
)

The previous equations prove that when
(
Qj
)

is very large, system covariance predic-

tion
(

Pxx|j

)
increases, therefore, state value

(
xj+1

)
increases, which leads to a high value

of the predicted state
(

x̂j+1
)
, therefore increasing the error of the estimated state of charge.

Covariance of system noise
(
Qj
)

will be updated instantaneously to correct the effect of
system errors on estimated results.
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The difference between the actual observation value
(
yj
)

and the value of predicted ob-
servation

(
yj
)

is denoted as innovation
(
dj
)

at the time (j), which is shown in Equation (25).
In the Moving Window method, innovation variance

(
Cd j
)

is denoted in Equation (26).

Where (W) is the Moving Window length from the innovative variance
(

Cdj

)
equation, the

system noise covariance
(
Qj
)

is calculated from Equation (37).

Qj = Kj−1 Cdj−1
KT

j−1 (37)

Therefore, by calculating the innovation value
(
dj
)

and updating
(
Qj
)

instantaneously
to correct the covariance error

(
Pj
)
, the value of system noise is corrected, and the

(
Qj
)

reaches zero.

3.2.2. Observation Noise Covariance of Adaptive System
(

Rj
)

The previous equations denote that
(

Rj
)

establishes the importance of the observation
value with the estimated outcome. As

(
Rj
)

increases, Kalman gains
(
Kj
)

decrease, which
causes the observation value to have a negligible impact on the predicted state value.
Similarly, as

(
Rj
)

decreases, filter gain
(
Kj
)

increases, which causes the observation value
to have a significant impact on the predicted state value. Therefore, the covariance of
observation noise

(
Rj
)

reduces the impact of observation noise on estimating results by
adjusting the Kalman gain

(
Kj
)

instantaneously to modify the impact of the observation
predicted value.

The residual (rj) at a time (j), which is displayed in Equation (34), is the divergence
between the actual value

(
yj
)

and the estimated value of observation
(
ŷj
)
.

In the Moving Window method, the value of the variance of residual (Crj) is denoted
in Equation (38).

Crj =


j− 1

j
Crj−1 +

1
j

rjrT
j , j ≤W

1
W

j

∑
i=j−W+1

ri rT
i , j > W

(38)

From the value of residual variance (Crj) equation, the value of observation noise
covariance (Rj) is calculated from Equation (39).

Rj = Crj + Hj Pj−1 HT
j (39)

Therefore, by calculating the residual value
(
rj
)

and updating
(

Rj
)

in real-time and
adjusting Kalman gain (Kj), we can achieve optimal estimation.

To brief this section, Figure 3 illustrates the AUKF flowchart.
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4. Experimental Results

This section presents a rechargeable Li-ion battery, 3.7 V, 2.6 Ah, as it has strong perfor-
mance and dependability. Its characteristics include the following details in Tables 1–3 [30].

Other constants are considered while simulating the Li-ion battery, represented in
Table 2.

Four approaches are applied for Li-ion batteries as follows:

1. Approach (1): resistive load and battery fade are not considered;
2. Approach (2): battery fade is considered, but the resistive load is not;
3. Approach (3): resistive load is included; battery fade is not;
4. Approach (4): resistive and battery fade are considered.
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Table 1. Li-ion battery characteristics.

Battery Value

Average Voltage (Vnom) 3.7
Least Capacity (Ah) 2.45
Ideal Capacity (Ah) 2.6
Series Resistance (Ω) 0.05
Maximum Charging/Discharging Current (A) 2/2
Charging CC/CV (mA, V) 1750, 4.20
Charging Time (h) 3

Ambient Temperature (◦C)
Charging Temperature: (0~+45 ◦C)

Discharging Temperature: (−20~+60 ◦C)
Weight (g) 48

Table 2. Li-ion battery constants.

Parameter Value

Discharge capacity (Qdis) (Ahr) 1.4
No discharge cycles (N) 100
Capacity

(
Q f ade

)
after (N) discharge cycles (Ahr) 2

(Ro) after (N) discharge cycles (Ω) 0.15
(Vdis) after (N) discharge cycles (V) 3
No population size 20
No of iterations 500
The initial state of charge (SoC0) 0.5
Charging and discharging time (s) 21,600
Series resistance initial values (used for AUKF) (Ω) 0.05
Initial state error covariance (P0) [1 × 10−6 0; 0 1]
Measurement noise covariance (R) 0.25
Process noise covariance (Q) [1 × 10−1 0; 0 1 × 10−1]
Alpha (α) 1
Beta (β) 1
Kappa (κ) 0

Table 3. Li-ion battery parameters’ boundaries.

Parameter LB UB Parameter LB UB

At T1 = 25 ◦C At T2 = 45 ◦C

Vnom (V) 3 4 Vnom (V) 3 4
Ro|T1 (Ω) 0.045 0.06 Ro|T2 (Ω) 0.07 0.085
Rtr|T1 (Ω) 0.005 0.015 Rtr|T2 (Ω) 0.007 0.01
τtr|T1 (s) 100 200 τtr|T2 (s) 150 250

4.1. Simulation of Approach (1)

In this approach, both loading and battery fade effects are excluded. Table 4 represents
the values of optimized parameters by using African Vultures Optimization Algorithm
(AVOA) at different state of charge values at temperatures 25 ◦C and 45 ◦C; then, after
estimating the SoC, Table 5 represents the SoC error (ISE) which is utilized in curves
between the contrasted hybrid approaches in Figure 4.
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Table 4. Approach (1): optimized parameters of the Li-ion battery at different SoC values.

SoC = 0 SoC = 0.1 SoC = 0.25 SoC = 0.5 SoC = 0.75 SoC = 0.9 SoC = 1

Vnom|T1 3 3.06 3.13 3.22 3.42 3.58 3.7
Ro|T1 0.0515 0.0508 0.0512 0.0519 0.0519 0.0525 0.0528
Rtr|T1 0.0137 0.0097 0.0075 0.0062 0.0061 0.0061 0.0056
τtr|T1 104.65 115.36 193.45 120.54 143.71 124.36 109.71

Vnom|T2 3.2109 3.2812 3.3409 3.4269 3.6409 3.7954 3.9009
Ro|T2 0.0801 0.0801 0.0803 0.0798 0.0799 0.08 0.08
Rtr|T2 0.0083 0.0078 0.008 0.0079 0.0086 0.0081 0.008
τtr|T2 157 166 226 150 198 154 160

Table 5. Approach (1): Li-ion battery SoC error using comparative hybrid techniques.

CC + EKF CC + UKF CC + AEKF CC + AUKF

ISE 0.000285955 8.58843 × 10−5 5.80235 × 10−5 1.72978 × 10−6
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Figure 4 reveals the convergence curves between the integral square error (ISE) and
time in seconds.

4.2. Simulation of Approach (2)

In this approach, the effect of battery fading is included, while loading is not included.
Both battery capacity and battery series resistance are affected by aging. Resistance increases
are caused by several causes, including developing (SEI) at the corrosion of the current
collector’s anode, cathode, and interfaces. These mechanisms cause battery fading and are
influenced by temperature, charge state, and storage time. Table 6 represents the values
of optimized parameters by using the African Vultures Optimization Algorithm (AVOA)
at different state of charge values at temperatures 25 ◦C and 45 ◦C; then, after estimating
the SoC, Table 7 represents the SoC error (ISE), which is utilized in curves between the
contrasted hybrid approaches in Figure 5.
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Table 6. Approach (2): optimized parameters of the Li-ion battery at different SoC values.

SoC = 0 SoC = 0.1 SoC = 0.25 SoC = 0.5 SoC = 0.75 SoC = 0.9 SoC = 1

Vnom|T1 3.024 3.084 3.154 3.244 3.444 3.604 3.724
Ro|T1 0.0496 0.0489 0.0493 0.050 0.052 0.0526 0.0529
Rtr|T1 0.00992 0.00952 0.00732 0.00602 0.00592 0.00592 0.00542
τtr|T1 104.5687 115.9845 193.4587 120.3648 143.5681 124.5847 109.2108

Vnom|T2 3.231 3.301 3.361 3.441 3.661 3.811 3.9210
Ro|T2 0.08436 0.08436 0.08456 0.08406 0.08416 0.08426 0.08426
Rtr|T2 0.00885 0.00835 0.00855 0.00845 0.00915 0.00865 0.00855
τtr|T2 157.412 166.785 226.457 150.251 198.473 154.785 160.251

Table 7. Approach (2): Li-ion battery SoC error using comparative hybrid techniques.

CC + EKF CC + UKF CC + AEKF CC + AUKF

ISE 0.000297115 0.000260252 4.28443 × 10−5 2.78046 × 10−5
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Figure 5 reveals the convergence curves between the integral square error (ISE) and
time in seconds.

4.3. Simulation of Approach (3)

In this approach, a resistive load equal to 1 kΩ is studied while the battery fade is
not. Table 8 represents the values of optimized parameters by using the African Vultures
Optimization Algorithm (AVOA) at different SoC values at temperatures 25 ◦C and 45 ◦C;
then, after estimating the SoC, Table 9 represents the SoC error (ISE) which is utilized in
curves between the contrasted hybrid approaches in Figure 6.
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Table 8. Approach (3): optimized parameters of the Li-ion battery at different SoC values.

SoC = 0 SoC = 0.1 SoC = 0.25 SoC = 0.5 SoC = 0.75 SoC = 0.9 SoC = 1

Vnom|T1 3.0115 3.0715 3.1415 3.2315 3.4315 3.5915 3.7115
Ro|T1 0.05115 0.05045 0.05085 0.05155 0.05155 0.05215 0.05245
Rtr|T1 0.00982 0.00942 0.00722 0.00592 0.00572 0.00572 0.00522
τtr|T1 104.5129 115.3211 193.2314 120.4785 143.9845 124.9541 109.1172

Vnom|T2 3.2213 3.2913 3.3513 3.4313 3.6513 3.8013 3.9113
Ro|T2 0.0842 0.0846 0.0848 0.0843 0.0844 0.08450 0.08452
Rtr|T2 0.00891 0.00841 0.00861 0.00861 0.00931 0.00881 0.00871
τtr|T2 157.8632 166.8732 226.1234 150.3648 198.4155 154.2844 160.8211

Table 9. Approach (3): Li-ion battery SoC error using comparative hybrid techniques.

CC + EKF CC + UKF CC + AEKF CC + AUKF

ISE 5.82592 × 10−5 0.000256599 8.53238 × 10−5 1.52231 × 10−6
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4.4. Simulation of Approach (4)

In this approach, both the resistive load and battery fade are considered. Table 10
represents the values of optimized parameters by using the African Vultures Optimization
Algorithm (AVOA) at different state of charge values at temperatures 25 ◦C and 45 ◦C; then,
after estimating the SoC, Table 11 represents the SoC error (ISE) which is utilized in curves
between the contrasted hybrid approaches in Figure 7.
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Table 10. Approach (4): optimized parameters of the Li-ion battery at different SoC values.

SoC = 0 SoC = 0.1 SoC = 0.25 SoC = 0.5 SoC = 0.75 SoC = 0.9 SoC = 1

Vnom|T1 3.011 3.071 3.141 3.231 3.431 3.591 3.711
Ro|T1 0.0523 0.0514 0.0517 0.0522 0.0522 0.0528 0.0531
Rtr|T1 0.00891 0.00931 0.00711 0.00581 0.00571 0.00561 0.00521
τtr|T1 104.3675 115.2178 193.3245 120.6478 143.86321 124.9541 109.1131

Vnom|T2 3.2101 3.2801 3.3401 3.4201 3.6401 3.7901 3.9001
Ro|T2 0.0858 0.0858 0.086 0.0855 0.0857 0.0858 0.0861
Rtr|T2 0.008275 0.007875 0.008075 0.007975 0.008675 0.008275 0.008175
τtr|T2 157.3211 166.3222 226.3144 150.3644 198.2345 154.2387 160.7111

Table 11. Approach (4): Li-ion battery SoC error using comparative hybrid techniques.

CC + EKF CC + UKF CC + AEKF CC + AUKF

ISE 0.000259489 0.000298199 5.85516 × 10−5 4.44024 × 10−5
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Figure 7 reveals the convergence curves between the integral square error (ISE) and
time in seconds.

5. Discussion

This study explains the connection between the battery characteristics and SoC at
different loading, temperatures, and aging conditions; by comparing to other studies,
the results prove the reduction of the error between the estimated SoC and real SoC by
using a new hybrid method which is a combination of the CCM and AUKF. Tables 12–15
demonstrate the Li-ion battery’s attained objective value under contrasting techniques.



Energies 2023, 16, 5558 17 of 21

Table 12. Li-ion battery objective value using hybrid comparative techniques for Approach (1).

CC + EKF CC + UKF CC + AEKF CC + AUKF

ISE 0.000285955 8.58843 × 10−5 5.80235 × 10−5 1.72978 × 10−6

Rank 4 (Max.) 3 2 1 (Min.)

Table 13. Li-ion battery objective value using hybrid comparative techniques for Approach (2).

CC + EKF CC + UKF CC + AEKF CC + AUKF

ISE 0.000267115 0.000260252 4.28443 × 10−5 2.78046 × 10−5

Rank 4 (Max.) 3 2 1 (Min.)

Table 14. Li-ion battery objective value using hybrid comparative techniques for Approach (3).

CC + EKF CC + UKF CC + AEKF CC + AUKF

ISE 5.82592 × 10−5 0.000256599 8.53238 × 10−5 1.52231 × 10−6

Rank 2 4 (Max.) 3 1 (Min.)

Table 15. Li-ion battery objective value using hybrid comparative techniques for Approach (4).

CC + EKF CC + UKF CC + AEKF CC + AUKF

ISE 0.000259489 0.000298199 5.85516 × 10−5 4.44024 × 10−5

Rank 3 4 (Max.) 2 1 (Min.)

As explained in Tables 12–15, based on the value of the error and convergence curve,
the CCM with AUKF gives the minimum (ISE) and best behavior for the convergence
curve in all approaches.

For more confirmation that the hybrid method fits as the best SoC estimation technique
and has the least error, using every estimation method as an individual without including
any hybrid techniques gives a larger error than using the hybrid technique. Table 16
demonstrates the outcomes of applying various SoC estimate methods on Li-ion batteries
for all approaches.

Table 16. SoC error values in all approaches using individual estimating methods.

Approach (1) Approach (2) Approach (3) Approach (4)

CCM 0.0924891 0.0959956 0.0979244 0.101549
EKF 0.000537848 0.00036549 0.000543256 0.000453648
UKF 1.23475 × 10−4 3.24046 × 10−4 0.000235487 0.000397456

AEKF 2.47858 × 10−5 0.000215894 4.23578 × 10−5 8.34568 × 10−5

AUKF 3.47268 × 10−5 5.47866 × 10−5 1.5431 × 10−5 8.82024 × 10−5

As we compare the results, the hybrid method gives a more optimal estimation for
SoC. Another verification for using an optimal estimating technique is comparing real and
estimated SoC curves, as shown in Figure 8.

As shown in Figure 8a, the battery suffered from (±0.2) overcharging, which will
affect the battery lifetime, and in long distances, the lifetime of the internal parts will be
decreased and damaged. As shown in Figure 8b, while using an accurate battery model by
using an accurate optimization technique to model the battery accurately and then using a
dependable battery SoC estimation technique, the data are very close to each other.
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6. Conclusions

This work employed a hybrid approach to calculate the SoC of Li-ion batteries. First,
the battery is modeled accurately for accurate SoC estimation by using the African Vultures
Optimizer (AVOA), which is considered one of the most effective optimization techniques in
modeling a nonlinear model such as the Li-ion battery. Then, the hybrid method consisting
of the CCM with the AUKF is used for SoC estimation. AUKF is initially employed to lead
the starting value to the actual value and eliminate any error at the first readings, and then
Coulomb Counting continues to estimate SoC for a long working time. This hybrid method
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is compared to other hybrid methods, such as the CCM with an EKF, CCM with a UKF,
and CCM with an AEKF. For the 2.6 Ahr Li-ion battery, the simulation results show that
the proposed combination of CCM with AUKF has outstanding dynamic validation and
capacity in all situations. The fitness function, when compared to other hybrid approaches,
achieves the lowest value by utilizing the most dependable and efficient solution, resulting
in high accuracy and minimal errors.
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Nomenclature

List of symbols and nomenclature

Symbol Description
SoC Battery State of Charge
ESS Energy Storage Systems
BMS Battery Management System
ISE Integral Square Error
ECM Equivalent Circuit Model
OCV Open-Circuit Voltage
CCM Coulomb Counting Method
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
AKF Adaptive Kalman Filter
AEKF Adaptive Extended Kalman Filter
AUKF Adaptive Unscented Kalman Filter
AVOA African Vultures Optimization Algorithm
EMF Electromotive Force
UB Upper Bound
LB Lower Bound
SEI Solid Electrolyte Interfaces
Ah Ampere-Hour
SoC0 The initial value of the state of charge
Vocv Battery Open circuit voltage
Ro The series battery resistance
Rtr Battery transient resistance
Ctr Battery transient capacitance
Vtr The voltage across the polarization branch of the battery
ICtr Current flows in polarization capacitance of the battery
Ibatt Battery terminal current
τs Sampling time
τtr Transient time constant
Vnom Battery nominal voltage
Vdis Battery discharge voltage
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Q Battery nominal capacity
Qdis Battery discharge capacity
Vt Battery terminal voltage
n Total number of discharge cycles
N Number of discharge cycles
Fi(U) Objective function
nob f Number of goal functions
Umin, Umax Parameter bounds for the control variable factor
SoCmeasured Expected battery model state of charge
SoCexperimental Recorded experimental battery state of charge
Qmin, Qmax Maximum and minimum values of (Q)
Romin, Romax Maximum and minimum values of (Ro)
Rtrmin, Rtrmax Maximum and minimum values of (Rtr)
τtrmin, τtrmax Maximum and minimum values of (τtr)
η Coulomb counting efficiency
α The alpha coefficient controls the emergence of sigma points

and minimizes the error of approximation.
β The beta coefficient controls the emergence of sigma points and

minimizes the error of approximation.
W Moving window length
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