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Abstract: Emerging global environmental pollution issues have caused a reduction in coal utilization,
leading to an increased research focus on biomass use as an alternative. However, due to the low heat
values of biomass, studies in this field are still in progress. Biomass primarily comprises cellulose,
hemicellulose, and lignin. To determine the composition of these three components, the measurement
methods recommended by TAPPI (Technical Association of the Pulp and Paper Industry) and NREL
(National Renewable Energy Laboratory) are typically employed involving equipment such as HPLC.
However, these methods are time consuming. In this study, we proposed a model for predicting
cellulose, hemicellulose, and lignin contents based on elemental and industrial analyses. A dataset
comprising 174 samples was used to develop this model. This was validated using 25 additional
samples. The R2

P values for cellulose, hemicellulose, and lignin were 0.6104–0.6362, 0.4803–0.5112,
and 0.7247–0.7914, respectively; however, the R2

CV values obtained from the validation results
were 0.7387–0.7837, 0.3280–0.4004, and 0.7427–0.7757, respectively. The optimal models selected
for cellulose, lignin, and hemicellulose were C1, L2, and 100-(C1-L2) or H2, respectively. Our
predictions for woody and herbaceous biomass, including torrefied samples, should be applied with
caution to other biomass types due to the potential accuracy limitations. To enhance the prediction
accuracy, future research should broaden the range of biomass types considered and gather more
data specifically related to woody and herbaceous biomass.

Keywords: pollution; coal; energy; biomass

1. Introduction

As interest in the environment is on the rise, much research is being conducted on
alternative renewable energy sources to replace traditional fossil fuels. In particular, re-
search has been conducted on alternative energy sources, such as hydrogen energy and
batteries, which are currently prevalent. Globally, there is a strong reliance on thermal
power generation to generate large amounts of electricity. This has caused increasing
interest in biomass power plants that use biofuels as an alternative to coal. The use of agri-
cultural and forest-based biomass is particularly advantageous because it is continuously
produced by human activities and is relatively evenly distributed worldwide, unlike fossil
fuels, which are concentrated in specific regions. However, biomass has been criticized
for its high ash content and low calorific value compared with fossil fuels. To address
these drawbacks, various thermochemical conversion processes have been conducted. In
particular, processes such as torrefaction and carbonization have been developed to use
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biomass as a solid fuel. During the thermochemical conversion of biomass, the contents
of the three components of biomass—cellulose, hemicellulose, and lignin—are important.
Cellulose (Figure 1) is a glucose polymer with the structure [C6H10O5]n [1]. Hemicel-
lulose (Figure 2) is a complex of 6-carbon and 5-carbon sugars, primarily composed of
arabinose, xylose, mannose, galactose, and glucose [2]. In contrast, lignin comprises
three phenylpropanoid units (p-coumaryl, coniferyl, and sinapyl alcohols) derived from
cinnamyl alcohol (Figure 3) [3].
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Figure 1. Structure of cellulose.
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Figure 2. Structure of hemicellulose consisting of a xylopyranose backbone with glucuronic acid
(1→2) and arabinofuranose (1→3) side branch.
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However, not all chemical compositions are solely based on these chemical structures.
In most cases, other elements such as nitrogen, sulfur, and chlorine are included in addition
to C, H, and O. If these elements are considered only from the elemental composition
perspective, an elemental analysis will divide only the organic components of the sample
into C, H, N, and S, assuming the remaining mass to be oxygen, leading to misunder-
standings regarding the composition of sulfur, chlorine, ash, and other elements present
in the sample [4]. However, in proximate analysis, the total biomass composition can be
determined [5]. Cellulose is primarily composed of volatile matter. Hemicellulose has less
volatile matter and more fixed carbon than cellulose and includes some ash. Lignin has
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relatively less volatile matter and more fixed carbon, with a particularly higher ash content
than the other two components [6–9]. These characteristics cannot be determined using
elemental analysis alone.

The ratios of these components vary depending on the biomass sources, such as herba-
ceous plants, hardwoods, or softwood. The TAPPI (Technical Association of the Pulp and
Paper Industry) and the NREL (National Renewable Energy Laboratory) methods were
used to determine the amounts of these three chemical components [10–15]. However,
this method requires extensive time, samples, and equipment, such as HPLC and spec-
trometers. Consequently, various studies attempted alternative analyses for predicting
biomass compositions rather than using conventional methods. Sheng et al. attempted to
predict cellulose and lignin contents based on carbon dioxide and hydrogen consumption,
and volatile matter [16]. Burhenne et al. predicted the chemical structure using elemental
ratios [17]. However, the methods of Sheng et al. had a limited range of O/C and H/C,
and that of Burhenne et al. was sensitive to even minor changes in the elemental composi-
tion. Díez et al. suggested the low-cost and rapid TGA-PKM method for determining the
main lignocellulosic fraction contents of different types of biomasses from agricultural by-
products [18]. Xing et al. reported a chemical constituent prediction model from ultimate
analysis using a random forest model [19]. However, although an analysis of untreated
biomass has been conducted, there is little research on the prediction of torrefied biomass.
Therefore, this study proposed a model that predicts the cellulose, hemicellulose, and lignin
contents based on the elemental content ratios determined during biofuel evaluation. From
untreated biomass to torrefied biomass, this study attempted to make predictions using
this method.

2. Methodology
2.1. Collection of Data

The elemental analysis, proximate analysis, and chemical structure results of the
biomass were obtained from previous studies. A total of 174 data points were collected and
normalized [20–56]. The collected data are summarized in Figure 4 and Table S1.
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2.2. Pearson Correlation Coefficient

The Pearson correlation coefficient (Equation (1)) was used to examine the correla-
tion between the various elements (C, H, N, O, and S), and proximate (VM and FC) and
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composition (Cell, Hemi, and Lig) analysis results. The Pearson correlation coefficient,
as described in Equation (1), was used to analyze the degree of correlation between two
populations. It ranges from −1 to 1, where positive and negative values indicate a propor-
tional and inverse relationship, respectively. Values closer to −1 or 1 indicate a stronger
linear correlation, whereas those closer to 0 indicate a weaker correlation [57]. Correlation
equations with different goodness of fit values were obtained by performing linear and
nonlinear regressions on the final analysis data using IBM SPSS version 22.0. The data
analyses in this study utilized a combination of the “stepwise” and “enter” methods in
SPSS software.

R =

(
∑n

i=1
(
Xi − X

)(
Yi −Y

))√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(1)

2.2.1. Linear Regression

Linear regression is a statistical method commonly used to determine the value of
a dependent variable based on that of an independent variable [58]. This technique uses
a mathematical equation that outputs a simple value based on a combination of input
properties. The linear regression equation is as follows [59]:

ŷ = βO + x1β1 + x2β2 + x3β3 + . . . + xnβn (2)

2.2.2. Polynomial Regression

In polynomial regression, the data are approximated using a polynomial function [60].
It involves the use of high-order terms of variables for estimating the polynomial regression
and creating a curved response surface [61]. Since there is no universal polynomial equation,
the equation should be determined based on the specific problem at hand. The general
expression for a polynomial of a function is as follows [59]:

f (x) = co + c1x + c2x2 + . . . + cnxn (3)

2.3. Model Evaluation

Four performance metrics (equations) were used to evaluate the suitability of the mod-
els including the coefficient of determination (R2), mean absolute error (MAE), root mean
squared error (RMSE), and average absolute error (AAE). The coefficient of determination
is a convenient tool for comparing relative performance. The MAE was used because it
has the same units as the measured and predicted values and is intuitive. Although the
RMSE had the advantage of reducing the distortion of values resulting from the square of
the error, errors < 1 were further reduced due to the square, whereas errors > 1 increased.
AAE and ABE represent the average error of the correlation equation; if they have positive
values, they are evaluated highly, whereas if they have negative values, they are evaluated
as somewhat low. The optimal selected prediction models were cross-validated using the
data summarized in Table 1.

R2 = 1− ∑n
i=1 ValueM −ValueP

∑n
i=1 ValueM −ValueP

(4)

MAE =
Σn

i=1(ValuleM −ValueP)

n
(5)

AAE =
1
n

n

∑
i=1

∣∣∣∣ValueP −ValueM
ValueM

∣∣∣∣ (6)
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Table 1. Data for cross-validation.

Element Analysis Proximate Analysis Composition Analysis
Ref

C H O VM FC Ash Cell Hemi Lig

Mixed waste wood 48.08 5.69 45.8 86.15 10.44 3.41 42.27 27.05 30.68

[62]

Torrefied mixed waste wood
(200 ◦C) 51.76 5.34 42.47 83.03 10.6 6.36 42.78 26.71 30.51

Torrefied mixed waste wood
(250 ◦C) 52.46 5.55 41.46 74.24 18.82 6.94 46.32 18.07 35.61

Oak waste wood 47.26 5.95 46.46 87.3 12.05 0.65 44.64 29.72 25.64

Torrefied Oak waste wood
(200 ◦C) 48.78 5.86 44.94 86.52 12.62 0.86 43.77 28.01 28.22

Logging residue 47.72 6.26 45.6 82.18 16.07 1.75 49.94 21.12 28.94 [63]

pine wood 45.83 6.35 47.51 83.1 16.3 0.6 50 19.67 30.33 [64]

Rice husk 44.91 6.93 47.21 68.55 22.95 8.5 48.32 37.17 14.52

[65]Corn cob 46.29 6.69 46.69 67.68 22.29 10.03 47.37 36.84 15.79

Groundnut shell 47.51 6.32 45.64 69.69 21.11 9.2 55.06 23.6 21.35

Pine chip 47.31 6.65 45.86 85.97 13.76 0.27 54.01 16.89 29.09

[66]

Torrefied pine chip (225 ◦C) 49.61 6.09 44.15 84.42 14.89 0.7 44.56 13.91 41.53

Torrefied pine chip (250 ◦C) 51.73 5.89 42.24 82.51 17.24 0.25 44.32 7.33 48.34

Logging residue chip 47.72 6.26 45.6 82.16 16.07 1.77 48.75 17.24 34.01

Torrefied logging
residue chip (225 ◦C) 50.51 6.14 43.05 80.73 17.9 1.37 46.11 16.59 37.30

Torrefied logging
residue chip (250 ◦C) 53.81 5.75 40.14 78.14 20.37 1.49 44.37 6.75 48.88

Torrefied logging
residue chip (275 ◦C) 53.75 5.44 40.5 71.43 26.69 1.88 37 5.68 57.32

Loblolly pine 50.78 6.29 42.84 84.6 14.8 0.6 42.52 22.03 35.45

[67]

Torrefied loblolly pine
(270 ◦C 2.5 min) 55.36 5.98 38.55 78.6 20.8 0.6 39.29 13.92 46.79

Torrefied loblolly pine
(300 ◦C 2.5 min) 57.74 5.83 36.28 76.4 22.8 0.8 35.85 10.22 53.93

Torrefied loblolly pine
(330 ◦C 2.5 min) 66.77 4.94 28.01 59.96 38.64 1.4 19.33 1.25 79.42

Palm mesocarp fiber 46.29 4.67 47.37 63.29 29.49 7.22 30.43 29.25 40.32
[68]

Palm kernel shell 47.77 4.06 47.55 59.07 34.36 6.57 30.28 28.31 41.41

Sugarcane bagasse sample 46.32 6.28 46.74 83.55 14.28 2.17 43.35 35.33 21.32

[69]

Torrefied sugarcane bagasse
(200 ◦C) 41.88 4.21 53.59 71.26 26.97 1.77 44.19 12.35 43.46

Torrefied sugarcane bagasse
(225 ◦C) 47.1 4.72 47.79 71.95 25.55 2.49 34.03 15.39 50.58

Torrefied sugarcane bagasse
(250 ◦C) 52.63 3.79 43.16 62.27 34.5 3.22 25.82 8.29 65.89

3. Results & Discussions
3.1. Result of Pearson Correlation Coefficient

The results of Pearson’s correlation coefficient are summarized in Figure 5. Cellulose
showed a negative correlation with C, but a positive correlation with H and O. Despite
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the negative correlation between C and cellulose, both H/C and O/C showed positive
correlations. In particular, the H/C ratio exhibited a strong positive correlation (0.658).
The VM showed a positive correlation, whereas the FC showed a negative correlation.
FC/VM showed a strong negative correlation, which was attributed to the low FC content
of cellulose. The correlation between the VM/FC ratios was low. Hemicellulose showed a
stronger negative correlation with C than cellulose. H, O, H/C, and O/C showed positive
correlations, but there was a slight difference compared to their relationship with cellulose.
The correlation between H and hemicellulose showed a weaker positive correlation (0.26)
than that between cellulose and H. On the other hand, the correlation between O and
hemicellulose was higher (0.42) than that between cellulose and O (0.30). As a result,
there was a slight difference between the H/C and O/C ratios. In the case of lignin and
each element, there were many cases in which their correlations were opposite to those
of cellulose and hemicellulose. Lignin was positively correlated with C and negatively
correlated with H, O, H/C, and O/C, which were positively correlated with cellulose
and hemicellulose. Lignin levels showed a strong negative correlation with VM and a
strong positive correlation with FC. These results were based on the fact that cellulose and
hemicellulose are composed of linear carbon structures, whereas lignin has a ring structure
that forms stronger bonds, making it less volatile. In addition, there was a strong positive
correlation in the case of FC/VM due to its relationship with cellulose, such as FC. However,
there was no strong correlation in the case of the VM/FC. Based on these results, the basic
prediction model that was suggested is as follows:

Cell = f (C, H, O, VM, FC) (7)

Hemi = g(C, H, O, VM, FC) (8)

Lig = h(C, H, O, VM, FC) (9)
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3.2. Prediction Model for Cellulose

The equations with the highest R2
P for predicting cellulose content are summarized

in Table 2. Differences were observed between C1 and C2 when the second-order terms
C, H, O, and FC/VM were added to the equation. Due to the increase in the number of
factors involved in the equation, C2 showed an increased R2

P of 0.6342, whereas C1 had
an R2

P of 0.6104. Additionally, lower RMSEP, MAEP, and AAEP values were observed.
When comparing C2 and C3, the impact of the second-order terms on VM, FC, and FC/VM
was considered. The R2

P value for C3 increased slightly to 0.6362. However, the RMSEP,
MAEP, and AAEP increased for C3, with values of 7.3263, 5.8115, and 43.1320, respectively,
compared with C2 values of 7.3013, 5.4302, and 32.7348. This indicates that C3 had larger
errors, as shown in Figure 6. The red trend line in Figure 6 was used as a reference for
significance at the level of 0.01. As expected, there was little difference in the trends
between C2 and C3; however, some data points from C3 deviated further from the trend
line compared to those from C2.

Table 2. Results of predicted model for cellulose.

No. Proposed Models R2
P

[-]
RMSEP

[%]
MAEP

[%]
AAEP

[%]

C1

Cell = −152.237 +0.838C− 10.405H + 3.3091O− 37.061
(

H
C

)2

+ 177.211
(

H
C

)
+ 20.086

(
O
C

)2
− 136.126

(
O
C

)
+ 0.151VM + 0.391FC− 4.52

(
FC

VM

) 0.6104 7.3666 5.6839 49.2202

C2

Cell = 678.363 +0.270C2 − 0.632H2 − 0.166O2 − 34.026C

+ 24.548H + 22.108O− 15.474
(

H
C

)2
− 10.580

(
H
C

)
+ 94.988

(
O
C

)2
− 510.643

(
O
C

)
+ 0.250VM

+ 0.290FC− 3.866
(

FC
VM

)2
+ 10.266

(
FC

VM

) 0.6342 7.3013 5.4302 32.7348

C3

Cell = 810.611 +0.311C2 − 0.657H2 − 0.165O2 − 39.014C

+ 23.282H + 23.513O− 14.962
(

H
C

)2
− 4.252

(
H
C

)
+ 104.943

(
O
C

)2
− 595.105

(
O
C

)
− 0.001VM2

+ 0.551VM− 0.012FC2 + 0.116FC

− 12.486
(

FC
VM

)2
+ 59.697

(
FC

VM

)
0.6362 7.3263 5.8115 43.1320

Energies 2023, 16, x FOR PEER REVIEW 7 of 17 
 

 

3.2. Prediction Model for Cellulose 
The equations with the highest R2P for predicting cellulose content are summarized 

in Table 2. Differences were observed between C1 and C2 when the second-order terms C, 
H, O, and FC/VM were added to the equation. Due to the increase in the number of factors 
involved in the equation, C2 showed an increased R2P of 0.6342, whereas C1 had an R2P of 
0.6104. Additionally, lower RMSEP, MAEP, and AAEP values were observed. When com-
paring C2 and C3, the impact of the second-order terms on VM, FC, and FC/VM was con-
sidered. The R2P value for C3 increased slightly to 0.6362. However, the RMSEP, MAEP, 
and AAEP increased for C3, with values of 7.3263, 5.8115, and 43.1320, respectively, com-
pared with C2 values of 7.3013, 5.4302, and 32.7348. This indicates that C3 had larger er-
rors, as shown in Figure 6. The red trend line in Figure 6 was used as a reference for sig-
nificance at the level of 0.01. As expected, there was little difference in the trends between 
C2 and C3; however, some data points from C3 deviated further from the trend line com-
pared to those from C2. 

Table 2. Results of predicted model for cellulose. 

No. Proposed Models R2P 

[-] 
RMSEP 

[%] 
MAEP 

[%] 
AAEP 
[%] 

C1 

𝐶𝑒𝑙𝑙 = −152.237 + 0.838𝐶 − 10.405𝐻 + 3.3091𝑂 − 37.061 ൬𝐻𝐶 ൰ଶ
+ 177.211 ൬𝐻𝐶൰ + 20.086 ൬𝑂𝐶൰ଶ − 136.126 ൬𝑂𝐶൰+  0.151𝑉𝑀 + 0.391𝐹𝐶 − 4.52 ൬ 𝐹𝐶𝑉𝑀൰ 

0.6104 7.3666 5.6839 49.2202 

C2 

𝐶𝑒𝑙𝑙 = 678.363 + 0.270𝐶ଶ − 0.632𝐻ଶ − 0.166𝑂ଶ − 34.026𝐶+ 24.548𝐻 + 22.108𝑂 − 15.474 ൬𝐻𝐶൰ଶ − 10.580 ൬𝐻𝐶൰+ 94.988 ൬𝑂𝐶൰ଶ − 510.643 ൬𝑂𝐶൰ + 0.250𝑉𝑀+ 0.290𝐹𝐶 − 3.866 ൬ 𝐹𝐶𝑉𝑀൰ଶ + 10.266 ൬ 𝐹𝐶𝑉𝑀൰ 

0.6342 7.3013 5.4302 32.7348 

C3 

𝐶𝑒𝑙𝑙 = 810.611 + 0.311𝐶ଶ − 0.657𝐻ଶ − 0.165𝑂ଶ − 39.014𝐶+ 23.282𝐻 + 23.513𝑂 − 14.962 ൬𝐻𝐶൰ଶ − 4.252 ൬𝐻𝐶൰+ 104.943 ൬𝑂𝐶൰ଶ − 595.105 ൬𝑂𝐶൰ − 0.001𝑉𝑀ଶ+ 0.551𝑉𝑀 − 0.012𝐹𝐶ଶ + 0.116𝐹𝐶− 12.486 ൬ 𝐹𝐶𝑉𝑀൰ଶ + 59.697 ൬ 𝐹𝐶𝑉𝑀൰ 

0.6362 7.3263 5.8115 43.1320 

 
Figure 6. Prediction results plotted using linear regression for cellulose: (a) C1; (b) C2; (c) C3. 
Green square means predicted and measured cellulose composition of biomass. Blue line means 
99% confidence interval and red line means trend line. 

3.3. Prediction Model for Hemicellulose 

Figure 6. Prediction results plotted using linear regression for cellulose: (a) C1; (b) C2; (c) C3. Green
square means predicted and measured cellulose composition of biomass. Blue line means 99%
confidence interval and red line means trend line.

3.3. Prediction Model for Hemicellulose

Various factors were added to predict the hemicellulose content. However, the R2
P

of the model was lower than that of cellulose and lignin. The equations with the highest
prediction accuracies are listed in Table 3. When comparing H1 and H2, adding factors
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related to FC/VM resulted in a higher R2
P value than adding the square terms C, H, and

O. This suggested that the relationship between hemicellulose and FC/VM has a stronger
correlation than that with C, H, and O, based on the Pearson correlation coefficients. The
R2

P values for H1 and H2 were 0.4901 and 0.4803, respectively, showing no significant
differences. However, H1 exhibited a slightly higher trend. Additionally, the MAEP for
H2 was lower (5.6556) than that for H1 (6.1396). When comparing H1 and H3, there was
a difference when considering the squared terms of C, H, and O. H3 showed a higher
R2

P (0.5112) than H1, but the RMSEP was higher for H3 (7.7173) compared to H1 (7.4899).
However, MAEP and AAEP were lower for H3 (5.7038 and 48.7658, respectively). The
results for each prediction equation are presented in Figure 7. The red line represents the
trend line, and the blue line is the confidence interval with a 0.01 significance level. The
lowest overshoot was observed for H2. For H1 and H2, relatively significant deviations
from the trend line were observed in the prediction results, which contributed to the higher
RMSE values.

Table 3. Results of predicted model for hemicellulose.

No. Proposed Models R2
P

[-]
RMSEP

[%]
MAEP

[%]
AAEP

[%]

H1

Hemi = 398.274 −0.118C− 36.749H + 3.886O− 51.759
(

H
C

)2

+ 300.624
(

H
C

)
+ 48.091

(
O
C

)2
− 286.902

(
O
C

)
+ 0.055VM2 − 0.003FC2 − 9.205VM + 3.077FC

+ 50.49
(

FC
VM

)2
− 275.401

(
FC

VM

) 0.4901 7.4899 6.1396 53.1694

H2

Hemi = 1465.909 +0.212C2 + 0.66H2 + 0.101O2 − 33.374C

− 49.249H + 10.983O− 66.583
(

H
C

)2

+ 363.635
(

H
C

)
+ 209.649

(
O
C

)2
− 1329.208

(
O
C

)
− 0.376VM− 0.673FC

0.4803 7.5634 5.6556 45.8770

H3

Hemi = 1481.552 +0.152C2 + 1.823H2 + 0.093O2 − 24.536C

− 75.775H + 9.712O− 94.539
(

H
C

)2
+ 494.635

(
H
C

)
+ 195.349

(
O
C

)2
− 1215.865

(
O
C

)
+ 0.052VM2

− 8.651VM− 0.008FC2 + 2.644FC

+ 42.716
(

FC
VM

)2
− 231.488

(
FC

VM

)
0.5112 7.7173 5.7038 48.7658

Energies 2023, 16, x FOR PEER REVIEW 8 of 17 
 

 

Various factors were added to predict the hemicellulose content. However, the R2P of 
the model was lower than that of cellulose and lignin. The equations with the highest 
prediction accuracies are listed in Table 3. When comparing H1 and H2, adding factors 
related to FC/VM resulted in a higher R2P value than adding the square terms C, H, and 
O. This suggested that the relationship between hemicellulose and FC/VM has a stronger 
correlation than that with C, H, and O, based on the Pearson correlation coefficients. The 
R2P values for H1 and H2 were 0.4901 and 0.4803, respectively, showing no significant 
differences. However, H1 exhibited a slightly higher trend. Additionally, the MAEP for H2 
was lower (5.6556) than that for H1 (6.1396). When comparing H1 and H3, there was a 
difference when considering the squared terms of C, H, and O. H3 showed a higher R2P 
(0.5112) than H1, but the RMSEP was higher for H3 (7.7173) compared to H1 (7.4899). 
However, MAEP and AAEP were lower for H3 (5.7038 and 48.7658, respectively). The re-
sults for each prediction equation are presented in Figure 7. The red line represents the 
trend line, and the blue line is the confidence interval with a 0.01 significance level. The 
lowest overshoot was observed for H2. For H1 and H2, relatively significant deviations 
from the trend line were observed in the prediction results, which contributed to the 
higher RMSE values. 

Table 3. Results of predicted model for hemicellulose. 

No. Proposed Models 
R2P 

[-] 
RMSEP 

[%] 
MAEP 

[%] 
AAEP 
[%] 

H1 

𝐻𝑒𝑚𝑖 = 398.274 − 0.118𝐶 − 36.749𝐻 + 3.886𝑂 − 51.759 ൬𝐻𝐶൰ଶ
+ 300.624 ൬𝐻𝐶൰ + 48.091 ൬𝑂𝐶൰ଶ − 286.902 ൬𝑂𝐶൰+ 0.055𝑉𝑀ଶ − 0.003𝐹𝐶ଶ − 9.205𝑉𝑀 + 3.077𝐹𝐶+ 50.49 ൬ 𝐹𝐶𝑉𝑀൰ଶ − 275.401 ൬ 𝐹𝐶𝑉𝑀൰ 

0.4901 7.4899 6.1396 53.1694 

H2 

𝐻𝑒𝑚𝑖 = 1465.909 + 0.212𝐶ଶ + 0.66𝐻ଶ + 0.101𝑂ଶ − 33.374𝐶− 49.249𝐻 + 10.983𝑂 − 66.583 ൬𝐻𝐶൰ଶ
+ 363.635 ൬𝐻𝐶൰ + 209.649 ൬𝑂𝐶൰ଶ − 1329.208 ൬𝑂𝐶൰− 0.376𝑉𝑀 − 0.673𝐹𝐶 

0.4803 7.5634 5.6556 45.8770 

H3 

𝐻𝑒𝑚𝑖 = 1481.552 + 0.152𝐶ଶ + 1.823𝐻ଶ + 0.093𝑂ଶ − 24.536𝐶− 75.775𝐻 + 9.712𝑂 − 94.539 ൬𝐻𝐶൰ଶ + 494.635 ൬𝐻𝐶൰+ 195.349 ൬𝑂𝐶൰ଶ − 1215.865 ൬𝑂𝐶൰ + 0.052𝑉𝑀ଶ− 8.651𝑉𝑀 − 0.008𝐹𝐶ଶ + 2.644𝐹𝐶+ 42.716 ൬ 𝐹𝐶𝑉𝑀൰ଶ − 231.488 ൬ 𝐹𝐶𝑉𝑀൰ 

0.5112 7.7173 5.7038 48.7658 

 

Figure 7. Prediction results plotted using linear regression for hemicellulose: (a) H1; (b) H2; (c) H3.
Green square means predicted and measured hemicellulose composition of biomass. Blue line means
99% confidence interval and red line means trend line.

3.4. Prediction Model for Lignin

The optimal lignin contents are listed in Table 4. Lignin exhibited higher R2
P values

than cellulose and hemicellulose. In the case of L1, the least number of factors was con-
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sidered. However, the R2
P value was 0.7247, which was higher than that observed for

cellulose and hemicellulose. L1 and L2 were determined based on whether the second-
order VM and FC were considered. L2, which was considered the second-order VM and
FC, showed a higher R2

P (0.7348). However, the RMSEP, MAEP, and AAEP were lower
for L1. L3 exhibited the highest R2

P value (0.7914). The RMSEP, MAEP, and AAEP were
also lower, with values of 7.9857, 5.9868, and 26.3036, respectively. As shown in Figure 8,
which graphically represents the results, L1 and L2 exhibited excessive predictions when
the observed values were between 90 and 100%. However, for L3, excessive predictions
were not observed, although the confidence interval was exceeded.

Table 4. Results of predicted model for lignin.

No. Proposed Models R2
P

[-]
RMSEP

[%]
MAEP

[%]
AAEP

[%]

L1
Lig = 165.252 +40.196

(
H
C

)2
− 130.961

(
H
C

)
+ 21.354

(
O
C

)2

− 50.265
(

O
C

)
− 0.11VM + 0.164FC− 4.561

(
FC

VM

) 0.7247 9.0426 7.0424 28.6080

L2

Lig = −121.824 +39.757
(

H
C

)2
− 128.192

(
H
C

)
+ 23.719

(
O
C

)2

− 56.877
(

O
C

)
− 0.042VM2 + 6.932VM

+ 0.000473FC2 − 2.954FC− 45.172
(

FC
VM

)2

+ 239.132
(

FC
VM

)
0.7348 9.1532 7.1781 31.1764

L3

Lig = −2192.163 −0.463C2 − 1.165H2 + 0.072O2 + 63.550C

+ 52.493H − 33.225O + 109.501
(

H
C

)2

− 490.382
(

H
C

)
− 300.292

(
O
C

)2
+ 180.969

(
O
C

)
− 0.050VM2 + 8.100VM + 0.020FC2 − 2.760FC

− 30.230
(

FC
VM

)2
+ 171.791

(
FC

VM

)
0.7914 7.9857 5.9868 26.3036
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Figure 8. Prediction results plotted using linear regression for lignin: (a) L1; (b) L2; (c) L3. Green
square means predicted and measured lignin composition of biomass. Blue line means 99% confidence
interval and red line means trend line.

3.5. Cross-Validation Results for Cellulose

The cross-validation results for the cellulose prediction are presented in Table 5 and
Figure 9. R2

CV was higher than R2
P. The R2

P values for C1, C2, and C3 were 0.6104, 0.6342,
and 0.6362, respectively. The R2

CV values were 0.7837, 0.7428, and 0.7387, respectively.
In particular, C1, which had the lowest R2

P value, also had the highest R2
CV value. The

RMSECV for C1 is 3.8149. Based on the validation results, C1 was identified as the optimal
prediction equation.
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Table 5. Cross-validation results of the predicted model using linear regression and algorithm
for cellulose.

R2
CV

[-]
RMSECV

[%]
MAECV

[%]
AAECV

[%]

C1 0.7837 3.8149 3.0291 7.5647

C2 0.7458 4.3132 3.2023 7.7781

C3 0.7387 4.8125 4.1379 6.9634
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3.6. Cross-Validation Results for Hemicellulose

The cross-validation results for hemicellulose prediction showed lower performance
than that of the prediction model. The results are summarized in Table 6. The R2

P values
for H1, H2, and H3 were approximately 0.5, with values of 0.4901, 0.4803, and 0.5112,
respectively. However, the R2

CV values were lower at 0.3292, 0.4004, and 0.3280 for H1,
H2, and H3, respectively. This low performance was also reflected in the RMSECV values,
which ranged from 8.2683 to 9.8534. The validation results are illustrated in Figure 10,
which shows that they fall within the 99% confidence interval. In Figure 10a,b, the results
are skewed towards the upper end of the confidence interval. Thus, H2 was selected as the
optimal concentration.

Table 6. Cross-validation results of the predicted model using linear regression and algorithm
for hemicellulose.

R2
CV

[-]
RMSECV

[%]
MAECV

[%]
AAECV

[%]

H1 0.3292 8.6098 7.2671 61.0694

H2 0.4004 8.2683 7.2084 66.4448

H3 0.3280 9.8534 8.7032 66.0180
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3.8. Prediction and Cross-Validation of Hemicellulose Using Cellulose and Lignin

Based on the relatively stronger correlation between lignin and cellulose than with
hemicellulose, the decision was made to predict hemicellulose content based on lignin and
cellulose using the selected optimal conditions of C1 and L2. The results are summarized
in Table 8 and Figure 12. The prediction results showed an R2

P value of 0.3770, which
was lower than that of the hemicellulose prediction for H1, H2, and H3. Consequently,
the RMSEP, MAEP, and AAEP were higher, with values of 8.5612, 6.7581, and 50.3295,
respectively, compared with the results of the previous prediction equations. In Figure 12a,
there were cases where the hemicellulose contents were negative, which was attributed
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to the overprediction of the cellulose and lignin contents. The CV results differed from
the predicted results. The R2

CV showed a higher value (0.4292) than the R2
CV of the other

prediction equations. Similarly, the RMSECV was lower (7.5979) when C1 and L2 were
used for prediction compared to H1, H2, and H3, which had values ranging from 8.2683 to
9.8534. Based on these results, it was determined that using H2 or predicting hemicellulose
based on cellulose and lignin yielded optimal predictions.

Table 8. Prediction and cross-validation results of hemicellulose based on C1 and L1.

R2
P

[-]
RMSEP

[%]
MAEP

[%]
AAEP

[%]
R2

CV
[-]

RMSECV
[%]

MAECV
[%]

AAECV
[%]

0.3770 8.5612 6.7581 50.3295 0.4292 7.5979 6.3346 51.9966
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3.9. Application Performance

To thoroughly assess the performance of the developed models, the models are utilized
to make predictions on the chemical constituents of the application database. It is important
to note that all the samples in this database are different from those present in the training
database. Since the mass fraction of volatile matter is provided in the application database, it
is possible to directly compare the currently developed model with the previous correlation
proposed by Sheng and Azevedo [70]. These correlations can be expressed using the
following equations:

Cellulose = −1019.07 + 293.810
(

O
C

)
− 187.639

(
O
C

)2
+ 65.1426

(
H
C

)
− 19.3025

(
H
C

)2
+ 21.7448VM

−0.132123VM2
(10)

lignin = 612.099 + 195.366
(

O
C

)
− 156.535

(
O
C

)2
+ 511.357

(
H
C

)
− 177.025

(
H
C

)2
+ 21.7448VM

+0.145306VM2
(11)

According to Sheng and Azevedo (2002), the correlation they developed was based
on samples with the following ranges of parameters: O/C ratio: 0.56 to 0.83, H/C ratio:
1.26 to 1.69, and volatile matter (VM): 73% to 86%. These ranges were used to establish
the correlation between the mass fraction of the volatile matter and other chemical con-
stituents in their model. Figure 13 shows the direct comparison of the chemical composition
predicted with the present model and the correlation developed by Sheng and Azevedo.
Figure 13 also illustrates the direct comparisons of the chemical composition predicted
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using the current model, the previous correlation proposed by Sheng and Azevedo, and
the experimental data. In the figure, the green lines represent the data distribution, where
the relative error is ±20%. This provided a visual representation of the agreement between
the predicted values and the experimental data for each model. In the case of Sheng and
Azevedo’s model, the prediction performance for torrefied samples was low. Values in
the ranges of −422.80–−5.20%, −225.21–144.62%, and −39.32–8731.05% were obtained
for cellulose, hemicellulose, and lignin, respectively. The models in this study showed
−19.96–21.59%, −24.77–84.08%, and −39.23–355.61%, respectively.
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4. Conclusions

This study aimed to predict the cellulose, hemicellulose, and lignin contents based on
elemental and industrial analyses, instead of using conventional methods such as HPLC
or infrared spectroscopy. Herein, various models were proposed to obtain regression
prediction equations using linear regression. The R2

P values for cellulose, hemicellulose,
and lignin using linear regression were between 0.6104 and 0.6362, 0.4803 and 0.5112,
and 0.7247 and 0.7914, respectively. Prediction for hemicellulose exhibited the lowest
performance. Based on this, the optimal equation was used for cross-validating the same.
The optimal conditions for cellulose and lignin were selected as C1 and L2 due to their
highest R2

CV and lowest RMSECV, MAECV, and AAECV. To address the low accuracy of
the hemicellulose prediction model, it was predicted based on the cellulose and lignin
prediction models, which were validated as optimal. Despite the lower R2 and higher
RMSE values compared to those of the hemicellulose prediction equations, the cross-
validation results were higher than those of the other prediction equations. Despite the
lower performance in terms of R2 and higher RMSE compared to those of lignin and
cellulose, the prediction and cross-validation results were deemed optimal when both
prediction and cross-validation results were considered. Therefore, using both cellulose
and lignin for the prediction and the H2 equation was deemed to be the optimal approach.

This study had some limitations. Although we considered data from a wide range of
samples, including torrefied samples, predictions were only made using data for woody
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and herbaceous biomasses. Therefore, the predictions may be inaccurate for food waste
or sewage sludge. In the case of hemicellulose, low prediction accuracy was observed
due to its low content compared to cellulose and lignin. In addition, it was shown to
represent a low prediction due to a decrease in various ranges, depending on the pro-
cess conditions. Therefore, future research should provide models for a wider range of
biomasses and improve prediction equations based on more data pertaining to woody and
herbaceous biomass.
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