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Abstract: This study investigates the economic benefits of solar thermal and seasonal thermal energy
storage based on a renewable energy conversion system for greenhouses. The proposed system
consists of solar collectors, seasonal thermal energy storage, hybrid-source heat pumps, and ground-
source heat pumps. The heat generated from the proposed system was stored in two types of seasonal
thermal energy storage and supplied to the greenhouse using Purme Yeoju Farm in South Korea for
experimental analysis. Based on the experimental data gathered over a heating system, the economic
benefits of operating cost savings and carbon trading with the greenhouse gas emission reduction
of the proposed system were investigated by comparing to a conventional heating season using oil
and electric boilers. From October 2021 to March 2022, approximately 38.4% of the total 482 MWh of
heat was supplied either directly or indirectly through the solar system. In addition, the coefficient
of the performance of the entire proposed system was calculated to be 2.28. Both the operating cost
savings and greenhouse gas emission reductions of the proposed system showed over 73% and 82%
compared with those of conventional systems.

Keywords: solar thermal; seasonal thermal energy storage; greenhouse; operation cost; greenhouse
gas emission

1. Introduction

Owing to the persistent climate crisis, which includes global warming, a transition to
a low-carbon society has been established as an important present-day agenda. The Korean
government has set goals for the transition to a low-carbon society, such as the nationally
determined contribution (NDC) target and renewable portfolio standards. According to
the Food and Agriculture Organization of the United Nations (FAO) [1], the food chain
represents 30% of global greenhouse gas (GHG) emissions, and the supply of energy using
fossil fuels represents 19 to 29% of carbon emissions. FAO defines sustainable development
in the agricultural sector through three aspects: a sustainable increase in agricultural
productivity and income, adaptation and a flexible response to climate change, and the
reduction and removal of GHG emissions. Consequently, the development of technology
to implement a sustainable food system is required to respond to the environmental
problems caused by the use of fossil fuels and their increasing cost, and to consider future
food security issues due to the prolonged COVID-19 pandemic. In addition, research on
agricultural energy independence through the use of renewable energy has been actively
conducted worldwide as one of the methods to implement a sustainable food system.

Unfortunately, in the domestic agricultural sector, the proportion of renewable energy
supply is low, and a considerable amount of energy depends on fossil fuels. Specifically,
the heating and cooling energy consumed in heated greenhouses mainly depends on oil
(81%), followed by electricity (9%), solid fuel (7%), ground heat sources (3%), and gas (1%),
indicating a high proportion of fossil fuels [2]. According to the Korea Energy Agency [3],
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GHG emissions from the domestic agricultural sector accounted for 3% of total emissions
(701 million tCO2eq.) as of 2019, and their five-year average was 21 million tCO2eq.,
showing consistently high emissions. As thermal energy supply through fossil fuels
generates a large amount of GHG emissions and consumes considerable energy from the
perspective of primary energy, expanding the supply of renewable energy in the agricultural
sector is expected to significantly reduce energy consumption and GHG emissions.

Various studies have been conducted on the applicability of renewable energy in the
agricultural sector. According to Park et al. [4], the use of ground-source heat pumps
(GSHPs) increased paprika production by 9539 kg/10a, and had the effect of replacing
1137 L/10a of petroleum. Nacer et al. [5] examined the GHG reduction effect when
constructing an optimal system in seven dairy farms in Algeria by combining the grid
power, solar power, wind power generation, and Energy Storage System (ESS) through the
analysis of the potential amount of renewable energy. They found that 9000 to 59,000 tons of
CO2 could be reduced per year through system optimization in each case. A representative
renewable energy conversion community in South Korea is the Jincheon Eco-Friendly
Energy Town. Kim et al. [6,7] verified that, in this community, more than 130% of the
total public building power load and 100% of the thermal energy demand are supplied
by renewable energy in the town through various renewable energy conversion systems,
such as solar power, solar heat, seasonal thermal energy storage, geothermal heat, and
sewage heat.

In the agricultural sector, energy cost savings through the application of renewable
energy have, in many cases, been pursued only passively because of the availability
of various energy-related subsidies. In recent years, studies have been conducted on a
reduction in GHG emissions in the agricultural sector and the additional economic benefits
for farms through carbon trading [8]. However, most of these studies are focused on policy
perspectives based on the production, consumption, and distribution of agriculture. These
include analyzing the effect of decision-making by people engaged in agriculture on the
carbon emission reduction [9]; analyzing the effect of carbon trading on the carbon emission
reduction in the agricultural sector for each EU country [10]; analyzing the influence of
carbon trading on the agricultural sector from a policy perspective [11]; and analyzing major
factors, such as the effect of renewable energy application on manpower in the national
agricultural sector [12] and the effect of GHG on the economic growth of agriculture. In
the energy sector, it is hard to find cases that analyze the carbon emission reduction effect
through renewable energy equipment in connection with carbon trading. As such, if carbon
emission allowances recognize the energy consumption reduced in a farm through the
application of renewable energy and carbon trading from a starting point of conventional
equipment, it will have a positive impact on the income of the farm, and can be used as an
incentive for aggressive efforts to reduce carbon emissions.

In a previous study, Kim et al. proposed an energy-independent smart farm by
supplying cooling, heating, and electricity to a heated greenhouse using a renewable
energy conversion system, and analyzed the energy cost savings through simulation [13].
Based on this, the operating system of the test site was completed in 2021, and solar
collectors and tank type seasonal thermal energy storage (TTES) were implemented.

In this study, based on the demonstrated results of the greenhouse that used renewable
energy, such as solar and geothermal heat, the operating cost and GHG emission reduction
were analyzed for the first heating period of the first year. In addition, economic analysis
was conducted based on the farm income that can be obtained through emission trading to
increase the farm household income.

2. Renewable Conversion System Overview

The test site was Purme Yeoju Farm located in Yeoju City, Gyeonggi-do, South Korea,
as shown in Figure 1. The major components are of solar collectors (462 m2), photovoltaic
and solar thermal (PVT) collectors (234 m2), and ground-source and multi-source heat
pumps (130 RT), providing cooling and heating to the nearby greenhouse in connection
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with heat storage systems, such as the TTES (1200 m3), buffer heat storage tank (120 m3),
and borehole-type seasonal thermal energy storage (BTES; 28,500 m3). The proposed
system began to supply heating to the greenhouse at a size of 3942 m2 starting in October
2021, and the PVT system was constructed in July 2022 and remains in test operation. As
such, in this study, analysis was conducted based on the demonstration operation results
for the equipment already constructed and the simulation results for the PVT system.
Figure 2 shows the system configuration of the proposed system. For the heating operation,
the heat produced by the solar collectors from spring to autumn is stored in TTES, and
the heat produced by the PVT collectors is stored in BTES. The heat of TTES is directly
supplied to the greenhouse during the heating period, but the heat of BTES is supplied as
the evaporation heat source of the heat pump (HP2) because it cannot be directly supplied
for heating, as the heat storage temperature is lower than the heating supply temperature.
When the internal temperature of TTES becomes lower than the heating supply temperature
(approximately 40 ◦C or less), the residual heat of TTES is supplied as the evaporation
heat source of the heat pump (HP1). In addition, the heat supply for the greenhouse is
produced through the heat pump (HP2) using the heat supplied from TTES and BTES as
the evaporation heat source, and GSHP (HP3) for insufficient heat. Other than GSHP, the
heat pumps are multi-source heat pumps (MSHPs). They can produce heat and cold energy
using the air source, the252 heat pump, and be operated as air-source heat pumps (ASHP).
Under the cooling operation, cold energy is supplied to the greenhouse using the air and
ground sources. In this study, the operation effect of the cooling supply was excluded from
the analysis.
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3. Research Method
3.1. Measurement Instruments

In the test site, measurement sensors, including 82 temperature sensors, 19 pressure
sensors, 21 flow rate sensors, five pyranometers, 11 temperature/humidity sensors, three
photosynthesis sensors, and 16 watt-hour meters, were installed in major parts to monitor
the operation status of each heat source component in real time. The measurements of each
sensor were saved every 30 s. Figure 3 and Table 1 show the positions and specifications of
the measurement sensors. The heat supply and energy consumption of each heat source
component were calculated based on data such as the inlet/outlet temperatures, flow rate,
and power of the heat source component among the measured data, and the GHG emissions
and operating cost were estimated through the calculated amount of heat and power.

Table 1. Detailed information of measurement instruments.

Measurement Sensor Specification

Temperature RTD PT100 Ω, 3 wire

Pressure Pressure Range (0~10) kgf/cm2 g, Accuracy 0.039%

Flow rate Flow Rate (0~180) m3/h, Accuracy ±0.5%

Irradiance First class, Range ~2000 W/m2

Temperature/
Relative Humidity

Temperature Range (−40~60) ◦C, Accuracy ±0.6 ◦C
Relative Humidity Range (0~100)%

Accuracy from (0~40) ◦C ±3% relative humidity
(RH) over (0~90)% ±5% RH over (90~100)%

Accuracy from (−40~0, 40~60) ◦C ±5% RH over
(0~90)% ±7% RH over (90~100)%

The analysis period was the heating supply period from 1 October 2021 to 31 March
2022. Based on the total heat energy supplied to the greenhouse, the operating cost
and GHG reduction effect were compared between the heat source components applied
to the test site and the conventional heat source components. As for the performance
specifications of the conventional heat source components, a fuel calorific value (11) of
9.5 kWh/L (8200 kcal/L) was applied to the oil (kerosene) boiler, and an equipment
efficiency of 85% was determined for both the oil and electric boilers.
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3.2. Economic and Environmental Analysis

The initial investment costs for capital expenditure (CAPEX) analysis were included
in the economic analysis (see Table 2), which included the actual costs of purchase for
realizing Purme Yeoju Farm. The energy costs, fixed operational costs, fixed equipment
costs, and other variables required for annual operation were considered in the operating
expense (OPEX) analysis. Furthermore, the cost of fuel for operating the equipment was
accounted for in the energy expense analysis, and the personnel expenses for operating
the equipment were included in the fixed operational cost analysis. The depreciation and
maintenance costs reflecting the lifespan of the equipment were considered for the fixed
equipment cost. The costs of operating the other miscellaneous equipment were assumed
to be 10% of the operational costs. To consider the fixed equipment cost, the lifespan of
seasonal thermal energy storage was assumed to be 50 y, monitoring and components
control system was assumed to be 15 y, and that of all remaining equipment was assumed
to be 30 y. For the economic analysis, the initial investment cost was included in the OPEXs,
amortized over the service life. The equipment was assumed to be operated by 0.3 people
and to cost 10,000,000 KRW/y.

Table 2. Investment cost of the systems.

Components Price Unit Case 1 Case 2 Case 3

Oil boiler 0.05 106 KRW/kW 50,000
Electric boiler 0.04 106 KRW/kW 40,000

Solar thermal collectors 0.35 106 KRW/m2 160,000
Heat pumps 1.27 106 KRW/RT 310,000

TTES 0.31 106 KRW/m3 320,000
BTES 0.01 106 KRW/m3 340,000

Buffer tank 0.45 106 KRW/m3 90,000 90,000 130,000
Pipeline 250 106 KRW/set 25,000 25,000 250,000

System integration and
control system 75 106 KRW/set 75,000 75,000 75,000

Capital expenditures
(CAPEX) 240,000 230,000 1,585,000

In order to analyze and compare various system cases, case studies have been in-
vestigated. Case 1 is oil boiler, Case 2 is electric boiler, and Case 3 is proposed system.
To observe the impact on the PVT system integration, Case 3-1 is set as the proposed
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system without PVT system operation, and Case 3-2 is set as the proposed system with
PVT system operation.

The maximum heating load for the proposed equipment was determined as 1000 kW,
and the capacity of the electric boiler was designed to be 1100 kW. Regarding the calcu-
lation of the conventional heat source operational costs, the unit price of kerosene (that
is, the average price of duty-free oil determined by the Korea National Oil Corporation in
Gyeonggi Province) determined the cost of operating the oil boilers, and industry electricity
costs determined the cost of operating the electric boilers, resulting in over 1000 kW of
electric capacity priced at the industry cost. The unit price for the monthly consumption
of kerosene was between 868.54 and 1140.99 KRW/Liter. The average industry electricity
price in South Korea (105 KRW/kWh) was used to determine the operational costs of
supplying power to the electric boilers and the current system.

Although the power generation of PVT was not derived in these research results, its
power reduction effect can be considered in future operation. In addition, the surplus
power obtained through the power generation of PVT can be sold at the system marginal
price (SMP). In this study, KRW 150/kWh, which is the transaction amount in January 2022,
was used for analysis [14].

The coefficient of GHG emission for kerosene was considered with carbon emission
factors for carbon dioxide, methane, and nitrous oxides [15]. The emission factors of
kerosene consisted of 112 tCO2eq./TJ, 0.3 tCO2eq./TJ, and 0.004 tCO2eq./TJ of carbon
dioxide, methane, and nitrous oxides, respectively. The global warming potential of those
are 1, 21, and 310, in carbon dioxide, methane, and nitrous oxides, respectively. It was
found that the kerosene for the oil boiler was set to 0.404262 tCO2eq./MWh. The carbon
emission coefficients of the electric boiler were set to 0.45941 tCO2eq./MWh [16].

3.3. Emission Trading Analysis

In this study, for the analysis of carbon credits, it was assumed that those corre-
sponding to the reduced amount of carbon emissions could be sold based on the carbon
emissions caused by the conventional heating system in the greenhouse. The allowable
carbon emissions were analyzed based on the allowable emissions from oil and electric
boilers, which are conventional heating systems. The carbon allowance price was analyzed
based on the transaction amount in the Korea Exchange of South Korea [16] as of January
2022 (35,000 KRW/ tCO2eq.) and the EU Emission Trading System (ETS) carbon price [17]
(81 EUR/tCO2eq.; 108,000 KRW/tCO2eq.). In order to compare the impact of carbon prices
on the proposed system, various cases have been investigated. Table 3 demonstrates the
comparable system cases. Case 3-1 and Case 3-2 are set as a proposed system without
carbon trading, Case 3-3 is set as a proposed system with South Korea emission trading
with an oil boiler allowance, Case 3-4 is set as a proposed system with South Korea emission
trading with an electric boiler allowance, Case 3-5 is set as a proposed system with EU
emission trading with an oil boiler allowance, and Case 3-6 is set as a proposed system
with EU emission trading with an electric boiler allowance.

Table 3. System cases.

Cases Description

Case 1 Oil boiler
Case 2 Electric boiler

Case 3-1 Proposed system without PVT system
Case 3-2 Proposed system with PVT system
Case 3-3 Proposed system with South Korea emission trading with oil boiler allowance
Case 3-4 Proposed system with South Korea emission trading with electric boiler allowance
Case 3-5 Proposed system with EU emission trading with oil boiler allowance
Case 3-6 Proposed system with EU emission trading with electric boiler allowance
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4. Results
4.1. Experiment Results of the Proposed System during Heating Season

Figure 4 shows the daily ambient temperature and solar radiation of the test site during
the analysis period. The average ambient temperature of the test site was 3.4 ◦C, which
was lower than the national average ambient temperature (5.3 ◦C). The total solar radiation
by month was the highest (95.1 kWh/m2) in March 2022 and the lowest (59.9 kWh/m2)
in December 2021. Figure 5 shows the heat storage, heat supply, and internal average
temperature of the TTES. The internal average temperature started at 65.4 ◦C on 1 October
2021 and was 46.5 ◦C on 22 October 2021. Most of the heat stored was directly supplied for
heating during the month of October and later supplied as the evaporation heat source of
the heat pump, thereby causing the lowest temperature of the heat storage tank (9.3 ◦C) on
23 February 2022. Figure 6 shows the daily heating supply from the heat source components
in the test site to the load side. Heat was mainly supplied from the TTES until the end of
October 2021, and then it was supplied from the heat pump that used the residual heat of
the BTES and GSHP. In addition, the heat pump that used the residual heat of the TTES was
operated starting from the end of January 2022 when the heat of the BTES was exhausted.
MSHPs were operated using the air source from the end of December 2021 to the beginning
of January 2022 when the load was heavy.
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The empirical operational results obtained during the analysis period are summa-
rized in Tables 4 and 5. The total thermal energy supply during the heating period was
489.2 MWh. The indirect TTES heat pump thermal supply refers to the energy supplied
from the evaporation heat source of the heat pump when the heat supply is impeded
because the temperature of the warm water of the seasonal latent heat storage system is
lower than the designed temperature (that is, 40 ◦C). The direct and indirect thermal supply
from the TTES accounted for 38.4% of the total energy supply.

Table 4. Monthly heating supply of the system operation.

Direct TTES
Supply

Indirect
TTES-Source
Heat Pump

Indirect
BTES-Source
Heat Pump

Ground-Source
Heat Pump

Air-Source
Heat Pump Total

Oct. 2021 26.7 0.0 0.7 3.4 4.9 35.7
Nov. 2021 1.4 12.0 22.0 39.0 4.2 78.6
Dec. 2021 0.0 2.1 29.9 71.9 3.4 107.2
Jan. 2022 0.1 6.2 30.5 73.2 5.7 115.6
Feb. 2022 0.2 15.5 17.5 53.9 1.3 88.5
Mar. 2022 0.1 17.2 3.2 31.1 4.7 56.4

Total 28.4 53.0 103.8 272.5 24.2 481.9
Percentage (%) 5.9 11.0 21.5 56.5 5.0 100.0

Table 5. Monthly electric energy consumption of the system operation.

Pumps for
Solar

Collector

Indirect
TTES-Source
Heat Pump

Indirect
BTES-Source
Heat Pump

Ground-
Source Heat

Pump

Air-Source
Heat Pump

Pumps for
Heat Pumps

Pumps for
Thermal
Network

Total

Oct. 2021 0.20 0.0 0.9 0.2 1.7 1.2 0.10 4.3
Nov. 2021 0.11 3.3 11.5 7.7 2.1 4.6 0.18 29.3
Dec. 2021 0.14 0.6 19.6 12.4 5.0 7.6 0.26 45.5
Jan. 2022 0.19 2.4 19.8 14.3 9.7 8.7 0.23 55.4
Feb. 2022 0.29 8.1 14.6 8.3 2.1 7.0 0.13 40.6
Mar. 2022 0.33 7.6 8.2 1.4 3.5 4.3 0.00 25.3

Total 1.3 22.0 74.5 44.4 24.1 33.5 0.9 200.5
Percentage (%) 0.6 11.0 37.2 22.1 12.0 16.7 0.5 100.0

The coefficient of performance (COP) was measured to be 3.05 and 1.01 for the heat
pumps that used renewable heat sources and the air source, respectively. The system COP
in consideration of the heat pumps and heat source circulation pumps was calculated to be
2.28. The heat energy was mainly supplied to the greenhouse at night. Since the ambient
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temperature of the test site at night in winter was low, the COP was found to be low when
MSHPs were operated using the air source. The overall thermal performance and share
of the solar heat energy are expected to increase after the second year, when the system
stabilizes and the operation of PVT and BTES begins.

4.2. Operating Cost and Greenhouse Gas Emission

The total amount of heat supplied in the test site during the heating period was
481.9 MWh. The operating cost and GHG emissions of the same amount of heat supplied
through conventional heat sources are shown in Figure 7. The results showed that GHG
emissions from the proposed system were 38.7 and 64.6% lower compared to the methods
of using conventional kerosene and electric boilers, respectively. When the annual power
generation of PVT (48.0 MWh) was considered [13], it was found that emissions were
reduced by 53.4 and 73.1% compared to when using conventional kerosene and electric
boilers, respectively. The annual energy operating cost of the proposed system was reduced
by 68.8 and 70.4% compared to when using industrial power and the conventional kerosene
boiler with duty-free oil, respectively. In addition, when the power generation of PVT
was considered, it was found that the energy operating cost was reduced by 81.9 and
82.8%, respectively.
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In Figure 8, the carbon trading potential was derived according to the GHG emission
reduction effect compared to conventional oil and electric boilers. The surplus emissions
were found to be approximately 80 and 190 tCO2eq. for oil and electric boilers, respectively.
Based on this, the revenue of GHG emission trading is shown in Figure 9. It was found
that additional profits of approximately KRW 2,800,000 and 6,650,000 can be obtained per
year compared to the oil boiler and electric boiler allowances, respectively, based on the
South Korea emission price. It was also found that additional profits of approximately
KRW 8,643,000 and 20,523,000 can be obtained compared to the oil boiler and electric boiler
allowances, respectively, based on the EU emission price. Consequently, when the surplus
carbon credits of the conventional systems and the proposed system are traded at the
EU emission price, additional income can be expected for farm households, as shown in
Figure 10.
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Based on this annual operating cost reduction effect, an economic analysis was con-
ducted considering the initial investment cost capital expenditure (CAPEX) and annual
operating expenses (OPEX) of the proposed system. As shown in Figure 11, in Case 3-2,
which does not consider the profits of carbon credits, payback periods of approximately
25 and 21 y were derived compared to Case 1 and Case 2 systems, respectively. When
Case 3-6, which considers the profits of carbon credits based on the EU emission price, was
compared with Case 1 and Case 2, however, payback periods of approximately 13 and 12 y
were derived, confirming the high economic efficiency of the proposed system.
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5. Discussion and Conclusions

In this study, a renewable energy conversion system applied to a heated greenhouse
was proposed, and the operation results and greenhouse gas (GHG) reduction effect were
analyzed through a test operation in winter by constructing the proposed system in an
actual greenhouse. Based on the derived test results, the energy operating cost and carbon
emission reduction effect were compared with those of conventional oil and electric boilers,
which are commonly used in heated greenhouses. In addition, profits that can be obtained
through the trading of carbon credits due to the carbon emission reduction effect were
analyzed, and the economic efficiency of the proposed system was analyzed through
CAPEX and OPEX analysis that considers the initial investment cost of the actual system
and the cost required for operation.

It was confirmed that the operation of the solar heat and heat pump systems con-
structed in the test site could supply heating with 53.4–73.1% carbon emission reduction
and 81.9–82.8% operating cost savings compared to conventional oil and electric boilers. In
addition, when economic efficiency was compared considering the initial investment and
operating cost for cases in which the cost of carbon credits reaches the South Korea or EU
level, it was found that the proposed system has high economic efficiency.

Due to the high initial investment cost, however, the payback period was analyzed to
be approximately 14 y compared to the conventional systems when the trading of carbon
credits was considered. The payback period was analyzed to be approximately 25 y when
carbon credits were not considered. Therefore, if carbon trading is added in the form of a
subsidy to agricultural systems as an incentive to apply low-carbon energy systems, along
with national efforts to reduce carbon emissions, it is expected that high economic efficiency
will be achieved.

The prices of fossil fuels, including kerosene, significantly vary depending on the time
period. In South Korea, with a particularly high dependency on imported fossil fuels, the
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prices frequently fluctuate depending on external factors. Therefore, increasing the energy
independence rate has become essential for the goal of reducing carbon emissions and
stable farm operation.

The analysis results of the current test system were calculated based on the initial test
operation data. When the system stabilizes, larger operating cost savings and a higher
GHG reduction effect than the current operation results can be expected.
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