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Abstract: Worldwide growth in electric vehicle use is prompting new installations of private and
public electric vehicle supply equipment (EVSE). EVSE devices support the electrification of the
transportation industry but also represent a linchpin for power systems and transportation infras-
tructures. Cybersecurity researchers have recently identified several vulnerabilities that exist in
EVSE devices, communications to electric vehicles (EVs), and upstream services, such as EVSE
vendor cloud services, third party systems, and grid operators. The potential impact of attacks on
these systems stretches from localized, relatively minor effects to long-term national disruptions.
Fortunately, there is a strong and expanding collection of information technology (IT) and operational
technology (OT) cybersecurity best practices that may be applied to the EVSE environment to secure
this equipment. In this paper, we survey publicly disclosed EVSE vulnerabilities, the impact of EV
charger cyberattacks, and proposed security protections for EV charging technologies.

Keywords: cybersecurity; electric vehicle supply equipment (EVSE); electric vehicle (EV); EV chargers;
power system security

1. Introduction

Electric vehicle charging is expected to drastically increase in the next decade. Charg-
ing points in the EU and UK increased from approximately 34,000 in 2014 to 250,000 in
September 2020, and the European Commission has set a target of 1 million charging points
by 2025 to curb greenhouse gas emissions [1]. Similarly, the United States experienced
a 9.2% quarterly growth rate in public chargers in 2020 Q4 [2] and recently passed the
100,000 public charger mark in March 2021 [3]. In the U.S., a bipartisan infrastructure bill
passed in November 2021 in which USD 7.5B was allocated for developing an EV charging
network across the country [4]. In addition to the expanding prevalence of electric vehicles
and chargers in the passenger vehicle area, there is also an increased adoption of electric
vehicles for medium and heavy duty (i.e., freight) applications [5].

Even with growing vehicle battery capacities, users are expecting faster turnarounds at
chargers. As a result, chargers are becoming increasingly powerful. Extreme fast charging
(XFC) draws 350–400+ kW to provide 200 miles of range in about 15 min [6]. For medium
and heavy duty applications ranging from school and city buses to commercial delivery
and over-the-road trucks, current designs are supporting more than 1 MW per vehicle [7–9].

Charging providers and users alike seek to optimize their use of the growing network
of fast chargers through a variety of highly interconnected and internet-enabled tools. EVSE
must communicate with cloud services, EVs and their battery management systems, and
much more. For example, EV chargers may be integrated into distributed smart grid EV
charging, or interconnected with Building Automation Systems (BAS) or Building Energy
Management Systems (BEMS) [10]. On a larger scale, EV chargers are taking a role in smart
city technologies to help ensure the sustainability of urban living [11]. Automated and
networked connections to grid and microgrid power management and controls round out
the picture of the complexity of EVSE connectivity.
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The breadth and complexity of EVSE connections create a large cybersecurity profile
and raise concerns that bad cyber actors could use insecure chargers as an unauthorized
access point to abuse charging equipment, vehicles, buildings, or grid resources. Each of
these systems represents a set of interconnected attack vectors. EVs, for example, interface
with dealerships, mobile phones, navigation, mapping, telemetry, entertainment, vehicle-
based web browsers, other vehicles, driver assist systems, over-the-air software updates,
and more [12,13], using an array of protocols, including Bluetooth, GSM Mobile, and
Wi-Fi. Autonomous-driving electric vehicles add further cybersecurity complexity [14,15].
Malicious actors are increasingly targeting smart phones (e.g., an iOS TCP exploit published
by Google’s Project Zero [16,17]) and vehicle systems [18] to circumvent keyless entry and
remote starting [19–21]. Researchers have highlighted the manipulation of onboard, safety-
critical electronic control units (ECUs) to interfere with braking, steering, engine and battery
controls [22]. Vehicle data are also at risk, including telematics, tracking [22–24], customer,
dealer and insurance data [25–27]. EVSE interfaces with highly connected EVs and vendor
systems, charger owners, and grid operator systems.

Fortunately, there have been several efforts to map out the risks within the EVSE
ecosystem [28,29]. Based on these threat models, trucking industry stakeholders, includ-
ing the National Motor Freight Traffic Association (NMFTA) and Volpe Laboratory have
studied the potential impacts of cyberattacks on electric vehicle charging, and provided
the community with guidance across the lifecycle of EVSE [7,30–34]. ElaadNL has created
detailed EV charging security requirements [35], a UK consortium created a list of smart
charging and V2G recommendations [36], and Sandia National Laboratories created a
reference for EVSE cybersecurity best practices [37]. New efforts to address security gaps
have recently started too. The Trusted Computing Group (TCG) Vehicle Service Work
Group is investigating EV charging cybersecurity and Southern California Edison estab-
lished a cybersecurity gap analysis project for EVSE products [38]. Additional resources
include cybersecurity frameworks, standards, and best practices that are general [39–41]
or tailored to related areas such as operational technology (IEC 62443) [42]; information
technology enterprise [43–45]; vehicles and EVs [46–55]; smart buildings [56]; and the
electrical grid [57,58].

In this paper, we present a review of cybersecurity vulnerabilities, risks, and defenses
for the EVSE ecosystem. This paper seeks to refine the strategy for mitigating cybersecurity
risks by categorizing the types of charger interfaces that can serve as attack vectors, identi-
fying the potential attacks that might utilize these interfaces, and determine mitigations
that may be effective against these attacks in the future. We also review potential cyber
impacts on the power system, billing functions, and interrelated systems. Finally, we survey
mitigation suggestions and best practices based on ideas presented in the literature.

2. Methodology

This review categorizes EVSE cybersecurity assessments and vulnerabilities by in-
terface type. This approach was taken to create an easy-to-reference map that directly
relates EVSE cybersecurity research to the architecture of fielded systems. EVSE interfaces
that were considered in the creation of these categories include, internal charger ports;
vehicle-to-EVSE communication interfaces; EV owner access points (e.g., RFID); external
maintenance ports; wireless access (cellular, Wi-Fi, Bluetooth, etc.); and wired ports. Cloud
services that interact with the EVSE via these interfaces were also considered.

While implementations, topologies, and data exchanges vary between vendor and
jurisdiction, there are some common features among many EVSE devices. As depicted in
Figure 1, the EVSE includes external EV connectors, an authentication terminal (e.g., the
front console), and a maintenance terminal(s) that may be internal to the EVSE housing.
The EVSE also often has a cellular or other internet connection for the EVSE operator or
service provider to capture data on charging sessions, push new firmware, and collect
prognostics and user data using Open Charge Point Protocol (OCPP), IEEE 2030.5, or
proprietary protocols.
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Within the vehicles, there are services connected to different cloud services to support
music; browsing; navigation; emergency services (e.g., OnStar); telematics; infotainment;
etc. Some of these systems may be connected to third-party cloud environments to support
billing and other services. The service provider may connect to other service provider
backend networks to verify charging transactions on chargers they do not own using Open
Clearing House Protocol (OCHP), or to grid operators using Open Smart Charging Protocol
(OSCP), OpenADR, or some other protocol.

In Figure 1, there are four numbered boxes that represent attack vectors for adversaries
seeking to affect EVSE operations. These include, (1) EV connectors; (2) user terminals;
(3) internet connections; (4) maintenance terminals from physical access or disassembly. In
some cases, the lines between these interfaces were blurry (e.g., a web interface was used for
maintenance). In these cases, the authors selected the interface category that they believed
to be the most representative of the attack vector, as discussed in the following subsections.

2.1. EV-to-EVSE Interfaces

EVSE connectors (i.e., the couplers or plugs) range in terms of power level, type, and
underlying communication technology [59]. IEC 61851-1 defines four conductive charging
“modes” for EV chargers based on the current and voltage:

• Mode 1 is a passive AC connection up to 16 A at 240 V single phase or 480 V three-phase;
• Mode 2 includes an in-cable control and protection device (IC-CPD) which performs

control and safety functions. It operates up to 32 A at 240 V single phase or 480 V
three-phase;

• Mode 3 includes the IC-CPD but increases the max current to 250 A;
• Mode 4 is DC connection up to 600 V at a current ≤ 400 A.

In the U.S., 120 Vac chargers are often colloquially referred to as Level 1 chargers,
240 Vac chargers are Level 2, and direct current charging is called Level 3 or DC Fast Charging
(DCFC). Charging above 400 kW, which uses a cooled charging cable, is sometimes referred
to as Extreme Fast Charging (XFC) [60]. Traditionally, most chargers in the United States
were Level 1 or 2 chargers that would be powered domestically, but now it is common to
find higher power DCFCs with CCS, CHAdeMO, or Tesla connectors in public places or in
the workplace.

Conductive connectors, or couplers, in the US market that are defined in IEC 62196-
1 [61], -2 [62], and -3 [63], include:
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• Type 1—A 5-pin, single-phase connector defined in SAE J1772 [64] and IEC 62196 [61].
SAE J1772 and IEC 61851-1 [65] define a 1 kHz Pulse Width Modulation (PWM) square-
wave signal to communicate status and current capacity between charger and vehicle.

• Type 2—A 7-pin, three-phase connection defined in SAE J3068 [66]. This uses a
Local Interconnect Network on the Control Pilot (LIN-CP) for digital communications
between charger and vehicle.

• AA—A Mode 4 DC CHAdeMO coupler defined in Japanese standard JEVS G105-
1993 [67–69]. This Japanese standard uses a Controller Area Network (CANbus) for
EVSE-EV communications as defined in IEEE 2030.1.1 [70] and ISO 11898 [71].

• EE—A Mode 4 DC Combined Charging System (CCS) Combo 1 coupler. This con-
nector superimposes two communication protocols on the cordset to communicate
between EV and EVSE. The first is ISO/IEC 15118 [72] which uses a power line com-
munication (PLC) internet protocol (IP) stack built on the HomePlug Green PHY
(HPGP) [73] Data Link and Physical layers. The second protocol is the IEC 61851-1
pulse-width modulation (PWM) signal [65].

There are other couplers and associated communication protocols, including the
Tesla connectors based on single-wire CAN defined in SAE J2411 [74] and the Guobiao
(Chinese national) standard GB/T 20234.2-2015 [75] connectors which communicate a CAN
network protocol based on the SAE J1939 series [76]. Each represent a set of communication
capabilities that could transfer falsified charging parameters or malware to the EVSE,
because modern vehicles—including semi- and fully-autonomous vehicles—provide attack
vectors into the EV/EVSE ecosystem [14,46,77–80]. The compromise of vehicle systems
may also allow the attacker an initial foothold in the environment from which they could
pivot to the EVSE device through wired or wireless communications. The cordset and
communication protocol may also expose the charging session to side-channel attacks.
Each of these scenarios is covered in more detail in Section 3.

2.2. EV Operator Interfaces

Public EVSE devices offer a range of methods for authenticating a charging session.
These methods include using Radio Frequency Identification (RFID) tags, smart phone
Near Field Communication (NFC), or credit card chip/swipes. These methods link the
EV operator (i.e., owner or driver) or their account information to the charging session for
billing and tracking purposes. Many DCFCs now also include touch screen front panels that
allow the driver to determine the cost of electricity and vehicle status (charging rate, state
of charge, etc.). Some EVSE vendors also include the ability to display custom messages or
run advertisements on their EVSE devices.

Notably, plug-and-charge functionality that is developed in ISO 15118-20 [81] will
allow the vehicle to automatically authenticate over the charging cable. This is achieved
with a public key infrastructure (PKI) that uniquely identifies each of the vehicles. The
setup, operation, governance of this PKI ecosystem, and the generation and storage of
cryptographic materials has been the source of significant debate within the industry. It is
likely that this will be an area of active cybersecurity research in the future.

The driver–user interfaces on the EVSE are a significant attack vector for the charger.
In addition to the standard functionality, there are commonly hidden maintenance menus
or password protected service options on these interfaces. The compromise of these
systems would allow adversaries to disable charging, change prices, or otherwise affect the
operations of the equipment.

2.3. EVSE Internet Interfaces

Modern EVSE connects to one or more internet services. These connections typically
exchange telemetry data and extend control to EVSE vendor or third-party cloud environ-
ments. Cloud-to-cloud communications then enable billing operations and grid operators
to interact with EVSE equipment as shown in Figure 1. In many cases, the EVSE communi-
cations are proprietary for the EVSE vendor, but Open Charge Point Protocol (OCPP) [82];
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Open Smart Charging Protocol (OSCP) [83]; IEEE 2030.5 [84]; OpenADR [85]; Message
Queue Telemetry Transport (MQTT) [86]; and Building Automation Control network (BAC-
net) [87] are also in use by EVSE devices on the market [88,89]. OCPP is widespread and
used to connect EVSE to third-party EVSE monitoring and control networks. OCPP is cur-
rently on Version 2.0.1, but Version 1.6 is widely used in the field. Unfortunately, OCPP did
not include PKI encryption until Version 1.8 [90], so many EVSE rely on running this older,
unencrypted protocol which requires the use of virtual private networks (VPNs), isolated
cellular networks, or other protections to avoid reconnaissance and hacking attempts.

Generally EVSE are firewalled from the internet, but multiple devices have been found
using the Shodan and other targeted searches [88]. Not only do these internet connections
create the potential for the EVSE to be exploited from the internet, but there is also a risk
that EVSE vendors or operator systems could be compromised by using the EVSE as an
entry vector into their networks. This would result in an attacker potentially controlling
large fleets of EVSE devices which could impact power grid operations, transportation
systems, or other critical infrastructure. The ability to pivot between vehicle, EVSE, and
cloud interconnected domains was the focus of previous attack tree research [91].

2.4. EVSE Maintenance Interfaces

Based on hands-on penetration tests of a dozen EVSE devices, Sandia National Labo-
ratories determined that modern EVSEs, especially DCFCs, are constructed using multiple
circuit boards which communicate together over ethernet, serial, analog, or other con-
nections [92]. These inter-module communications are rarely encrypted. In many cases,
ethernet switches are located within the enclosure and access to the internal network can be
achieved by simply connecting to this switch. In other cases, USB serial ports, JTAG headers,
or other physical ports are available for EVSE vendors to debug the equipment; however,
these ports are often left open in production equipment which may allow adversaries to
monitor or disrupt equipment operations. EVSE also commonly hosts Telnet, SSH, or local
website services to allow owners to configure the device or collect maintenance/usage data.

3. EVSE Vulnerabilities

Potential EVSE vulnerabilities have been identified through risk and threat modeling
efforts, e.g., [93–99]. In these theoretical studies, the researchers identified potential areas
where vulnerabilities could result in consequences of concern such as data loss, spoofing,
and denial of service. In this work, we focus on publicly disclosed vulnerabilities and
demonstrated exploits. This section presents a survey of EVSE vulnerabilities to better
understand the threat landscape for EV charging, separated by the four interfaces described
above. Chronological summaries of these vulnerabilities are presented for each of the
interfaces in Tables 1–4.

3.1. EV-to-EVSE Interface Vulnerabilities

There have been multiple demonstrations of stealing credentials or influencing charg-
ing sessions via the EV-to-EVSE connection. Oxford researchers, Baker and Martinovic,
demonstrated that they could sniff radiated HomePlug Green PHY data on a CCS con-
nection using unencrypted ISO 15118/DIN 70121 [100] traffic, using a software defined
radio (SDR) [101]. Köhler et al. subsequently showed that charging sessions could be
wirelessly aborted by disrupting the PLC communications in their Brokenwire attack demon-
strations [102]. The researchers found that they could abort CCS charging sessions at
distances of 47 m using SDRs with less than 1 W of power, and this attack was successful
on all seven vehicles and 18 EVSEs that they investigated.

CCS communications do not provide mutual authentication, so there is a risk of MITM
attacks; this presents risks to billing data privacy and, by stealing MAC addresses, creates a
possible avenue for user tracking. Idaho National Laboratory (INL) indicated that there
was a risk that EVs could spread viruses to EVSE which would then further propagate the
malware [103]. Rohde demonstrated disruptions to charging, including a changing power



Energies 2022, 15, 3931 6 of 26

level and increased high total harmonic distortion in a DCFC charging session using a
CHAdeMO connector when malware on the EV or EVSE falsified the EV battery’s state-of-
charge (SOC) [104]. Another team of researchers created the V2G Injector, an open-source
tool to read and write HomePlug Green PHY data. They demonstrated that a malicious
actor could collect network keys and inject data into the CCS Efficient XML Interchange
(EXI) network sessions [105]. In some follow-on work, a Trend Micro combined the V2G
Injector with an Apache logging package (Log4j) vulnerability to escalate access privileges
on a simulated EVSE running a V2G Java stack [106].

The ISO 15118 protocol has garnered extensive security and threat analyses [95,107–109].
Lee et al. found that the ISO 15118 communications may expose the risk of an EV spoofing
another vehicle, stealing power, falsifying meter data to gain free charging, or forging the
malfunction status to prevent operations [107]. Bao et al. had similar concerns of session
hijacking; charging repudiation; and machine-in-the-middle (MITM), denial-of-service
(DoS), and masquerading attacks [108]. The CCS Plug-and-Charge (PnC) PKI approach
and credential management that were defined in ISO 15118-2 [110] have been the source
of detailed studies. Siemens investigated the proposed ecosystem and noted challenges
when EVSE devices are offline and the importance of managing cryptographic material, as
well as emphasizing the need to secure other EVSE functions, such as multimedia services,
firmware updates, and remote diagnosis [95,109]. Höfer et al. considered the privacy risks
associated with ISO 15118 and found that they were inadequate for the authentication and
authorization of payment and billing operations [111].

3.2. EV Operator Interface Vulnerabilities

Early-generation EVSE infrastructure was vulnerable to RFID cloning and other au-
thorization bypass mechanisms with local access to the equipment. In 2017, Fraunhofer
Institute for Industrial Mathematics (ITWM) researcher Mathias Dalheimer presented weak
security practices in billing transactions and RFID card data storage in public charging
infrastructure at the Chaos Communication Congress [112]. He demonstrated how RFID
cards could be cloned in a way that other debit or credit cardholder accounts would be
billed for charging sessions. Similar EVSE operator privacy and identification concerns
were shared by Achim Friedland for RFID; smart phone; and MIFARE Classic (13.56 MHz
contactless smart cards) authorization mechanisms [113]. There have also been warnings
about credit card skimmers on EVSE equipment [114].

INL performed six Level 2 SAE J1772 EVSE assessments between 2014–2017. Two
of these products were prototypes. They found that some of the EVSE devices included
iOS and Android apps that were designed for customers to manage their charging session.
These applications could easily be reverse-engineered to reveal weaknesses in the EVSE
management and vendor cloud interfaces [115]. Many EVSE web service vulnerabilities
have also been disclosed; these will be covered in the next section.

3.3. EVSE Internet Interface Vulnerabilities

EVSE devices often include a local web server or connect to cloud environments to
relay information from the charge point operator, EVSE owner, or driver. We survey the
vulnerabilities associated with internet communications in this section and break these vul-
nerabilities into (a) local web interfaces, (b) remotely accessible EVSE devices, and (c) EVSE
communication to backend systems. In the case of the latter two, the remote communications
over the public internet are especially concerning because of the scalability risk.

3.3.1. Web Services

One common issue with EVSE equipment is the presence of insecure web services
that can be accessed locally from a smart phone or computer. In many cases, these are
designed for EVSE configuration or maintenance via Wi-Fi. In home and enterprise envi-
ronments, these services should be shielded by a firewall from the wider internet, but these
vulnerabilities may expose home and corporate networks to a breach via the EVSE.
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In the Pen Test Partners report there were multiple local web service issues: Wallbox
included insecure direct object references in their web API; an EVBox web API vulnerability
allowed account hijacking; and the EO mini pro was running the insecure Telnet protocol
on port 2000, allowing an attacker to change the configuration data without any authentica-
tion [116]. A Shenzen Growatt Application Programming Interface (API) allowed firmware
updates that could give access to home networks, and credentials were unchecked after
the first login request [116]. In the INL assessment, they found unauthorized access to
configuration files, and data were provided via insecure wireless web servers [115]. In a
Hack in the Box presentation, Shezef reported finding DIP switches left in configuration
mode and an open configuration web server on a GE EVSE [96].

Nasr et al. analyzed 16 EV Charging Station Management Systems (EVCSMS) by
inspecting five EVSE firmware packages, three mobile applications, and eight web appli-
cations. As part of this work, multiple web server vulnerabilities were disclosed for the
Schneider Electric EVlink City, EVlink Parking, and EVlink Smart Wallbox products, in-
cluding Cross-Site Scripting (XSS); Cross-Site Request Forgery (CSRF); Server-Side Request
Forgery (SSRF); and JavaScript information exposure [117–120]. Additionally, they found
multiple vulnerabilities that affected charging processes, settings/firmware, billing, PII,
and user data, as well as botnet recruitment opportunities and the potential for DoS and
brute force attacks on web endpoints [120].

Kaspersky Lab found that the ChargePoint smart-phone application could remotely
tamper with a charging session via Wi-Fi using a buffer overflow in the web server Common
Gateway Interface (CGI) binaries [121]. The risk that was presented with this website
vulnerability was that charging sessions could be stopped, or the maximum charging
current could be increased to amperages above the circuit rating, tripping the breaker,
overheating the wiring, or, in the worst case, causing a fire [122].

3.3.2. Internet-Accessible EVSE Services

The Argonne National Laboratory (ANL) and Illinois Institute of Technology (IIT)
were able to locate multiple EVSE chargers on the public internet using Shodan, Nmap and
Exploit Database’s SearchSploit tool based on specific signatures [88]. ANL and IIT found
that some devices were running unnecessary or outdated services, using weak credentials,
or missing login timeout functions. Previously, INL found that Level 2 EVSE devices
were not accessible via the public internet but could be reached by other devices that
were connected to the same cellular provider [115]. The Shenzen Growatt network with
2.9 million devices on it only required the predictable serial number and an unvalidated
username to lock and unlock the charger, and Pen Test Partners indicated that the locking
action could stop all charging [116]. The Spanish Circontrol CirCarLife web service software
exposed system software information, statuses, and critical setup information which could
be accessed or exfiltrated by unauthenticated or unprivileged users [123,124].

Hille and Allhoff showed that several vulnerable services running on an EVSE could
be accessed from the mobile network interface [125]. They found a weak key-exchange
algorithm and no brute force protections on the SSH service; the web service used an unen-
crypted channel for logging in that could be bypassed by forging a Session Storage cookie;
passwords were hashed using the insecure MD5 algorithm, and the HTTPS port used a
SHA-1 self-signed certificate; and, lastly, the SQL server was vulnerable to data exfiltration.

3.3.3. Communications to Backend Server or Cloud Systems

Multiple issues associated with EVSE vendors, e-mobility service providers, and
charge service-provider backend systems have been identified. These are typically hosted
in the cloud using Amazon Web Services, Google Cloud, Azure, or another cloud platform
to provide, (a) EV owners monitoring and control functionality; (b) EVSE owners pricing,
billing, advertisement, and other functions; (c) other EVSE providers with cross-billing
APIs; (d) utilities with demand management functions. These installations often expose
insecure, remote management functions.



Energies 2022, 15, 3931 8 of 26

In the INL assessments identified that a management application lacked appropriate
authentication methods, such as client-side validation, unencrypted HTTP service for logon
credentials, and unsanitized logon fields that were vulnerable to SQL injection attacks [115].
INL also reported compromising a File Transfer Protocol (FTP) server that then pushed
out modified firmware to all EVSE devices from this vendor in the next update cycle.
They further noted the potential for command injection and XSS exploits on management
servers and indicated that they discovered vulnerabilities that would allow the remote
management of EVSE units that did not belong to that user account.

Cloud-to-cloud communications can be enabled through the Open Charge Point Inter-
face (OCPI) [126]. This allows charge providers to bill other providers without downloading
additional apps, etc. A ChargePoint GraphQL endpoint publicly exposed the details of
their API interface, which could have acted as a first step to more severe attacks that would
have impacted the 150,000 chargers connected to the ChargePoint system [116].

The Open Charge Point Protocol (OCPP) is commonly used between EVSE devices
and backend or cloud networks to configure the charger and obtain charging statistics.
The earlier versions of the protocol used unencrypted HTTP, so there were MITM risks for
intercepting transaction data [90]. At DeepSec in 2016, Achim Friedland also pointed out
the risk of network traversal once a charging station was compromised, as well as issues
of missing OCPP guidance for network settings or certificate management [113]. Mathias
Dalheimer and Achim Friedland further warned that it was also possible to decipher the
data from the EVSE to the backend systems to intercept RFID, credit card via smart phone
app, or other near-field-communication (NFC) data [112,113,127]. Rubio et al. further noted
the risk of MITM attacks on OCPP [128]. In a joint white paper published by DigiCert,
ChargePoint, and Eonti, the team performed a 360◦ maturity assessment on the ISO 15118-2
PKI system and scored the standard poorly in 85% of their governance, technical, and
operations areas [129].

Supply chain vulnerabilities are also a risk for EV charging operations. During the
Russian invasion of Ukraine in early 2022, Pocceти Злeктpoтpaнcпopт (Rosseti Electric
Transport) EV chargers along the M-11 motorway between Moscow and Saint Petersburg
were disabled and displayed anti-Putin and pro-Ukraine messages. Purportedly, a Russian
EV charger provider, Gzhelprom, outsourced components, including the data controller
to a Ukrainian Company, AutoEnterprise, which maintained remote backdoor access and
control of the charging functionality [130,131]. This access allowed the component vendor
to change the settings in the EVSE devices remotely.

3.4. EVSE Maintenance Interface and Hardware/Software Vulnerabilities

Maintenance interfaces are common on EVSE devices. These may be serial (e.g., RS485,
RS232, serial over USB, or other Universal Asynchronous Receiver-Transmitter (UART)
interfaces); Wi-Fi or Ethernet (e.g., SSH, Telnet, HTTP, etc.); Bluetooth; or via the front
panel/screen. Cybersecurity researchers have found several vulnerabilities in the hardware
and software running on EVSE. Two EVSE devices studied by Fraunhofer included USB
ports that would copy logs and configuration data, including the OCPP server login and
password, and authentication tokens from previous users [112]. Furthermore, modifying
the configuration data on the USB drive and re-inserting it would automatically update the
EVSE. This was the same behavior reported by INL in their Level 2 assessments.

INL also found (a) all the EVSE devices were running outdated Linux kernels with
superfluous services (e.g., Telnet and FTP); (b) the processes were running as root, and
stored passwords could be cracked “in a reasonable amount of time” because of weak
hashing; (c) five devices did not include secure boot, and firmware images could be
extracted; (d) firmware was unsigned; (e) there were active serial ports, ethernet jacks,
and USB ports on the EVSE devices; (f) JTAG interfaces allowed direct control of the
processor; (g) physical tamper-detection tools could be bypassed; (h) multiple insecure
coding practices were observed [115]. Kaspersky Lab found that they could trigger a
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factory reset using a special blinking pattern that was picked up with the photodiode on
the EVSE [121].

In a Pen Test Partners report, EO Mini Pro 2, Hypervolt, and Wallbox EVSE devices
used Raspberry Pi single-board computers in their products. These inexpensive comput-
ers do not include secure bootloaders, so any data on them—such as homeowner Wi-Fi
Pre-Shared Keys (PSKs) or other credentials, such as usernames, passwords, etc.—could be
stolen by physically pulling the memory [116,132,133]. Schneider EV chargers included
hard-coded credentials, improper verification of cryptographic signatures, encrypted cre-
dentials disclosure mechanisms, unverified user password changes, and passwords hashed
without a salt [117–119].

Table 1. EV-to-EVSE interface vulnerabilities.

Researchers Year Vulnerability Description Coupler Citation

Höfer et al. 2013 Credential theft and privacy risks. CCS [111]

Lee et al. 2014 EV ID spoofing, power stealing, falsifying meter
data, and preventing operations. CCS [107]

INL 2017 Malware potentially passed between EVs
and EVSE. CHAdeMO [103]

Boa et al. 2018 Session hijacking, charging repudiation, MITM,
DoS, and masquerading attacks. CCS [108]

Baker & Martinovic 2019 Eavesdrop on CCS charging sessions with
radiated side-channel. CCS [101]

Dudek et al. 2019

Developed V2G Injector software to read and
write CCS HPGP data allowing the theft of
network keys and injection of data through
replay or MITM attacks.

CCS [105]

Rohde 2019 DCFC charging disruptions when EVSE HMI or
EV is compromised and falsifies battery SOC. CHAdeMO [134]

Dudek 2021 Injected a Log4Shell payload in a CCS HPGP
charging session. CCS [106]

Köhler et al. 2022
“Brokenwire” wireless/RF attack terminates CCS
charging session(s) using an antenna and
Software Defined Radio.

CCS [102]

Table 2. EV operator interface vulnerabilities.

Researchers Year Vulnerability Description Interface Citation

Friedland 2016 Insecure authorization mechanisms for
EVSE operators.

RFID, smart phone,
and MIFARE Classic [113]

Dalheimer 2017 RFID card cloning to falsify billing account. RFID [112]

INL 2018 Poorly secured smart phone apps used to
manage customer charging sessions. iOS and Android apps [115]

Wright & Street 2019 Credit card skimmers on EVSE. Card swipes [114]
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Table 3. EVSE internet interface vulnerabilities.

Researchers Year Vulnerability Description Interface Citation

Shezef 2013 Open configuration web server
running on EVSE. EVSE web server [96]

Friedland 2016 Network traversal with OCPP. EVSE/cloud [113]

Dalheimer 2017
Interception of RFID, credit card,
or other near-field-communication
(NFC) data.

EVSE/cloud [112]

Alcaraz et al. 2017 OCPP MITM vulnerabilities. EVSE/cloud [90]

INL 2018

Unauthorized access to
configuration files and data via
insecure web servers, flat EVSE
networking, inappropriate
authentication methods, insecure
FTP firmware server, XSS, etc.

EVSE web server, cloud [115]

Kaspersky Lab 2018 Buffer overflow in web server
Common Gateway Interface. EVSE web server [121]

Castro 2018
View or exfiltrate software
information, statuses, and critical
setup information.

Internet [124]

Hille & Allhoff 2018
Vulnerable services running on an
EVSE that could be accessible from
the mobile network interface.

Internet/HTTPS port [125]

Rubio et al. 2018 OCPP MITM vulnerabilities. EVSE/Cloud [128]

Pen Test Partners 2021

Unauthenticated APIs, insecure
direct object API references,
account hijacking, insecure
firmware update mechanisms,
exposed OCPI endpoint.

Cloud, EVSE web servers [116]

Nasr et al. 2021

Cross-Site Scripting (XSS),
Cross-Site Request Forgery (CSRF),
Server-Side Request Forgery
(SSRF), and information exposure.

EVSE web server [118,120]

Varriale, Crawford, & Jaynes. 2021

EVSE chargers on public internet
with unnecessary/outdated
services, weak credentials, or
missing login timeout functions.

Open ports & services [88]

Table 4. EVSE maintenance interface vulnerabilities.

Researchers Year Vulnerability Description Interface Citation

Dalheimer 2017 Exfiltration of logs and configuration data (OCPP
credentials, authentication tokens) via USB. USB ports [112]

INL 2018
Weak hashing, insecure bootloaders, firmware
modification, JTAG interfaces allowed direct
control of the processor, etc.

Various [115]

Kaspersky Lab 2018 Factory reset using special blinking pattern. Photodiode [121]

Pen Test Partners 2021 Extraction of credentials and other data
from EVSE. Memory [116]

Schneider Electric 2021
Hard-coded credentials, improper cryptographic
signatures verification, insecure password
hashing, etc.

Operating system [118,120]
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4. Impacts

Calculating cybersecurity risk is challenging because this depends on equipment,
customer interaction mechanisms, interconnectivity to other systems, and, in the case
of power system impacts, the location and power levels of impacted installations. The
primary consequence of concern involves EVSE and EV functionality and safety, personal
and corporate privacy, financial operations, and electric grid operations. Negative outcomes
include theft of energy, creation of hazards to people and equipment proximate to EVSE,
disablement and damage to vehicles, and interference with grid functions. Here, we break
down the impacts into functional, financial/privacy, safety, and grid impact areas. In all
cases, consumer confidence could be damaged if news of EVSE malfunctions or risks are
exposed, potentially impacting EV and EV charging markets. A summary of the impacts is
provided in Table 5.

4.1. Functional Impacts

As reported by many cybersecurity researchers, cyberattacks can disable a single
EVSE device, EVSE fleets, or all vendor-owned devices. As more of the transportation
sector is electrified, wide-spread disruptions to EVSE run the risk of severely impacting
a range of critical infrastructure: emergency and medical services, food and agriculture,
manufacturing, defense, etc. INL reflected on the potential impacts of the Level 2 EVSE
vulnerabilities and noted that in the case of malicious remote firmware updates, they could
disable all chargers [115]. They were also able to falsify the SOC from the vehicle and the
EVSE, which could prevent full charging of the vehicle (“denial-of-charging”) [134], which
would delay driving or prevent the driver from reaching their destination. This type of SOC
falsification attack could also potentially result in harmful and dangerous overcharging of
the battery [135] if it were not for the battery management system safety features in the EV.

4.2. Financial/Privacy Impacts

Unauthorized access to EVSE devices or backend management systems could result in
personally identifiable information (PII) data theft; billing falsification (e.g., free charging);
or compromise of payment data (e.g., credit and debit card numbers) [112,136]. The impact
of these events would affect EVSE operators and EV drivers in potentially significant
ways (i.e., identity theft). As demonstrated by the Pen Test Partners research, another risk
of insecure EVSE devices is corporate espionage, because insecure devices may expose
corporate networks to adversaries that can then steal sensitive software or data [116].

4.3. Safety Impacts

There are safety systems present in the EV and EVSE that prevent overcurrent events,
overcharging batteries, and other dangerous consequences. Redundant safety systems on
each side of the charging session are designed to prevent fires, battery damage, and other
electrical safety issues, such as energizing terminals when the connector is unplugged; for
example, INL attempted to overcharge an EV after gaining access to a DCFC EVSE, but the
EV stopped the charging event [134]. However, this risk remains if the EV-to-EVSE critical
communications are compromised or the safety systems on both devices are disabled.
Sagstetter et al. believed that CHAdeMO presented an attack vector to vehicle battery
operations if the IEC 61851 CANbus messages were not filtered on the vehicle-side of the
connection [137].

DCFC and XFC devices include thermal management systems for internal cooling.
The high-amperage cables are liquid-cooled [138,139]. Wireless Power Transfer (WPT)
EVSE technologies [140] are also expected to appear on the market at some point which
will open new safety concerns. For instance, INL noted potential the safety risks to medical
devices from WPT in their consequence analysis [141]. Full control of the device through a
malicious firmware update, privilege escalation, or other attacks would potentially allow
an attacker to disable networked, safety-critical protections on EVSE.
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4.4. Power System Impacts

Over the last decade, there has been significant interest in the impact of EV charging
on power system operations [142–146]. More recently, however, researchers have been
studying how the malicious control of EVSE equipment could lead to power system
maloperation. At the device level, INL disrupted the coordination between power electronic
modules, produced a total harmonic distortion of >20%, and decreased the power factor to
below 0.8 [134]. They were also able to conduct an emergency stop via the same method
that produced a 50 kW to 0.3 kW drop in 0.020 s. Others note that cyberattacks on charging
infrastructure may impact power markets [147]. For instance, Alcaraz et al. note that MITM
OCPP attacks may be used for energy theft, fraud, or, at the aggregated level, disrupting
power operations or generator scheduling and economic dispatch [90].

Others investigated the impact of coordinated load manipulation on distribution
and transmission systems [148,149]. Using high-wattage devices to disrupt power system
operations is theoretically possible with enough controllable load [150], though this would
need to be a significant change in the EVSE charging load. Khan et al. studied the impact
of an EV botnet on the IEEE 33-bus distribution network and an IEEE 39-bus transmission
model. They found that the coordinated charging of EVs with fifty 50 kW FCDCs located
on two distribution buses would exceed distribution load limits and produce a <0.95 pu
undervoltage violation [151]. They also found that a 5% increase in transmission load
would overload lines, tripping them offline, but a 10% increase in transmission load would
trigger an outage. At the distribution level, Deb et al. noted that EV charging could
result in increased peak-load demand, reduced reserve margins, voltage instability, and
reliability problems [152]. Johnson et al. found that 2.25 MW of EVSE load at the end of
a feeder was insufficient to cause voltages outside of ANSI C84.1 [153] Range A, unless
V2G grid-support functionality was also included [154]. At the bulk system level, a discrete
8.6 GW of EV load drop (estimated to be the 2028 peak load) in a >20,000-bus Western
Interconnect simulation resulted in relatively small generator (~30 MW) and load (466 MW)
losses, and no stability impact to the bulk electric system [154]. Morrison estimated that an
under-frequency load shedding event could be triggered if simultaneous charging occurred
on ~600,000 EVSE in California [155].

There is also a potential risk of dynamic load modulation on power system stabil-
ity [156]. In an analytical study of Manhattan, Acharya et al. found it improbable that
an attacker could manipulate the bulk power-system frequency any time soon, but they
determined that if the total EVSE load increased by 692 times current levels and an attacker
could control EVSE load controller gains, an attack would theoretically be able to push
the grid frequency above 62 Hz for 0.16 s [157]. A study of EVSE load manipulation on
inter-area oscillation in the Western Interconnect found that 500 MW oscillating load had
no significant adverse effects (no tripped generation or significant system-wide cascading
outages) [154]. Nasr et al. also studied impacts from EV V2G operations and cyclic loads on
a 315 MW 9-bus Western System Coordinating Council (WSCC) PowerWorld model [120].
They found that a 7.2 MW demand increase would cause the frequency to drop below
59.5 Hz; injecting 51.7 MW of power would lead to the frequency exceeding 60.5 Hz; and
alternating between the two would exacerbate the frequency deviation.

Table 5. Summary of potential EVSE cyberattack impacts.

Researchers Attack Scenario Impact Citation

INL Disable chargers with malicious
firmware update

EV operators cannot charge which
impacts emergency and medical services,
food and agriculture, manufacturing,
defense, etc.

[115]

Rohde Falsify the SOC at EVSE either directly
or via the EV

Delay driving or prevent driver from
reaching destinations; localized
power maloperation.

[134]
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Table 5. Cont.

Researchers Attack Scenario Impact Citation

Sagstetter et al. Inject malicious CANbus messages to
vehicle via CHAdeMO connection

Damage vehicle batteries by
manipulating Battery Management
System (BMS) functions.

[137]

Dalheimer; Portela et al. Unauthorized access to EVSE devices
or backend management systems

PII data theft, billing falsification (e.g.,
free charging), or compromise of
payment data.

[87,106]

Pen Test Partners Exposed private or corporate networks Corporate espionage, or theft of sensitive
software, information, or data. [116]

Carlson Malicious firmware update, privilege
escalation, and other attacks

Disable thermal management, WPT
safety systems, or other
safety-critical protections.

[141]

Alcaraz et al.;
Ahmed & Dow

OCPP MITM attack; backend system
compromise; malicious
firmware update

Power market disruptions affecting
generator scheduling and
economic dispatch.

[90,147]

Khan et al. EV botnet manipulated the load of
multiple 50 kW DCFCs

Distribution undervoltage violations
with 2.5 MW of load; outage with 10%
load increase.

[151]

Johnson et al. Transmission load drop and load
modulation attack

Minimal loss of generation and load.
Bulk system stability was maintained. [154]

Johnson et al.
EVSE V2G control miscoordination that
produced active and reactive
power flows

Minimal. Distribution voltage outside of
ANSI Range A at end of feeder. [154]

Morrison Simultaneous charging of ~600,000
EVSE in California Under-frequency load shedding event. [155]

Acharya et al. Attacker could control EVSE load
controller gains

Grid frequency above 62 Hz for 0.16 s,
tripping distributed generation. [157]

5. Cybersecurity Defenses and Hardening Recommendations

While the areas of OT cybersecurity protection, detection, and response are extensively
studied for cloud systems [158–160]; SCADA systems [161–164]; smart grids and power
systems [165–167]; and autonomous and plug-in EVs [135,168,169], there has been less
attention to EVSE device and network hardening. That said, there have been multiple recent
efforts to establish EV charging cybersecurity requirements. One major activity led by the
U.S. DOT Volpe National Transportation Systems Center for the National Motor Freight
Traffic Association created an extensive list of requirements for XFC stations for medium
and heavy duty vehicles [30]. The requirements were created by stakeholders, including
federal agencies, electric truck OEMs, charging station vendors, and utilities in areas
that included design, logging, lifecycle and governance, cryptography, communication,
assurance, hardening, resiliency, and secure operation—all mapped to specific threats and
methods in the STRIDE security model for attestation.

A major component of the EU Architecture for Multi-criticality Agile Dependable
Evolutionary Open System-of-Systems (AMADEOS) project involved bringing together
Dutch grid operators (Enexis, Liander, and Stedin), ElaadNL, and the European Network
for Cybersecurity (ENCS) to produce multiple reference documents which covered risk
assessments [98], security architectures [170], procurement and security requirements for
EV charging infrastructure [171], and a security test plan for EV charging stations [172].
Another ElaadNL-commissioned ENCS threat report established security requirements
covering design considerations, product lifecycle and governance, cryptography, commu-
nications, system hardening, resilience, access control, and logging [35]. In a separate
report from Technische Universiteit Eindhoven and Radboud Universiteit Nijmegen, the
authors included recommendations for design, implementation, infrastructure, and inci-
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dent issues [173]. They also noted the need for sharing EVSE cybersecurity knowledge and
creating an independent organization that is responsible for security testing and assurance.
The following subsections provide recommendations and research efforts to harden EVSE
equipment, sorted into the four attack vector categories. A summary of the hardening
recommendations is provided in Table 6.

5.1. EV-to-EVSE Interface Hardening Recommendations

Baker and Martinovic suggest a few improvements to prevent the remote sideband
CCS data extraction they demonstrated. These included adding chokes and electromagnetic
shielding to reduce leakage, improving the HPGP key distribution mechanism, and adding
new Signal-Level Attenuation Characterization (SLAC) initialization steps to better secure
CCS communications if the PKI system is unavailable [101]. Köhler et al. recommended that
CCS sessions re-authenticate after disruptions to minimize the impact on customers [102].

Researchers have also designed multiple security improvements to the EV-to-EVSE
communications system. Chan and Zhou created a cyber–physical challenge-response
mechanism for J1772 authentication [174]. Vaidya and Mouftah recommended using
Multimodal and Multi-pass Authentication (MMA) mechanisms to prevent MITM and
substitution attacks on ISO 15118 communications [175].

INL developed Diagnostic Security Modules (DSM) to provide EV-to-Building security
based on prior work on coprocessor-based intrusion detection systems [176]. The DSMs
were designed to be integrated with the EV, EVSE, and Building Energy Management
Systems (BEMS) so that suspicious or abnormal behavior could be reported to BEMS
operators, who would allow/deny charging based on security snapshots (fingerprints) of
the EV [103,177]. Fingerprints for the EV were derived from internal CANbus messaging;
monitoring changes to Electronic Control Units (ECUs); and SAE J1772, CHAdeMO, or
CCS vehicle-to-EVSE communications. EVSE fingerprints were calculated from kernel
memory, CPU load and memory use, network bandwidth, and operating system statistics
using Joint Test Action Group (JTAG) and Serial ports on the EVSE components [103,177].

In the DigiCert, ChargePoint, and Eonti whitepaper [129], they made several recom-
mendations to improve the Plug-and-Charge PKI security of ISO 15118-2. They suggested
creating a certificate policy for all V2G root hierarchies, improving the certificate revo-
cation policies, creating key management and subscriber onboarding requirements, and
establishing a certificate lifecycle management policy, including EV provisioning. The
whitepaper argued that the ISO 15118-2 standard alone is not sufficient to address all the
requirements for an operational PKI system, and the U.S. needs operational guidance and a
formal certificate policy—similar to the content in the German Verband der Elektrotechnik,
Elektronik und Informationstechnik (VDE) Guide, VDE-AR-E 2802-100-1 [178], and Hub-
ject PnC Certificate Policy [179]. To address this gap, the SAE International Cooperative
Research Program started the Electric Vehicle Charging Public Key Infrastructure project,
which will have Eonti, DigiCert, and VerSprite design, test, and deploy an EV Ecosystem
PKI solution [180–182].

In addition, modifications to ISO 15118 have been proposed by the research community.
Fuchs and a team at the Fraunhofer Institute for Secure Information Technology designed
a Security Module (SecMod) Protection Profile for ISO 15118 EV-EVSE communications
to support the security functions in the communication protocol [183,184]. The module
provided cryptographic primitives, secure key and credential generation and storage, and
random number generation to provide secure boot, remote attestation, and secure firmware
update processes. Lee et al. offered several suggestions to improve ISO 15118 and EV-EVSE
communications, including additional authentication mechanisms, confirming message
validity with anomaly detection tools, and using a third-party auditor to thwart collusion
between the EV and EVSE which would prevent untracked charging [107]. Höfer et al.
offered ISO 15118 protocol extensions that would provide greater privacy [111] and Bao et al.
recommended adding clock synchronization, EV OCSP checks within the EVSE, and
mandatory TLS encryption [108].
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5.2. EV Operator Interface Hardening Recommendations

User authentication mechanisms have proved to be weak, with many researchers
demonstrating RFID cloning and other privacy risks. To combat these problems, van
Eekelen et al. recommend stronger authentication of customer identity through Lamport’s
login, challenge-response pairs based on a secret key, diversified keys, or RFIDs with private
keys that are tied to a PKI [173]. After Mathias Dalheimer noted the insecurity of RFID
and other nearfield authorization technologies [112], Mültin recommended moving toward
ISO 15118 and associated PnC identification mechanisms [185]. ElaadNL provided user
authentication requirements that included using a challenge-response protocol, mandating
authentication prior to accepting user tokens, and using Secure Access Modules for keys,
especially if they are shared master EVSE keys [35].

Nasr et al. exposed a large range of security vulnerabilities that were associated
with EVSE firmware, mobile applications, and online web-portals. Their recommendations
included suggestions to address issues with EVSE webservers and apps, such as hard-coded
credentials, SQL injection, and hard-coded credentials for these user interfaces [120].

5.3. EVSE Internet Hardening Recommendations

To better secure EVSE internet interfaces, many researchers have recommended pro-
viding stronger encryption and TLS technologies. Van Eekelen et al. suggested end-to-end
encryption to provide meter, billing, and charging data integrity and greater confiden-
tiality based on NISTIR 7628 guidance on cryptography and key management [173,186].
Rubio et al. recommended adding additional IEC 62351-3 TLS profiles, IEC 62351-7 end-
point security, and IEC 62351-8 role-based access control (RBAC) security mechanisms to
OCPP and the endpoint devices to defend against MITM attacks [128]. Several recommen-
dations were provided by the Dutch Software Improvement Group regarding the Open
Smart Charging Protocol (OSCP), including adding data-centric security and establishing a
publish/subscribe middleware model [173]. Van Aubel et al. recommended an extension to
ISO 15118, OCPP, and OCPI to provide secrecy and nonrepudiation at the individual data
field level [187]. On the other hand, Vaidya and Mouftah recommended using a role-based
access control system on the OCPP Control Center server [188] and Zhou et al. presented a
decentralized V2G energy trading framework to secure transactions [189].

Recommendations from INL for securing remote management systems included using
TLS, making username/password combinations unique for each EVSE device, improving
mobile APIs, and securing sessions with a signed certificate [115]. Many researchers have
commented on the need for code-signing firmware updates [115,116,173,190]. Nasr et al. rec-
ommended a number of implementation improvements, such as addressing XSS and SSRF
with the sanitization of user input data; SQL and CSV injection attacks with parametrized
queries and safe CSV parsing; CSRF with random tokens for all requests; DoS attacks
with rate limited queries; Cross-Origin Resource Sharing (CORS); and Flash Cross-Domain
Policy (FCDP) misconfigurations with strict cross-domain policies, and other information
disclosure risks with authentication on all endpoints and functions [120].

Other work has been conducted in network-based intrusion detection systems. Mo-
roson and Pop introduced a neural network that was trained on six months of data to
detect malicious OCPP traffic [191]. INL has developed a safety instrumented system (SIS)
intrusion detection framework to monitor EV charger operations and properties [141]. Pratt
and Carol and Eekelen et al. also point to the need for logging, security monitoring, and
incident response planning [149,173].

5.4. EVSE Maintenance Interface and Hardware/Software Hardening Recommendations

The National Renewable Energy Laboratory (NREL) enumerated a number of risk
mitigation techniques and potential procurements requirements to secure physical access
and remote access to EVSE [190]. In their recommendations, they suggest encrypting data-
at-rest and data-in-flight with 256-bit cipher suites, removing all external ports, adding
tamper alarms, and certifying cloud services with the Federal Risk and Authorization
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Management Program (FedRAMP). These recommendations aligned with prior suggestions
from ElaadNL who point out requirements for device hardening, removing unneeded
interfaces, securing accounts, and physical security protections [173].

Gottumukkala et al. suggested enhancing EVSE security with secure-by-design prin-
cipals, software security, hardware security, and tamper monitoring and resistance [192].
To this end, in a VTO-funded project, EPRI investigated a Secure Network Interface Card
(S-NIC) which wrapped EVSE subsystem communications and included secure boot and
tamper resistant technologies [193]. Additionally, privacy-preserving technologies for V2G
applications have been studied to prevent the compromise of vehicle identity and location
information [194–196].

In many cases, EVSE vulnerability disclosures are accompanied with suggestions that
would prevent exploits in the future. For example, in INL’s Level 2 EVSE assessment report,
they provide an extensive list of local hardening recommendations, including removing
physical and logical assess to the device, auditing code, adding secure bootloaders, re-
moving hard-coded passwords, securing firmware updates, and securing inter-process
communications and shared memory [115]. Pen Test Partners discussed the risks of using
Raspberry Pi computers in EVSE devices and recommended upgrading to computers with
secure boot capabilities [116].

Table 6. EVSE cybersecurity defense technologies.

Organization/Researchers Cybersecurity Hardening Suggestions, Technologies, or Topics Citation

Höfer et al., 2013 Add protocol extensions to provide greater privacy to ISO 15118. [111]

Chan and Zhou, 2014 Cyber–physical challenge-response charging authentication. [174]

Lee et al., 2014
Harden ISO 15118 with additional authentication mechanisms,
confirming message validity, and using a third-party auditor to
thwart EV-EVSE collusion.

[107]

Chan & Zhou, 2014 Add cyber–physical challenge-response mechanism for
J1772 authentication. [174]

Eekelen et al., 2014

Recommendations for design, implementation, infrastructure, and
incident issues; stronger authentication of customer identity;
end-to-end encryption; add data-centric security and
publish/subscribe middleware to OSCP.

[173]

ElaadNL, 2016 Design, cryptography, communications, system hardening, resilience,
access control, logging, product lifecycle, governance, assurance. [35]

Moroson & Pop, 2017 Neural network trained to detect malicious OCPP traffic. [190]

INL, 2017 and 2018 Deploy intrusion detection systems to allow/deny charging based on
EV security fingerprints. [103,177]

Bao et al., 2018 Add clock synchronization, EV OCSP checks within the EVSE, and
mandatory TLS encryption to ISO 15118. [108]

Mültin, 2018 Move to PnC identification mechanisms to avoid the insecurity of
RFID and other nearfield authorization technologies. [185]

Rubio et al., 2018 Adding IEC 62351 TLS profiles, endpoint security, and role-based
access control (RBAC) security mechanisms to OCPP. [128]

Vaidya & Mouftah, 2018 Use a role-based access control system on the OCPP Control
Center server. [188]

INL, 2018 Use TLS, code signing, unique username/password combinations,
improve mobile APIs, and securing sessions with a signed certificate. [115]
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Table 6. Cont.

Organization/Researchers Cybersecurity Hardening Suggestions, Technologies, or Topics Citation

NREL, 2019 Encrypt data-at-rest and data-in-flight, remove external ports, add
tamper alarms, and certify cloud services with FedRAMP. [12]

ElaadNL, 2019 Access control, cryptography, communications, physical/information,
operational (backup, logging, vulnerability management) security. [170,171]

U.S. DOT Volpe Center, 2019 Collection of XFC requirements: design, logging, cryptography,
communication, assurance, hardening, resiliency, secure operation, etc. [30]

Van Aubel et al., 2019 Use extensions to ISO 15118, OCPP, and OCPI to provide secrecy and
nonrepudiation at the individual data field level. [187]

Baker & Martinovic, 2019
Prevent remote sideband CCS data extraction via electromagnetic
shielding; improve HPGP key distribution; add new SLAC
initialization steps.

[101]

DigiCert, ChargePoint, and Eonti, 2019 Create certificate policy for all V2G root hierarchies, improve certificate
revocation policies, create key management requirements, etc. [129]

Gottumukkala et al., 2019 Use secure-by-design principals, software security, hardware security,
and tamper monitoring and resistance. [191]

Fuchs et al., 2019;
Fuchs et al., 2020

Use Security Module (SecMod) Protection Profile to support the
security functions in the ISO 15118 communication protocol. [183,184]

Vaidya & Mouftah, 2020 Employ ISO 15118 Multimodal and Multi-pass
Authentication mechanisms. [175]

Zhou et al., 2020 V2G blockchain energy trading framework for secure transactions. [189]

Carlson, 2021 Monitor EV charger operations with intrusion detection framework. [141]

Sandia, 2021 Broad cyber recommendations for business and EVSE network and
operations, EVSE physical and logical interfaces, and EVSE ecosystem. [154]

Ghatikar, 2021 Secure Network Interface Card (S-NIC) with secure boot and tamper
resistant technologies. [192]

Yang et al., 2011;
Liu et al., 2014;
He et al., 2014;
Chen et al., 2021

Privacy-preserving technologies for V2G applications. [193–196]

Köhler et al., 2022 Reduce the risk and impact of aborting CCS charging sessions with RF
shielding and enabling re-authentication. [102]

6. Discussion

Industrial control system cybersecurity involves the never-ending process of iden-
tifying and improving system weaknesses. Vulnerability research is a critical tool in
demonstrating the state-of-the-art and profound need for EVSE security. As evidenced by
the extensive collection of vulnerabilities in Section 3, EVSE manufacturers and network
operators should establish robust cybersecurity programs. These programs will enable
manufacturers and operators to continuously mitigate the risks to the EV charging ecosys-
tem. Maintaining an active community of ethical hackers working to identify weaknesses
in the EV chargers will help to safeguard EVSE systems against malicious adversaries. The
responsible disclosure model provides benefits to both vendors and researchers: discovered
vulnerabilities are reported to the appropriate organization for mediation and later shared
with the research community to better secure EV charging systems in the future.

If unabated, the risks are significant. EVSE cyberattacks can impact multiple critical
infrastructure systems, including transportation, power grid, and medical services. Ad-
versary control of EVSE may also compromise the safety of the basic functionality of the
devices, leaving the user stranded or injured. Since billing and personally identifiable
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information also traverses these devices and networks, personal or corporate financial
damage is possible.

As presented here, many recommendations for hardening and defending EVSE de-
vices and networks have been proposed for equipment hardware, user interfaces, and
communication protocols. These must be carefully considered by standards development
organizations and EVSE vendors and network operators to improve the security of EVSE
assets. The only chance of securing EVSE systems is to respond to the evolving threat land-
scape with continuously improving defensive postures. To that end, several major technical
trends and research opportunities can be identified for each of the interfaces, as shown
in Table 7. For the EV-to-EVSE interface, there is a need for better identity management
and authentication. For the EV operator interface, solutions to privacy loss are needed.
Wired, wireless, cellular, or other connections to the internet require security solutions
to protect firmware updates, PII, and EVSE control points. New anomaly detection tools
would be particularly useful to detect adversary actions on these connections as well. At
the maintenance level, EVSE equipment physical and logical access must be monitored,
protected, and detected. The operating system, applications, and system data must also be
secured appropriately to prevent the manipulation of EVSE operations.

Table 7. Major Cybersecurity research needs for EVSE interfaces.

Interface Research Areas

EV-to-EVSE

• Techniques to prevent loss or manipulation of charging communications via
side-channel attacks.

• Improved authentication and authorization mechanisms for EV and EVSE
equipment, including those established with PKIs.

EV Operator
• New privacy-preserving authentication solutions for EVs and EV operators.
• Improved EVSE credential, data, and PII storage.
• Hardened and sanitized local web services.

EVSE Internet

• Communication solutions with end-to-end confidentiality, integrity, authentication,
authorization, non-repudiation, and auditing.

• Novel EVSE firmware update mechanisms that account for key/certificate
provisioning and storage.

• EVSE network-based intrusion detection and mitigation systems.
• Cloud, website, and API security solutions that prevent manipulation or information

disclosure with authentication on all endpoint operations.

EVSE Maintenance

• Host-based intrusion detection systems and tamper-resistant technologies for
physical and logical access.

• Device-level security features, including secure storage, secure bootloaders, and
other software/hardware hardening technologies.

7. Conclusions

EVSE security is essential to maintain critical mobility, shipping, and power system op-
erations as the transportation industry is further electrified. This survey investigated public
EVSE device and system cybersecurity vulnerabilities, impacts, and security recommenda-
tions. In the last decade, several vulnerabilities were found in EV-to-EVSE, EV operator,
internet/cellular/cloud, and maintenance interfaces which represent significant risks to EV
operator privacy, operator safety, financial systems, and power system operations.

Fortunately, several new guides, best practices, security technologies, and implemen-
tation recommendations have been proposed to address EV charging weaknesses. The
cybersecurity research community, EVSE industry, and other stakeholders must continue
to work together to implement practical and future-looking security solutions to address
gaps in the security posture of the ecosystem. EVSE vendors must incorporate continuous



Energies 2022, 15, 3931 19 of 26

processes for hardening their infrastructure through internal and external assessments and
bug-bounty programs. Future research should include expanding the scope and depth of
EVSE penetration testing, developing EVSE-tailored network- and host-based intrusion
detection systems, incorporating zero-trust principles, and further exploring power, safety,
and other impacts. Lastly, at the policy level, state and federal governments should seek
legislation to improve the security of EVSE systems by creating EVSE cybersecurity re-
quirements, expanding information sharing programs, and establishing incident-response
strategies—especially in cases of coordinated or widespread attacks.
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