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Abstract: Energy-saving scheduling is a well-known issue in the manufacturing system. The flexibil-
ity of the workshop increases the difficulty of scheduling. In the workshop schedule, considering the
collaborative optimization of multi-level structure product production and energy consumption has
certain practical significance. The process sequence of parts and components should be consistent
with the assembly sequence. Additionally, the non-production energy consumption (NPEC) (such
as the energy consumption of workpiece handling, equipment standby, and workpiece conversion)
generated by the auxiliary machining operations, which make up the majority of the total energy
consumption, should not be ignored. A sub-batch priority is set according to the upper and lower
coupling relationship in the product structure. A bi-objective batch scheduling model that minimizes
the total energy consumption and the total completion time is developed, and the multi-objective
gray wolf optimizer (MOGWO) is employed as the solution to obtain the optimal schedule scheme.
A case study is performed to demonstrate the potential possibilities concerning NPEC in regard to
reducing the total energy consumption and to show the effectiveness of the algorithm. Compared
with the traditional optimization model, the joint optimization of NPEC and PEC can reduce the
energy consumption of standby and handling by 9.95% and 22.28%, respectively.

Keywords: multi-level structure; non-production energy consumption (NPEC); sub-batch priority;
multi-objective gray wolf optimizer (MOGWO)

1. Introduction

Scheduling has been certified to be critical in manufacturing for improving the pro-
ductivity of the manufacturing system and utilization of equipment, as well as shorting
the manufacturing cycle [1]. Traditional machining scheduling typically envisions prod-
uct processing phases where jobs are independent of each other and are not sequence
constrained. In the conventional processing scheduling method, the two processes of
processing and assembly are separated from each other, which will lead to the destruction
of the original parallel relationship between processing and assembly [2]. Generating a
processing sequence on the base of the assembly process would reduce the frequency of this
phenomenon. Nevertheless, because the process is complicated (such as product hierarchy,
number of workpieces, and processing steps), the resolution of these problems considered
processing sequence in machining systems is more difficult than traditional machining
scheduling. Moreover, it is an NP-hard problem [3].

Temporally, the completion time of workpieces is affected by the hierarchy of the
product tree. For example, a product that includes 10 levels is processed from the bottom
up. If each level is processed when the previous level is finished, without a doubt, it will
prolong the entire production cycle. Therefore, batching the workpieces and making the
scheduling scheme in the production of the multi-level structures have practical significance
for reducing the completion time.
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The manufacturing industry has consumed large amounts of energy in the process
of transforming resources into products or services, leading to many environmental prob-
lems [4]. The realization of low-carbon manufacturing is extremely important for improving
the sustainability of the manufacturing industry [5]. Energy-efficient scheduling, which
can be approved in the manufacturing industry, has achieved energy conservation and
emissions reduction [6]. Therefore, the scheduling scheme should not only consider the ra-
tionality of the process sequence for the workpieces but also reduce the energy consumption
of the production system.

The processing energy consumption (PEC) and non-processing energy consumption
(NPEC) of the machine are the two components of the production energy consumption of
the workshop. PEC stands for the energy consumption of the machine at the processing
stage, which is related to the processing power and processing time of the machine. NPEC
is the sum of standby energy consumption, conversion energy consumption, and handling
energy consumption. Compared with the energy consumed by the machine in other
operating phases, the equipment consumes less energy when processing workpieces,
especially in mass production, which generally only accounts for approximately 10% of the
total energy consumption [7].

Most of the energy consumption in production is generated by auxiliary operations.
Here, auxiliary operations are defined as operations that are not directly involved in
processing but indispensable in the production process, such as those for equipment
standby, state conversion, and workpiece handling. Compared with the energy consump-
tion generated by the processing phase, the energy consumption generated by auxiliary
operations can be large. Therefore, if the focus of energy conservation is on developments
in processing and energy-saving equipment [8], the considerable energy-saving potential
of auxiliary operations will be ignored. In addition, relative to changing a processing
technology or researching and developing more energy-saving processing, an optimized
workshop scheduling scheme can provide good application value with a low investment [9].
Therefore, in a production system based on processing sequences of workpieces, compre-
hensively considering the energy consumption composition in the production process,
optimizing the allocation of workshop resources, and formulating reasonable scheduling
arrangements will be more conducive to reducing energy consumption and improving
efficiency in manufacturing enterprises.

Gray wolf optimization [10] (GWO) is a new intelligent optimization algorithm pro-
posed in recent years. Compared with the genetic algorithm (GA) and particle swarm
optimization (PSO), GWO algorithm results are more competitive [11]. At present, the
gray wolf algorithm has been widely applied in thermodynamics [12], power systems [13],
energy and fuels [14], cloud technology [15], and workshop scheduling [16–18]. Lu [16]
embedded genetic operators into the multi-objective GWO to enhance the searchability of
the algorithm. Qin [17] used the improved multi-objective gray wolf algorithm to solve the
casting shop scheduling to minimize the production cycle, total production cost, and total
delivery delay. Lu [18] added a random search model based on traditional GWO search
to enhance global search capability. Although GWO has been successfully used in many
different types of production environments, there is limited literature on GWO to solve
energy-saving scheduling problems in a machine-shop, especially to optimize auxiliary
production energy consumption. Therefore, we extended the single-objective GWO to the
multi-objective GWO to consider completion time and total energy consumption minimization.

Reducing energy consumption through NPCE optimization and minimum completion
time are major design goals. The research motivation and research problem will be clearer
in the discussion of background research, and then the related mathematical model will
be introduced, followed by the MOGWO algorithm and how it is applied to optimize the
bi-objective scheduling problem; finally, a presentation of a case study will demonstrate
the model and algorithm in the case of two different energy consumption optimization
objectives and different algorithms.
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In the rest of this paper, the current research progress will be introduced in Section 2
and a bi-objective model based on the research problem is established in Section 3. In
Section 4, the working procedure of MOGWO of this optimization problem is described.
Section 5 conducts case analysis and comparison. Finally, Section 6 summarizes this article.

2. Literature Review

The scheduling research of multi-level structure products was first studied for an
assembly workshop [19,20]. Li et al. [21] developed four batch strategies to solve three
different multi-level product assembly problems. Lu et al. [22] studied tree-like products
scheduling problems in an assembly workshop, aiming to minimize the assembly comple-
tion time. Wan et al. [23] proposed a visual modeling and scheduling model for assembly
processing based on a workflow for the assembly process of complex products and de-
signed heuristic scheduling rules. Suharyanti et al. [24] investigated the optimal lot size
of complex products in the job shop. Batching can effectively reduce product production
cycles. However, the scheduling research on multi-level structure products is not enough
to solve the problem of collaboration production because sequence constraint scheduling
should be compatible with the assembly sequence and has higher complexity.

A scheduling problem that comprehensively considers the optimization of the energy
consumption with the traditional targets (completion time/production cost) is complex,
and it is particularly important to carry out in-depth research on this [25]. At present,
a large amount of energy waste occurring in processes that have nothing to do with
equipment processing operations has been found. Dahmus and Gutowski [7] analyzed the
energy consumption of machining and proved that the actual processing operations only
accounted for a small part of the total energy consumption, whereas auxiliary operation
energy consumption accounted for 30–50%. The idle time of the machine occupied 16%
of the total completion time [26]. Thus, the NPEC is large. Based on the knowledge
regarding total energy consumption, it has become a trend to decompose the total energy
consumption and reduce energy waste through optimization of the scheduling scheme.
Wang [27] simulated a processing process and classification of energy consumption by
product quality. In general, the total energy consumption can divide into PEC and NPEC,
where NPEC, as indicated above, refers to the energy consumption generated by auxiliary
operations such as equipment start-up, shutdown, and idling.

In recent years, more and more research of NPEC has been conducted thoroughly.
Luan et al. [28] studied the energy consumption of non-cutting status and established an
accurate power model to accurately predict the power of the feed motion. Liu et al. [29] im-
proved the machine utilization rate by 8.2% by optimizing the processing sequence for the
workpieces. Peng et al. [30] considered standby energy consumption. Wu et al. [31] studied
a renewable energy scheduling problem of a flow shop and established a multi-objective
renewable energy power supply model, intending to reduce the processing and idle en-
ergy consumption during processing. Gilles et al. [32] investigated the impacts of batch
production on energy consumption and order completion time. It was considered that
batching could effectively reduce the number of conversions and equipment standby time,
thereby reducing the conversion energy consumption and standby energy consumption.
Che et al. [25] used a clustering algorithm to determine whether a shutdown operation was
required between two tasks to reduce the standby energy consumption and/or optimally
sort the processing tasks. Liu et al. [29] integrated scattered short standby periods into a
long standby time and judged whether off or assigned other tasks. Wang et al. [33] consid-
ered the power changes in the standby state and processing states of the machine. However,
the above research mostly focused on the conversion and standby energy consumption
separately. In the research of NPEC, they should be considered more systematically.

In the research articles above, most of the influences of workpiece handling on the
energy consumption of the workshop were ignored. However, it is more realistic to consider
the scheduling and optimization of such handling. The impact of handling on energy
consumption has generally not been considered [34–36]. The handling of workpieces
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between machines is also part of auxiliary processing, and its energy consumption should
belong to the NPEC in the system. Different from previous studies, the NPEC would be
determined based on the energy consumption of the equipment standby, conversion, and
workpiece handling. In addition, a machine may perform many processing tasks, and
the frequent shutdown and start-up of the equipment will increase energy consumption.
Therefore, this part of the energy consumption is generally not considered.

Based on the above discussion, the research on multi-level product production and
energy-conscious scheduling in the machining workshop is limited. The existing work-
shop scheduling methods cannot meet the requirements of production and energy saving
because each mode has its characteristics. The research on NPEC should be considered
when proposing a scheduling method that is different from the traditional optimal energy
consumption scheduling. Therefore, the scheduling model of the machining workshop is
more complicated than that of the traditional workshop. To bridge this gap, a scheduling
method was introduced specifically for machining workshops to minimize completion
time and energy consumption.

3. Problem Statement
3.1. Related Product Structure

In real-world production, a product is a combination of a group of parts/components
with order constraints and can be represented using a tree structure diagram. The pro-
cessing and assembly of products are conducted according to the tree structure. The
edges in the tree represent the assembly constraint relationships, the leaf nodes are the
parts/components, and the root node is the final product. Each level’s leaf node can be
called a child node of its upper-level node, and the processing starts from the lowest-level
leaf node. It is composed of n parts/components with order constraints. The production of
components includes several processes, each process is handled by a machine (in M), and
the alternative processing equipment for different processes can be identical.

According to the structural characteristics and commonalities between products, the
literature [37] has generally summarized product structures into three types: flat, tall, and
complex. The corresponding product structure trees are shown in Figure 1. The flat type is
a single-layer product and is directly assembled from first-level parts into products. The
tall type has multiple levels of parts/components, and each sub-workpiece contains at
most two nodes. The complex type is a multi-layer composite of flat- and tall-type tree
structures, in which at least one parent node contains more than two child nodes, as shown
in Figure 1. The nodes of each tree are arranged hierarchically, where level 0 represents
the complete product, and level 1 is the hierarchical arrangement of parts. For example,
the structure of the B product is divided into 1–3 levels, and the branch nodes under it are
called components, such as P1 and P2. The production sequence is as follows: first produce
the workpieces J3 and J4, and then the superior P2 and J2 for production, and so on.

Based on the coupling relationship(s) between the parts/components in the product
structure, batch production and handling are conducted, in which each type of workpiece
is divided into equal batches, and the numbers and size of the sub-batch of each product
are determined, as well as the sub-batch production and handling sequence. A batch
scheduling problem based on the product structure will face difficulties caused by the
coordination of the processing times between the workpieces. The arrangement of the
production sequence of each sub-batch to meet the coupling sequence of the products is
very important. For example, in the mass production of the workpieces in a machining
workshop, each type of workpiece can be divided into an equal number of sub-batches.
According to the coupling relationship between the workpieces and the production time
of the workpiece, the lower-level workpieces are produced first, and then the start pro-
cessing time of the upper-level workpieces will be later than the next level of workpieces,
minimizing machine standby while optimizing handling equipment to reduce NPEC.
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3.2. Problem Definition and Assumptions

The problem can be expressed as follows. Related sets and decision variables are
shown in the Appendix A.

1. The product contains n types of workpieces J = {J1, J2, J3... Jn}, the number of work-
pieces Jj is Qj, and each workpiece contains Oj processes.

2. There are h types of handling equipment in the workshop. A specific piece of handling
equipment is expressed as Hh. The handling speed and power of the same type of
handling equipment are the same; the speed of Hh is Vh, the power when handling
parts/components j is Ph

j , and the rated capacity of the workpiece j on the handling
equipment is Sjh.

3. After a certain process of the workpiece is processed on equipment m, it needs to
be transported to the selected equipment m’ of the next process. The locations of all
equipment in the workshop are fixed, and the distance between equipment m and
equipment m’ is dmm’. After the last process of a batch of workpieces is processed
on equipment m, they are transported to assembly workshop P for assembly. The
distance between equipment m and assembly workshop P is dmp.

The following assumptions are used in the scheduling.

• Alternating machines for different processes can be the same.
• Each type of sub-batch of workpieces can only be transported to the next process

processing equipment for processing/waiting after the previous process is completed
according to the process sequence.

• At most, one workpiece is processed on each machine at a time, and one workpiece is
processed on at most one piece of equipment at any time.

• The processing and handling equipment are available at the initial moment.
• A process is not interrupted once it starts processing.
• The equipment requires preparation time before processing different types of work-

pieces successively; in contrast, processing the same types of parts does not require
preparation time.

• The number of pieces of handling equipment is limited. If the number of sub-batches
of workpieces is greater than the rated capacity of the handling equipment, multiple
pieces of equipment must be moved simultaneously or multiple times by one piece
of equipment.
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• The time required for loading and unloading workpieces is ignored.

3.3. Problem Formulation
3.3.1. Objectives

During workpieces processing, there are three main states of equipment: the process-
ing state, conversion state, and standby state. The equipment power and state vary with
time [25], as shown in Figure 2. Si

m and Ci
m represent the start and completion times of

the ith operation on device m, respectively, and Om
j(1)i(1)

represents the Oji processing on
equipment m.
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The total energy consumption of the production system is composed of the PEC
(Ep) and NPEC (En) during the processing of components and parts. Of these, the NPEC
consists of the state transition energy consumption (Es), the standby energy consumption
(Ew), and the handing energy consumption (Ed) (including the energy consumption of
the moving parts/components between machines and moving to the assembly workshop
when finished).

• The energy consumption criterion E

It consists of the PEC and NPEC. Specifically, this energy consumption metric is given
as follows:

E = Ep + En (1)
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The PEC consumed by all workpieces owing to the processing, as shown in Equation (2),
as follows

Ep = ∑n
j=1 ∑

Bj
k=1 ∑

Oj
i=1 ∑w

m=1 αjTBjkim (2)

The NPEC consists of the equipment standby energy consumption (Ew), conversion
energy consumption (Es), and handling energy consumption (Ed). The equation is given by
Equation (3), as follows:

En = Ew+ES+Ed (3)

Among them, Ew refers to the idling state where the equipment is on non-stop, and no
parts/components are processing on the machine. The formula for the energy consumption
during the standby period is shown as follows:

Ew = ∑
Bj
k=1 ∑n

j=1 ∑w
m=1(SB j(k+1)im−CBjkim)Pw

m

)
(4)

In the above, SBj(k+1)m represents the start time of the (k + 1)th sub-batch of j on the
processing equipment m, represents the kth sub-batch on equipment m completion time,
and Pw

m is the standby power of the machine.
Es represents the energy consumption of the equipment state transition. In Equation (5),∣∣αj − αj′
∣∣ is the absolute value of the difference in energy consumption involved in switch-

ing power owing to processing different types of workpieces (j→j′); Rjj′m is a 0–1 variable.
If the processing of the workpiece on equipment m is different from the workpieces to be
processed, Rjj′m = 1; otherwise, Rjj′m = 0.

Es = ∑n
j=1 ∑

Bj
k=1 ∑

Oj
i=1 ∑M

m=1 RjkimRjj′m
∣∣∣αj − αj′

∣∣∣ (5)

The workshop handling energy consumption is related to the sub-batch quantity Bpj
and sub-batch Qpjk of j, selected handling equipment Hh, distance dmm

′ between the equip-
ment, and distance dmP between the equipment and assembly workshop P. Ed represents
the energy consumption during handling. The transportation of workpieces includes two
parts: one part comprises transporting the current sub-batch process to the next processing
machine after the completion of the current sub-batch process, and the other comprises
transporting it to assembly workshop P after the last process of the sub-batch process is
completed. The two parts of energy consumption are described in detail as follows. This
can be expressed using Equation (6).

Ed = Eh
jkimm′ + Eh

jkmP (6)

After the process Oji is processed on equipment m, the workpiece will be transported
to the next process Oj(i+1). The energy consumption Eh

jkimm′ of the transportation equipment
Hh at the selected equipment m′ is shown in Equation (7).

Eh
jkimm′ = ∑n

j=1 ∑
Bj
k=1 ∑

Oj
i=1 ∑w

m=1 ∑H
h=1 S1

jkihH1
jkimhnjkPh

j th
jkimm′

= ∑n
j=1 ∑

Bj
k=1 ∑

Oj
i=1 ∑w

m=1 ∑H
h=1 S1

jkihH1
jiamh

⌈Qpjk
sjh

⌉
Ph

j
dmm′

Vh

(7)

Here, njk represents the number of pieces of handling equipment required for the kth
sub-batch of j, and th

jkimm′ indicates the time that Hh moves j from process Oji of equipment

m to m’. Sβ
jkih is a 0–1 variable. If Hh was selected to handle the ith process of the kth

sub-batch of j, then Sβ
jkih = 1; otherwise, Sβ

jkih = 0. Hβ
jkimh is also a 0–1 variable. β can take two

values, 1 and 2; β = 1 indicates that the workpieces are transported between equipment;
β = 2 indicates that the workpieces are transported from the last piece of equipment m
to assembly shop P. If the ith process of the kth sub-batch of j is transported by Hh, then
Hβ

jkimh = 1; otherwise, Hβ
jkimh = 0.
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After the workpieces j are processed, they are transported from equipment m to
assembly workshop P by Hh. The energy consumption Eh

jkmP of Hh is given by Equation (8),
as follows:

Eh
jkmP = ∑n

j=1 ∑
Bj
k=1 ∑H

h=1 XjkOjmS2
jkh H2

jkimhnjkPh
j th

jkmP= ∑n
j=1 ∑

Bj
k=1 ∑H

h=1 XjkOjmS2
jkh H2

jlimh

⌈Qpjk
Sjh

⌉
Ph

j
dmP
Vh

(8)

In the above, th
jkmP represents the time taken by Hh to transport the kth sub-batch

of j from m where the last process is located to the assembly workshop P. XjkOjm is a 0–1
variable. If the last process of the kth sub-batch of j is completed on equipment m, then
XjkOjm = 1; otherwise, XjkOjm = 0.

• The makespan criterion C

The makespan criterion is defined as the maximum time for the last sub-batch for the
equipment in the workshop to be processed and transported to the assembly workshop;
CBjBjOjm represents the completion time of the last process Oj of the last sub-batch Bj of the

workpiece j on the equipment m. In addition, XjkOjmS2l
jBjOjh

H2
jBjOjh

represents the completion

of the processing of the part j after choosing the handling equipment h and transporting it
to the assembly workshop. The calculation is shown in Equation (9), as follows.

C =∑n
j=1 ∑M

m=1 CBjBjOjm + ∑n
j=1 ∑M

m=1 ∑H
h=1 XjkOjmS2

jBjOjh H2
jBjOjh

dmP
Vh

(9)

The multi-objective model is shown in Equations (10) and (11).

f1 = min Cmax (10)

f2 = min E (11)

3.3.2. Constraints

Two issues should be considered in the scheduling:

• The influences of the division of the workpieces into sub-batches, process equipment
selection, equipment standby, and state transition in the processing process on the
energy consumption and completion time must be considered.

• The number of handling equipment types is limited, and a type of handling equipment
needs to be selected during the handling process. If a sub-batch of workpieces is
larger than the rated capacity of the handling equipment, multiple pieces of handling
equipment must be selected for simultaneous or multiple handling.

The batches of workpieces should satisfy the condition that the sum of the divided
sub-batch batches is equal to the processing quantity of the workpieces; moreover, the
number of divided sub-batches should not exceed the total quantity of workpieces. Qj =

Bj

∑
k=1

Qjk

2 ≤ Bj ≤ Qjk

(12)

The workpieces are split into equal batches. If the number of batches is not an integer,
it is rounded down, and the remaining workpieces comprise a single batch.

Qjk =

{ ⌊
Qj÷Bj

⌋
k ≤ Bj−1

Qj−bQ j÷Bj

⌋
×(B j−1) k = Bj

(13)
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If the processing type of the current workpieces is the same as that of the workpieces
being processed, there is no need to switch the state of the machine; otherwise, the state
needs to be switched.

Rjj′m =

{
0, Pj′k′i′m = NPjkim
1, Pj′k′i′m 6= NPjkim

(14)

The scheduling is performed according to the sub-batch priority relationships of the
parts/components in the product structure tree. The process starts processing time at the
completion time of the last sub-batch process in the selected equipment, and the sub-batch
workpieces after the previous process are completed and transported according to the
maximum value between the device moments. SBjkOj1m= CBjkojm= 0

SBjkim= max{CB n−1
m , CBjk(i−1)m′+th

jkimm′

} (15)

The production process of the same sub-batch should not be interrupted.

CBjkim= SBjkim+TBjkim (16)

The part production sequence should meet the requirement that the production
time of the lower-level parts/components is earlier than the start-up time of the upper-
level parts/components; that is, the start-up time of the first process in the n-level parts/
components sub-batch should be later than the (n + 1) level parts/components.

Sjn1 ≥ Sj(n+1)1 (17)

Among them, Sjn1 is the start time of the first process of the n-level parts/components,
and Sj(n+1)1 is the start time of the first process of the first sub-batch of the (n + 1)
parts/components j.

For two adjacent processes for the same workpiece, the processing sequence con-
straints between the processes need to be met, and the next process can only be conducted
after the previous process is completed and the workpiece is transported to the selected
equipment m′ for the start of the next process.

SBjk(i+1)m′ ≥ Rjj′mRjkim +TBpjkoji
+th

jkimm′ (18)

In each process, Oji can only select one piece of machine for processing.

w

∑
m=1

MPjim= 1 (19)

One type of handling equipment is selected for each handling instance.

H

∑
h=1

Hβ
jkimh= 1 (20)

4. Multi-Objective Gray Wolf Optimization Algorithm
4.1. Basic Gray Wolf Optimization Algorithm

Mirjalili [10] proposed the gray wolf optimizer (GWO) in 2014. The core of the
algorithm is to manage an optimization problem by imitating the hunting process of a gray
wolf population. Owing to its balance of local and global search capabilities, convergence
speed, and depth balancing, it has attracted widespread attention since its proposal.

The basic idea is that α wolf was chosen to be the most suitable plan, and β wolf and
δ wolf were the second and third optimal plans. The rest are ω. α and β are the guiders
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of hunting, followed by δ and ω wolf. The equation for simulating the corresponding
behaviors is defined as follows.

→
D =

∣∣∣∣→C · →Xp(t)−
→
X(t)

∣∣∣∣ (21)

Among them,
→
D represents the distance to the prey, t indicates the current iteration,

→
Xp represents the prey’s position vector, and

→
X represents the wolf’s position vector. The

coefficient vectors are represented by
→
A and

→
C , and the formula is:

→
A = 2

→
a ·→r1 −

→
a (22)

→
C = 2

→
r2 (23)

In the search process,
→
a linearly decreases from 2 to 0 and is used to emphasize

detection and discovery of prey.
→
R1 and

→
r2 are selected in the range [0,1] randomly. α, β

are the guider in hunting, and δ wolves also can join the hunting. The location of the prey
(optimal) is unknown. Simulating the hunting behavior of gray wolves, α, β, and δ wolves
are assumed to be more familiar with the potential location of their prey. In each hunt for
prey, the three best solutions represented by α, β and δ wolves will be saved and used in
each search, guiding other wolves to the possible position of the prey. The hunting formula
is given by Equations (24)–(26).

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣, →Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣, →Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣ (24)

→
X1 =

→
Xα −

→
A1 ·

→
Dα,

→
X2 =

→
Xβ −

→
A2 ·

→
Dβ,

→
X3 =

→
Xδ −

→
A3 ·

→
Dδ (25)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(26)

All in all, GWO starts with guiding the search process by α, β, and δ. When
∣∣∣∣→A∣∣∣∣ > 1,

they diverge and look for prey; otherwise, they find and attack the prey. Finally, if the
stopping criterion is met, the optimal solution (i.e., prey) is output. In brief, in each
iteration of the algorithm, individuals in the population were divided into α, β, δ and ω.
The first three belong to the individuals at the decision-making level, representing the
historical solution of optimal, suboptimal, and third optimal. ω corresponds to the other
individuals. In the algorithm iterations, α, β and δ are locating prey and guiding ω to
update its position, completing a sequence of actions including approaching, surrounding,
and attacking the prey.

4.2. Application of Multi-Objective Gray Wolf Algorithm

The multi-objective gray wolf algorithm (MOGWO) [38] added two new components
based on the gray wolf algorithm by Mirjalili in 2016. The first component is the archive,
which served to store the currently acquired non-dominant Pareto optimal solutions. Then
comes the leader selection strategy, which helps decision-makers to choose α, β and δ as
the leader of the search process from the archived results. The basic flow chart is shown in
Figure 3.
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4.2.1. Encoding and Decoding Mechanism

Before applying the MOGWO algorithm to a specific problem, we designed an encod-
ing and decoding scheme. It connects the solution space of the problem with the search
space under consideration. Hence, designing the correct codec scheme is an important
issue that affects the performance of the algorithm.

Code design is based on the types of parts/components and the number of batches.
In each chromosome, a gene is represented by three or four numbers. For example, “301”
represents the first sub-batch of the third parts/components, and “1003” represents the
third sub-batch of the tenth parts/components. In addition, the number sequence in the
chromosome represents the processing operations of each sub-batch of parts/components.
As shown in Figure 4, each type of part/component needs to go through multiple process-
ing operations. The first occurrence of “101” represents the first processing operation of the
first sub-batch of parts/components J1, and the second occurrence represents the second
processing operation, and so on. Taking an example for illustration, the optional processing
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equipment of three types of workpieces and the processing time for each process are shown
in Table 1.
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Table 1. Equipment scheduling problem, for example (unit: min).

Sub-Batch Quantity Operations M1 M2 M3 M4 M5

101 30
O11 2 - 5 - 6
O12 - 6 5 6 -
O13 4 3 - - 8

201 40
O21 5 - 4 - -
O22 9 5 - 6 -
O23 - 5 4 7 -

301 30
O31 6 - 9 10 -
O32 5 7 - 6 -
O33 - 8 6 - 7

According to the coding method of the part/component arrangement, it can be
assumed that the position of a gray wolf individual in this problem is [1–3], that is, the
processing order of the parts/components is 1-3-2. Then, the part/component placement
is decoded into a viable scheduling scheme. A Gantt chart corresponding to the first
sub-batch of parts/components is shown in Figure 5. Through the decoding process, a
suitable machine is selected for each process in each station for processing, and the order
of each part and the start time are determined to obtain the objective function value. In
Figure 5, initially, all the processes of the first sub-batch of J1 are arranged on the machine
that can process it earliest, and then the other sub-batches of other parts/components are
scheduled. The various processes of the parts/components are arranged on the machine
that can complete its processing earliest; if the processing completion time on the allocated
machine is less than the earliest processing start time of the scheduled parts/components,
it will be arranged before the scheduled parts/components (and so on for the remaining
parts/components). Each sub-batch of parts is arranged before the position of each machine;
otherwise, it is arranged behind the arranged parts/components.
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4.2.2. Initialization

Initial solutions can affect the obtaining of the optimal solution to a degree. In our
study, the problem can be divided into two sub-problems: equipment selection and process
sequencing. Therefore, in the initialization phase, the most suitable processing equipment
with the lowest processing energy consumption and processing time is selected based on
the above encoding and decoding scheme. Then, the sorting plan is obtained according to
the processing priority rules of the workpiece and the remaining load at most.

4.2.3. Roulette Selection

In a multi-object search space, comparing solutions is usually not easy; thus, the
leader selection mechanism has been designed to solve this problem. The leader provides
the α, β, and δ wolves in the least crowded search places. The selection is performed by
using the roulette method. The probability of each hypercube is calculated as follows: two
individuals are randomly selected from N individuals each time, and the individuals with
the lower ranking levels are selected first. If the ranking levels are the same, the crowding
degree is the first large individual to generate a population of N/2 individuals. The process
merges the two generated populations into a new progeny population (population size
is N).

4.2.4. Social Hierarchy

Due to the Pareto advantage of multi-objective planning, the optimal result is usually
not a single, which is called a “trade-off solution” in multi-objective planning. According
to the Pareto dominance relationship, a population can be divided into several levels. The
first-level solution (non-dominant solution or compromise solution) can be expressed as
a solution. If there are more than three levels in the whole, β and δ are the second- and
third-level solutions. In this study, social stratification was conducted by assuming these
three situations:

• Select α, β and δ randomly from the non-dominated level or the first level.
• Select α and β from the current two levels.
• Select α, β, and δwolves from the first three levels, respectively (only have two levels).

4.2.5. Update Operator

In this study, individuals are no longer updated according to the decision level, and a
hybrid search method combining local search and global search is adopted. The wolf pack
generated by each iteration of the algorithm is divided into two parts: the search and track-
ing operations are carried out, respectively. Then, in the process of searching, the number
in each group is dynamically adjusted to achieve the purpose of the individual update.
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4.2.6. Sorting Replacement Strategy

Different from the basic GWO algorithm, the newly generated solution is evaluated
based on two fitness values: maximum time to completion and total energy consumption.
The parent population and progeny individuals produced by global search and local search
operations combined to a large new species, then using the non-dominated sorting method
and crowded degree to sort the new species. Among them, based on the classification of
the solutions, the sorting method reduces the computing complexity, and the crowded
degree calculation can save with low levels of similar solution and keep the diversity
of the solution space. At the same time, the distribution of individuals on the current
Pareto frontier should be as broad and uniform as possible, and the introduction of an elite
retention mechanism is conducive to maintaining excellent individuals and improving the
overall evolution level of the population.

5. A Case Study
5.1. Data Preparation

Taking into account the following 10 × 10 production workshop example based on a
realistic situation, it comprehensively considers the quantity required for each type of part
or component, its handling energy consumption, and its level in the product structure.

For the three different types of products, their complex structures were different,
resulting in different processing priorities and handling complexities. As described above,
the flat product structure is a single layer, that is, all components have the same priority,
and the processing and handling scheduling are relatively simple; in contrast, tall and
complex products contain multi-layered parts/components structures. Taking a typical
tall product as an example, the specific product structure tree is shown in Figure 6. In
the figure, B represents the corresponding product, and the arrow in the figure represents
the position of part Ji. The part Pi in the product structure was divided into different
levels; each component or part had a certain demand; they were mixed in batches, and the
production was completed. Subsequently, it was transported to the assembly workshop by
a transport vehicle for assembly.

Table 2 displays the detail settings of the components, parts, and equipment. The parts
and the components are set to 6 and 4, respectively. The rated capacity of the workpiece
on the handling equipment is listed in Table 3. In batch scheduling, the production batch
had a U-shaped relationship with the production cycle. In general, production batches that
are excessively large or small will lead to a longer production cycle. In this study, each
workpiece was divided into 2–3 batches, as shown in Table 4. There were three types of
handling vehicles, each of which has three available equipment. The power of the handling
vehicle was 20 kW, the speed was 30 m/min, and the distance between the assembly
workshop and production workshop was 200 m. The information of each type of part and
component and the required power is shown in Table 4. In the workshop, the distance
between adjacent equipment is 5 m. All cases were simulated in MATLAB R2016b and
were tested many times. The algorithm was programmed using Matlab2016b on a personal
computer with an Intel(R) Core (TM) i5-930M CPU @ 2.50 GHz. The values of the algorithm
parameters were determined by preliminary experiments, and the specific parameters were
determined by comprehensive experiments as follows: number of iterations: 250; the
number of grids per dimension:15, and population size: 20.
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Table 2. Parts/components information (10 × 10).

Parts/Components
Equipment (Preparation Time/Processing Time) (min)

Oji M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1

O11 [2,18] [3,15] — [3,20] — — — — — —
O12 — — — — — — — [3,20] [2,14] —
O13 [3,17] [2,20] — [3,21] — — — — — —

P1

O21 — [2,12] [3,20] — — — [2,15] — — —
O22 [2,15] [2,14] — — [3,18] — — — — —
O23 — — — — — — — [3,17] [2,20] —

P2
O31 — [3,20] [4,20] — — — [4,18] — — —
O32 — — — — — — — — [2,18] [3,15]

P3

O41 [1,15] [1,10] — [2,10] — — — — — —
O42 — — — — — — — [2,16] [2,14] —
O43 [2,15] [2.5,17] — [4,18] — — — — — —
O44 [2.5,16] [2,15] — — [3,15] — — — — —
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Table 2. Cont.

Parts/Components
Equipment (Preparation Time/Processing Time) (min)

Oji M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J2

O51 [2,20] [3,25] — [2.5,16] — — — — — —
O52 — — — — — — — — [3,20] [4,20]
O53 — [3,28] [3,30] — — — [5,25] — — —

J3

O61 — — — [1,15] [2,25] [2,30] — — — —
O62 — — — [2,22] [4,20] — — — — —
O63 [2,20] [1,10] — — — — [1,15] — — —

P4

O71 — — — [1,10] [2,25] [2,30] — — — —
O72 — — — [2,15] [3,10] [2,20] — — — —
O73 [3,15] [3,18] [4,30] — — — — — — —

J4

O81 — — — [1,20] [3,25] — — — — —
O82 [3,15] [3,25] — — — — [4,30] — — —
O83 — — [2,10] — [3,15] [2,16] — — — —

J5

O91 — — [1,10] — [2,15] [1,20] — — — —
O92 — — [3,15] — [2,20] — — — — —
O93 — [1,5] [2,5] — — — [2,7] — — —

J6

O101 — — [2,10] [3,15] — [3,20] — — — —
O102 — — [1,15] [2,10] — [2,18] — — — —
O103 [1,10] [3,15] — — — — — — — —

Table 3. The rated capacity of the workpiece on the handling equipment.

H
Workpiece J1 P1 P2 P3 J2 J3 P4 J4 J5 J6

H1 60 50 40 70 65 50 90 68 70 70

H2 40 60 80 85 70 70 110 80 60 70

H3 30 60 70 60 80 60 100 60 60 83

Table 4. Other information about workpieces.

Workpiece J1 P1 P2 P3 J2 J3 P4 J4 J5 J6

Types (part/com) part com com com part part com part part part

level 1 1 2 2 3 3 3 3 4 4

Quantity 300 300 600 300 600 300 900 300 600 300

αj(kW) 20 15 20 25 22 25 30 20 15 20

Symbols in Gantt chart Job1 Job2 Job3 Job4 Job5 Job6 Job7 Job8 Job9 Job10

Quantity of sub-lots in 5.2 2 2 3 2 3 2 2 2 2 2

Quantity of sub-lots in 5.3.1 2 3 3 2 3 2 3 2 3 2

5.2. Result Analysis

In the experiment, taking into account the total energy consumption and completion
time as the objective function and comprehensively considering all the energy consumption
involved in the production process, the MOGWO algorithm was used to solve the problem.
As shown in Figure 7, the values of the two optimization objectives stabilize at the 189th
iteration. Figure 8a shows the population distribution results after 200 iterations. There
are eight solutions set in Figure 8b. The point with lower energy consumption and early
completion time than others was a selection in Figure 8b. The Gantt chart of this scheme is
shown in Figure 9. As the total energy consumption optimization reduces the equipment
conversion and waiting time, the completion time is 38,400.86 min, and the total energy
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consumption is 356,750 kWh. Table 5 displays the handling process of the first sub-batch
of each workpiece between the machines and the workshop, where J01 (J = 1, 2, 3, . . . ,10)
represents the first sub-batch of the Jth workpiece.
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Table 5. One sub-batch handling process for each kind of workpiece.

J01 Quantity Operations M H
Start
Time
(min)

End
Time
(min)

Starting
Location

Arrival
Location

(J1) 101 150 O11 M2 H1 7756 7756.5 M2 M9
O12 M9 H1 20,907.5 20,907.8 M9 M4
O13 M4 H2 24,058 24,064.5 M4 P

(P1) 201 100 O21 M7 H2 2250 2250.5 M7 M2
O22 M2 H2 14,861 14,861.5 M2 M9
O23 M9 H3 33,914 33,920.5 M9 P

(P2) 301 200 O31 M3 H2 4004 4004.5 M3 M10
O32 M10 H3 7007.5 7014 M10 P

(P3) 401 150 O41 M2 H2 1500 1500.5 M2 M8
O42 M8 H2 3100.5 3101 M8 M1
O43 M1 _ 4601 4601 M1 M1
O44 M1 H1 6201 6207.5 M1 P

(J2) 501 200 O51 M2 H3 12,759 12,759.5 M2 M9
O52 M9 H3 16,759.5 16,759.7 M9 M7
O53 M7 H2 33,118 33,124.5 M7 P

(J3) 601 150 O61 M4 H1 21,115 21,115.1 M4 M5
O62 M5 H2 32,564 32,564.4 M5 M2
O63 M2 H1 38,965 38,971.5 M2 P

(P4) 701 300 O71 M6 - 12,005 12,005 M6 M6
O72 M6 H2 24,710 24,710.5 M6 M2
O73 M2 H3 37,464 37,470.5 M2 P

(J4) 801 150 O81 M4 H1 11,751 11,751.3 M4 M7
O82 M7 H1 23,224 23,224.2 M7 M5
O83 M5 H2 34,817 34,823.5 M5 P

(J5) 901 200 O91 M3 H2 18,865 18,865.3 M3 M5
O92 M5 H2 29,560 29,560.4 M5 M2
O93 M2 H2 30,560.4 30,566.9 M2 P

(J6) 1001 150 O101 M6 - 3003 3003 M6 M6
O102 M6 H2 18,708 18,708.5 M6 M1
O103 M1 H2 29,572 29,579.5 M1 P

5.3. Comparison Analysis
5.3.1. Comparison with the Traditional Model without Considering the NPEC

Different from the experiment above, only PEC is considered in the energy consump-
tion model in this section. As shown in Figure 10, the values of the two optimization
objectives stabilize at the 158th iteration. Figure 11a shows the population distribution
results after 200 iterations. There are 10 solutions set in Figure 11b. The point with lower
energy consumption and earlier completion time than others is selected in Figure 11b.
The Gantt chart of this scheme is as shown in Figure 12, the total completion time is
40,900.43 min, and the PEC is 227,000 kWh.
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Table 6 displays the energy consumption values and completion times for the two
optimization schemes. As could be seen from the table, owing to the reduced standby
and conversion time, the total completion time is better than that of the comparative
experiment; in terms of energy consumption, the PEC values of the two schemes are very
close; the slight difference in processing times may be owing to the different preparation
times required on different equipment. The optimization of the handling equipment is
not considered in the comparative experiment. The handling energy consumption in the
comparative experiment is estimated through the historical handling time, and the energy
consumption in our experiment is optimized. As could be seen in Table 6, the optimization
of the handling energy consumption can significantly reduce the NPEC, thereby reducing
the total energy consumption. Compared to the comparative experiment, the standby
energy consumption and handling energy consumption are reduced by 9.95% and 22.28%,
respectively. The utilization rates of each machine in the two experiments are shown in
Figure 13. It can be seen from the figure that the machine utilization is mostly higher than
that in the comparative experiment.

Table 6. Comparison of energy consumption and time of two experiments. (unit: kWh).

Optimize (PEC + NPEC) Optimize PEC

Ep 2.33 × 105 2.27 × 105

Ew 4.75 × 104 5.33 × 104

Es 550 588
Ed 1.57 × 104 2.02 × 104

C 38,400.86 40,900.43
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5.3.2. Algorithm Comparison with the NSGA-II

In this section, the most popular multi-objective heuristic algorithm NSGA-II [39]
was selected in the experiment for comparative analysis. NSGA-II is an improvement
of the NSGA algorithm. It is one of the most outstanding evolutionary multi-objective
optimization algorithms so far. The parameters of the algorithm are set as follows: the
population size is 100, the maximum number of iterations is set to G = 200, crossover
probability Pc = 0.9, and the mutation probability Pm = 0.2. The parameters of MOGWO
are set in Section 5.1. They use the same initialization strategy and encoding scheme.
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Comparing the performance of multi-objective optimization algorithms is more based
on the following criteria: (a) the degree of similarity between the solution set obtained by
the operation result and the real Pareto solution set, that is, convergence; (b) the uniformity
of the solution set on the Pareto frontier, namely diversity; (c) comprehensively measuring
convergence and diversity. According to references [40,41], the following two indicators are
used for algorithm performance evaluation: ∆ metric and inverted generational distance.
The real Pareto frontier of the research in this paper is the set of non-dominated solutions
in the final solution set. However, the real Pareto frontier is not known. The final solution
set is obtained by the calculation example through multiple independent operations of the
algorithm. The specific introduction and calculation formula of these two indicators are
given below.

∆ metric: Describe the uniformity of the Pareto front obtained by the algorithm. The
calculation method is as follows. The smaller ∆, the more even the solution is, and the
better the performance of the algorithm. When ∆ is equal to 0, it indicates that the solution
obtained by the algorithm is uniformly distributed in the solution set space, generally only
appearing under ideal circumstances.

∆ =
d f + dt + ∑n−1

i=1

∣∣∣di − d
∣∣∣

d f + dt + (n− 1)d
(27)

Here, df and dt are the distances between the boundary point of the Pareto frontier
obtained by the algorithm and the actual Pareto frontier boundary point of the problem
to be solved; n represents the number of solutions in the Pareto frontier obtained by the
algorithm operation, and di represents the value obtained by the algorithm operation. d
represents the average value of all dt.

Inverted generational distance: A variant of iterative distance not only reflects the
convergence of the algorithm but also shows a diversity index, which is a comprehensive
evaluation index. The formula of IGD is as follows:

IGD(S, P∗) = ∑x∈P∗ dist(x, S )
|P∗| (28)

Among them, dist(x, S) represents the individual x ∈ P* to the nearest Euclidean
distance on S, and |P*| is the cardinality of the set P*. The smaller the value of IGD, the
more it can approach the entire PF. In addition, when IGD(S, P*) = 0, it means S is a subset
of P*.

In this paper, two intelligent optimization algorithms are selected for comparison. The
results are shown Table 7. The table counts the minimum, average, and standard deviation
of the indicators.

Table 7. Comparison of two algorithms.

Evaluation Index
MOGWO NSGA-II

Min Agv Sd Min Agv Sd

Spread 0.343 0.553 0.107 0.522 0.677 0.115
Inverted generational distance 0.074 0.089 0.021 0.090 0.125 0.029

From Table 7, we can draw the following two points:

• According to the spread value (∆) in the table, MOGWO is better than the NSGA-II
algorithm, and the MOGWO algorithm is more evenly distributed than the solution
set obtained by NSGA-II. It is due to the neighborhood search mechanism of the
MOGWO, which can increase the probability of obtaining the optimal solution, thereby
improving the uniformity of the solution set distribution, and the algorithm has better
optimization capabilities.
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• According to the inverted generational distance value in the table, the solution ob-
tained by MOGWO has better convergence and distribution than the NSGA-II algo-
rithm. This is because of the unique hierarchical system of the MOGWO algorithm,
which can be selected from different dominance levels. The optimal solution to
improve the convergence and distribution of the algorithm was chosen.

The Pareto frontiers obtained by the two algorithms are shown in Figure 14. Obser-
vation shows that the solution obtained by using the MOGWO algorithm is numerically
smaller than the other solution set, that is, it can dominate the solutions obtained by NSGA-
II. Additionally, MOGWO proves to be effective in reducing the total energy consumption
of scheduling plans. Therefore, the selected algorithm has the best solution effect.
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5.4. Sensitivity Analysis

Sensitivity analysis was used to compare the influence of energy consumption of
different auxiliary production operations in this section. If the objective function value and
fitness value of different optimization operations change greatly, the sensitivity coefficient
and the corresponding auxiliary production operation will be large and sensitive.

Sensitivity analysis is the importance of factor variables of the model to the value of
the optimization objective function. The calculation is shown in Equation (29), as follows.

SfA =
∆ f / f
∆A / A

(29)

Here, SfA represents the sensitivity of target function value f to parameter A, and
∆A/A means the rate of change of a parameter; ∆f /f represents the change rate of the target
function value caused by the change of factor variable ∆A. The sensitivity of total energy
consumption to EW, Es, and Ed will be analyzed in our experiment. In this analysis, ∆A/A
represents the rate of change relative to historical observations when different auxiliary
operation optimizations are considered. The change rate of total energy consumption
due to different auxiliary operations of optimization is expressed by ∆f/f. Table 8 shows
the sensitivity coefficients under different optimization schemes; the larger the sensitivity
coefficient, the higher the sensitivity of the target to the variation of parameters.
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Table 8. Sensitivity coefficients under different optimization combinations.

Schemes
MOGWO

∆A/A ∆f /f SfA
Ew Es Ed

A 5.33 × 104 588 2.02 × 104 - - -
A1 4.63 × 104 - - 13.13% 2.32% 0.18
A2 - 523 - 11.05% 0.22% 0.02
A3 - - 1.49 × 104 26.24% 1.76% 0.07

Table 8 compares the changes in total energy consumption when considering different
combinations of auxiliary optimization operations. Among them, A represents the schedul-
ing scheme without considering auxiliary operation optimization, where Ew, Es, and Ed are
historical forecast values. The standby time, conversion operation, and handling operation
are considered separately, and the scheme is expressed by A1, A2, and A3, respectively.
Data indicate the three sensitivity coefficients are all positive and the target function value
has a certain sensitivity to parameter changes, proving that the optimization model pro-
posed in our research can obtain satisfactory results in reducing energy consumption, but
there have been slightly different changes in the target function to the parameter between
three schemes. From Table 8, energy consumption is significantly reduced by optimizing
standby time, and the target quantity changes significantly to Ew; second is handling energy
consumption optimization, followed by conversion energy consumption. In this research,
due to the large standby time and handling times, the energy consumption optimization
effect is relatively significant, especially in the case of large total energy consumption.
Through the sensitivity analysis of the above optimization scheme, it is reasonable and
effective to comprehensively consider the NPEC in the optimization model.

6. Conclusions and Future Works

This study researched energy consumption optimization in the production process of
a machining workshop, starting from the assembly relationship between the parts/ compo-
nents of the multi-level product structure. By analyzing the existing energy consumption
research, we conducted a systematic study on the NPEC of the workshop. The research
was mainly conducted from the following two aspects.

• The production of a multi-level product structure is combined with energy consump-
tion optimization. The start processing times of different levels of workpieces are set,
and the characteristics of the PEC and NPEC in the production system are considered.
With the goal of minimum completion time and energy consumption, equipment
standby, workpiece conversion, and handling constraints are established, and the
MOGWO is adopted to solve the problem.

• The total energy consumption optimization results are compared with those of an op-
timization plan considering only the PEC. The results show that after considering the
NPEC optimization as proposed here, the standby energy consumption and handling
energy consumption are reduced by 9.95% and 22.28%, respectively. This provides a
feasible research direction for the study of energy-saving scheduling in workshops.

Production scheduling considering energy-saving measures is of great significance
for the realization of energy savings and emissions reduction. This study has a set of
limitations: for example, we suppose the same power during the standby time and there
is no interruption in the processing that limit the versatility of our method. For future
works, other possibilities, such as equipment failures and emergency order insertions, will
be further integrated into the optimization model.
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Nomenclature

C completion time
TP processing time
Ep energy consumption of processing
Ew energy consumption of stand by state
Ed energy consumption of handling
Eh

jkmP energy consumption of the kth sub-batch of j transported from m to P
Bjk the kth sub-batch of workpiece j
dmm’ distance between machines
Si

m start time of the ith operation on the machine m
Ci

m completion time of the ith process on the machine m
CBn

m completion time of the nth process on machine m
Oji the jth operation of the workpiece j
w each type of workpiece is processed on w sets of equipment
th
jkimm′ transportation time of from m to m′

SBjkim start time of the ith operation of the kth sub-batch about workpiece j on machine m
CBjkim completion time of the ith process of the kth sub-batch about workpiece j on machine m
Pj’k’i’m kth sub-batch ith operation of workpiece j is processed on equipment m
Sjh rated capacity of work j on equipment h
αj, αj’ the processing power of workpiece j, j’
Emax total energy consumption
TR setup time
En non-processing energy consumption
Es conversion energy consumption
Eh

jkimm′ energy consumption of the workpiece j transported from m to m’
Qj quantity of workpiece j
Qjk quantity of j of Bjk
dmP distance between processing workshop and P
Ph

j power of handling Hh

SBn
m start time of the nth process on the machine m

Om
j(1) i(1) ith operation of workpiece j processed on machine m

njk the number of h required for the kth sub-batch of workpiece j
Pw

m standby power of machine
Sjn1 start time of the first process of n-level parts/components
TBjkim processing time of the ith operation of the kth sub-batch about workpiece j on equipment m
Rjkim the set-up time of the ith operation of the kth sub-batch about workpiece j on equipment m
NPjkim the kth sub-batch and the ith operation of the jth workpiece are being processed on the m
Vh speed of Hh
MPjim each process Oji can only choose one piece of machine for processing

th
jkmP

the time it takes for Hh to transport the kth sub-batch of the workpiece j from the
equipment m where the last process to the assembly workshop P
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Appendix A

Table A1. Sets.

Nomenclature Description

J Parts set; J = {J1, J2, J3 . . . Jn} ∪ {P1, P2, P3, . . . Pn}, j ∈ J
M a finite set of M machines; m = 1,2,3 . . . M
H a finite set of H handle equipment; Hh ∈ H; h = 1,2,3
Oj Process set; Oji ∈ Oj, i = 1,2,3 . . . Oj
Bj Number of sub-batch of j; j = 1, 2, . . . n

Table A2. Decision variables.

Nomenclature Description

Rjj’m

If the currently processed part/component j of the processing equipment m
is different from the part/component j’ to be processed, then Rjj’m =1,
otherwise, Rjj’m = 0.

Sβ
jkih

If the equipment Hh is handling the ith process of the kth sub-batch of
parts/components, then Sβ

jkih= 1, otherwise, Sβ
jkih= 0.

Hβ
jkimh

If the ith process of the kth sub-batch of the part/component j is carried by
the equipment Hh, then Hβ

jkimh= 1, otherwise, Hβ
jkimh= 0.

XjkOjm
If the last process of the kth sub-batch of j is completed on machine m,
XjkOjm= 1, otherwise, XjkOjm= 0.
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