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Abstract: The oxygen reduction reaction is an important reaction at the cathode in solid oxide fuel cells.
Materials that exhibit high chemical and mechanical stability, high ionic and electronic conductivity,
and are non-toxic are of great interest as cathodes for the reduction of oxygen. Here, we use density
functional theory simulations to examine the efficacy of 12CaO·7Al2O3 and 12SrO·7Al2O3 electrides
and their doped forms for the conversion of O2 gas to form O2− in their nanocages via encapsulation.
Calculations show that encapsulation is exoergic in the un-doped electrides, and the formation of O2−

is confirmed by the charge analysis. A stronger encapsulation is noted for C12A7 electride than the
S12A7 electride. The C12A7 electride doped with B or Ga also exhibits exoergic encapsulation, but its
encapsulation energy is slightly lower than that calculated for the un-doped C12A7 electride. There is
an enhancement in the encapsulation for the S12A7 electride doped with B compared to its un-doped
form. Doping of Ga in S12A7 electride exhibits only a very small change in the encapsulation with
respect to its un-doped form. The present results can be of interest in the design of cathode material
for solid oxide fuel cells.
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1. Introduction

A range of electrochemical energy storage technologies, such as batteries [1–3], fuel cells [4–6],
and supercapacitors [7–9], has been investigated so far to cut the emission of the so-called greenhouse
gases. In terms of fuel flexibility and high efficiency, solid oxide fuel cells (SOFC) are considered as
promising devices to meet the global energy demand [10]. The performance of fuel cells relies on the
electrode (anode and cathode) and electrolyte materials that are safe, low-cost, and efficient.

The cathode is an important component of a SOFC. The oxygen gas from the air enters into
the cell through the cathode, and the oxygen reduction reaction (ORR) takes place to form O2−

ions [ 1
2 O2 + 2e− → O2−]. The promising cathode material is expected to have properties, such

as high porosity to facilitate oxygen diffusion, chemically stable, high catalytic activity, and high
electronic-ionic conductivity [11,12]. A variety of cathode materials has been studied, including ABO3

perovskite oxides (e.g., La1−xSrxMnO3) [13–15], oxides with the perovskite-related K2NiF4 structure
(e.g., La2NiO4−x) [16–18], and ordered double perovskites (e.g., NdBaCo2O5+x) [19–23].

12CaO·7Al2O3 (C12A7) is a “mayenite“ type complex nanoporous oxide mainly used as a
constituent of alumina cement [24–26]. There are twelve nanocages per unit cell, with each cage having
an inner space of ~0.4 nm. This complex oxide exhibits high chemical, thermal, and mechanical stability.
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Furthermore, its constituent metal oxides (CaO and Al2O3) are non-toxic and cheap. The stoichiometric
form of C12A7 can be represented as C12A7:(O2−)2, in which the cation framework [Ca24Al28O64]4+ is
compensated by two extra-framework O2− ions [24,25]. The electride form of C12A7 is represented
as C12A7:(e−)4, in which the cation framework is compensated by four extra-framework electrons.
12SrO·7Al2O3 (S12A7) [27] is isostructural with C12A7, and its stoichiometric and electride forms can
be represented as S12A7:(O2−)2 and S12A7:(e−)4, respectively. While both stoichiometric and electride
forms of C12A7 have been well studied for different applications, only a few studies are available on the
S12A7. A variety of foreign atoms, ions, and molecules has been encapsulated to tune the properties of
both forms of C12A7 [28–35]. Surface structures of C12A7:(e−)4 have been used as promising catalyst
support to activate small molecules, such as N2 and CO2 [36–38].

Fast oxygen ion conductivity is one of the essential conditions for an electrolyte in SOFC and
has been observed in C12A7:(O2−)2 [39,40]. Furthermore, the insulating nature of C12A7:(O2−)2

makes this material more promising for use as an electrolyte, and its oxygen ion conductivity is only
one order magnitude less than that observed in yttria-stabilized zirconia [39]. The electride form of
C12A7 is a candidate material for use as a cathode material in SOFC as it is electrically conductive
and consists of nanocages where oxygen gas from the air can be encapsulated to form O2− (via the
ORR). Additionally, the encapsulated O2− ions can diffuse fast as they do in C12A7:(O2−)2 towards
electrolyte. The encapsulation capability of C12A7 and S12A7 electrides for ORR has not been explored
yet. Furthermore, electrides doped with B and Ga are also worth testing to examine where there is an
enhancement in the encapsulation.

In this work, we use spin-polarized density functional theory together with dispersion (DFT+D) to
examine the reduction of oxygen gas to form O2− ions in the nanocages of C12A7 and S12A7 electrides
and their doped forms. The current methodology allows us to calculate encapsulation energies, charges
on the encapsulated O atoms, densities of states (DOSs), and charge density plots associated with the
encapsulated complexes. The results to be presented here can be of interest in the development of
cathode materials for SOFC.

2. Computational Methods

DFT calculations are performed to obtain energy minimized structures and electronic structures
of pristine, encapsulated, and doped C12A7:(e−)4 and S12A7:(e−)4 using the Vienna Ab initio
Simulation Program (VASP) code [41,42]. This code uses projected augmented wave (PAW)
pseudopotentials [43] and plane-wave basis sets. A plane-wave basis set with the cut-off of 500 eV and
a 2 × 2 × 2 Monkhorst-Pack [44] k-point mesh, which generates 8 k-points, are used in all calculations.
The exchange-correlation energy is modeled using a generalized gradient approximation (GGA)
scheme, as defined by Perdew, Burke, and Ernzerhof (PBE) [45]. Full geometry optimization (both
atom positions and lattice constants are relaxed simultaneously) is done with the aid of the conjugate
gradient algorithm [46]. In all relaxed configurations, forces on the atoms are less than 0.001 eV/Å.
Dispersion forces are modeled using a semi-empirical approach, as described by Grimme et al. [47].

Encapsulation energy for a single O atom in C12A7:(e−)4 with respect to 1/2 O2 as a reference
state is calculated using the following equation:

Eenc = E[C12A7:O2−(e−)2]
− E[C12A7:(e−)4] − E( 1

2 O2)
(1)

where E[C12A7:O2−(e−)2]
is the total energy of a single O atom encapsulated in C12A7:(e−)4, E[C12A7:(e−)4]

is the total energy of bulk C12A7:(e−)4, and E( 1
2 O2)

is the half the energy of diatomic oxygen molecule.
A similar equation is used for the encapsulation of a single oxygen atom in the doped C12A7 and
S12A7 structures.
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3. Results

3.1. Structures of C12A7:(e−)4 and S12A7:(e−)4

First, the bulk structures of C12A7:(e−)4 and S12A7:(e−)4 are relaxed under constant pressure.
The relaxed structures are shown in Figure 1. The calculated lattice parameters, together with the
experimental values, are reported in Table 1. There is a good agreement between the calculated and
experimental lattice parameters of C12A7:(e−)4. The S12A7:(e−)4 has larger lattice parameters than
C12A7:(e−)4, and this is reflected in the cage pole distance of S12A7:(e−)4 (refer to Figure 1c).
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to Figure 2b). Electron charge densities near the Fermi level are plotted for both C12A7:(e−)4 and 
S12A7:(e−)4. There is a uniform distribution of electrons in twelve cages of both electrides (refer to 
Figure 2c,d). 

Figure 1. (a,b) Relaxed structures of C12A7:(e−)4 and S12A7:(e−)4, respectively, and (c,d) corresponding
relaxed cages occupied with extra-framework electrons. Cage pole Ca–Ca and Sr–Sr distances are
calculated to be 5.70 Å and 5.73 Å in C12A7:(e−)4 and S12A7:(e−)4, respectively.

Table 1. Calculated lattice parameters of C12A7:(e−)4 and S12A7:(e−)4. Available experimental values
are shown in parentheses.

Parameters
Electrides

C12A7:(e−)4 S12A7:(e−)4

A = b = c (Å) 12.06 (12.00) [48] 12.40
α = β = γ (◦) 90.0 90.0

V (Å3) 1752.51 1908.59

In our previous study [27], the electronic structure of C12A7:(e−)4 has been discussed.
The calculated DOS plot shows that C12A7:(e−)4 is a metal (refer to Figure 2a). This is due to the
extra-framework electrons occupying nanocages. A similar metallic character is noted for S12A7:(e−)4

(refer to Figure 2b). Electron charge densities near the Fermi level are plotted for both C12A7:(e−)4 and
S12A7:(e−)4. There is a uniform distribution of electrons in twelve cages of both electrides (refer to
Figure 2c,d).
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Figure 3. Relaxed cages, containing O2− ions in the encapsulated C12A7 and S12A7 electrides. 
Incorporated O2− ions are shown in yellow color. (a) C12A7:(e−)2O2‒, (b) C12A7:(O2−)2, (c) S12A7:(e−)2O2‒ 

, (d) S12A7:(O2−)2. 

Figure 2. (a,b) DOS (density of states) plots calculated for C12A7:(e−)4 and S12A7:(e−)4, respectively,
and (c,d) corresponding charge density plots associated with the extra-framework electrons.

3.2. Encapsulation of Oxygen Atoms in C12A7:(e−)4 and S12A7:(e−)4

The encapsulation of two oxygen atoms is considered consequently in the empty cages
of C12A7:(e−)4 and S12A7:(e−)4. The relaxed cages containing O2− ions are shown in Figure 3.
The encapsulation results in a significant contraction in the cage pole distances. This is due to the
strong attraction between Ca2+ (or Sr2+) and encapsulated O2− ions. Cage pole distances are shorter in
C12A7 than that observed in S12A7. This is because of the higher charge density of Ca2+ than that of
Sr2+ and shorter lattice constant of C12A7 than that of S12A7.
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(c) S12A7:(e−)2O2−, (d) S12A7:(O2−)2.
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The calculated lattice constants and volumes of encapsulated structures are reported in Table 2.
The contraction in the cage pole distances is further evidenced by the contraction in the lattice constants
and volumes with respect to their electride forms. The encapsulation of two oxygen atoms leads to the
stoichiometric forms of C12A7 and S12A7. The experimental lattice constants of those structures are in
good agreement with the calculated values (refer to Table 2).

Table 2. Calculated lattice parameters of oxygen encapsulated structures. Available experimental
values are provided in parentheses.

Parameters
Oxygen Encapsulated Structures

C12A7:(e−)2O2− S12A7:(e−)2O2− C12A7:(O2−)2 S12A7:(O2−)2

a (Å) 12.06 12.41 12.05 (11.99) [49] 12.38 (12.33) [49]
b (Å) 12.06 12.41 12.01(11.99) [49] 12.35 (12.33) [49]
c (Å) 12.00 12.36 12.02 (11.99) [49] 12.36 (12.33) [49]

α = β = γ (◦) 90.0 90.0 90.0 90.0
V (Å3) 1746.59 1902.48 1739.95 1889.90

The encapsulation energies and the Bader charges [50] on the encapsulated oxygen atoms are
reported in Table 3. The encapsulation energy calculated for the second oxygen is lower than that
calculated for the first encapsulation in both cases. This is due to the less number of electrons available
for the second encapsulation. The encapsulation is stronger in C12A7 than S12A7. This is because of
the stronger attraction of cage pole Ca2+ ions to encapsulate O2− ions than that of Sr2+ ions. The Bader
charge approximation shows that the encapsulated oxygen atom gains ~1.40 electrons from the
extra-framework electrons in the cages. Notably, the Bader charge on the framework oxygen atom
in the cages is ~−1.74. This is due to the strong bonding between Al3+ ions and cage wall O2− ions,
resulting in short Al–O bond distances of ~1.75 Å.

Table 3. The encapsulation energies and Bader charge on the encapsulated oxygen atoms.

Encapsulation Process Encapsulation Energy
(eV)

Bader Charge on Encapsulated
Oxygen (|e|)

C12A7:(e−)4 + 1/2 O2 → C12A7:(e−)2O2− −4.81 −1.36
C12A7:(e−)2O2− + 1/2 O2 → C12A7:(O2−)2 −4.30 −1.39 (2)

S12A7:(e−)4 + 1/2 O2 → S12A7:(e−)2O2− −4.18 −1.42
S12A7:(e−)2O2− + 1/2 O2 → S12A7:(O2−)2 −4.04 −1.43 (2)

The encapsulation of oxygen atoms reduces the concentration of extra-framework electrons.
Once two oxygen atoms are encapsulated, all four electrons are gained by those two oxygen atoms.
Figure 4a shows the DOS plot calculated for C12A7:(e−)2O2−. The peak associated with the p-states of
encapsulated oxygen atom appears at ~3 eV. States associated with the remaining two extra-framework
electrons appear just below the Fermi level. The resultant structure is still metallic due to the remaining
extra-framework electrons. In the case of C12A7:(O2−)2 (Figure 4b), the Fermi energy level shifts
towards the valence band, and the system becomes an insulator. The reduction of electrons in the
C12A7:(e−)2O2− and the disappearance of extra-framework electrons in the C12A7:(O2−)2 are shown
in Figure 4c,d, respectively. Similar DOS plots (Figure 4e,f) and the charge density plots, showing the
disappearance of electrons (Figure 4g,h), are also shown.
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Figure 4. (a,b) Calculated DOS plots of C12A7:(e−)2O2− and C12A7:(O2−)2 and (c,d) corresponding
charge density plots associated with remaining extra-framework electrons and encapsulated oxygen
atoms, respectively. Similar plots (e–h) are also shown for S12A7:(e−)2O2− and S12A7:(O2−).

3.3. Encapsulation of Oxygen Atoms in C12A7:(e−)4 and S12A7:(e−)4 Doped with B and Ga

Next, the electride structures are doped with B and Ga on the Al site. Figure 5 shows the
relaxed structures. Calculated lattice parameters and volumes are reported in Table 4. In the case of
B-doped eletrides (refer to Figure 5a,b), cage pole distances are slightly contracted with respect to
those calculated in their un-doped electrides. This is due to the strong bonding between B and the
cage wall oxygen, as evidenced by the shorter B–O bond distances (1.53 Å–1.56 Å) than the Al–O bond
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distances (1.74 Å–1.79 Å) in the un-doped electrides. The formation of a stronger B–O bond than the
Al–O bond is due to the fact that the ionization potential of B (8.2980) [51] is larger than that of Al
(5.9858) [51]. The reduction in the calculated lattice parameters and volumes is further evidence for
the strong B–O bond, as reported in Table 4. Doping of Ga has a very small impact on the cage pole
distances, lattice parameters, and volumes with respect to the values calculated for un-doped electrides
(refer to Tables 1 and 4). However, there is a very small increase in the cage pole distances, lattice
parameters, and volumes compared to those calculated in their un-doped electride forms. This is
because the ionization potential of Ga (5.9993) [51] is slightly larger than that of Al (5.9858).
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Table 4. Calculated lattice parameters and volumes of doped electrides.

Parameters
Doped Electrides

B·C12A7:(e−)4 Ga·C12A7:(e−)4 B·S12A7:(e−)4 Ga·S12A7:(e−)4

a = b = c (Å) 12.02 12.07 12.36 12.42
α = β = γ (◦) 90.0 90.0 90.0 90.0

V (Å3) 1735.69 1757.16 1890.11 1915.53

The calculated DOS plots for all doped configurations are shown in Figure 6. In the case of
B·C12A7:(e−)4, the electronic structure is slightly affected. The Fermi energy is increased only by 0.03 eV
compared to the value calculated for C12A7:(e−)4. The Fermi energy is unaltered upon B encapsulation
in S12A7:(e−)4. The resultant complexes are still metallic. Doping of Ga in C12A7:(e−)4 has resulted in
a small shift in the Fermi energy level by 0.06 eV. A similar effect is noted for Ga·S12A7:(e−)4. Again,
metallic nature is still kept. Atomic DOS plots calculated for B and Ga show that B or Ga states mainly
appear in the valence band.
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Finally, two oxygen atoms are encapsulated, consequently in the doped electrides. Relaxed
structures of encapsulated oxygen atom-containing cages are shown in Figure 7. Table 5 reports the
lattice parameters and volumes calculated in the relaxed configurations. There is an increase in the
volume for oxygen encapsulated B-doped electride structures (refer to Table 5) in comparison with that
calculated in the oxygen encapsulated un-doped electrides (refer to Table 2). Lattice constants are also
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contracted in all B-doped configurations. In the case of Ga, there is an expansion in the lattice constants
and the volumes. The explanation for this difference is due to the formation of shorter B–O and longer
Ga–O bonds than that of Al–O bonds (refer to Figure 7). Cage pole distances in the oxygen-containing
cages are shortened upon doping of B compared to that observed in the corresponding un-doped
structures. Ga-doped structures exhibit only a very small effect on the cage pole distances.
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Table 5. Calculated lattice parameters and volumes of oxygen encapsulated doped structures.

Parameters
Oxygen Encapsulated Doped Structures

B·C12A7:(e−)2O2− B·S12A7:(e−)2O2− B·C12A7:(O2−)2 B·S12A7:(O2−)2

a (Å) 12.02 12.36 11.98 12.32
b (Å) 12.02 12.36 11.98 12.32
c (Å) 11.97 12.33 11.97 12.32

α = β = γ (◦) 90.0 90.0 90.0 90.0
V (Å3) 1730.13 1883.53 1719.30 1870.62

Ga·C12A7:(e−)2O2− Ga·S12A7:(e−)2O2− G·C12A7:(O2−)2 Ga·S12A7:(O2−)2
a (Å) 12.08 12.42 12.07 12.40
b (Å) 12.07 12.41 12.02 12.36
c (Å) 12.02 12.37 12.03 12.38

α = β = γ (◦) 90.0 90.0 90.0 90.0
V (Å3) 1751.07 1907.55 1744.47 1896.43

The calculated encapsulation energies and Bader charges on the B (or Ga) and the encapsulated
oxygen atoms are reported in Table 6. In all configurations, B (or Ga) forms a +3 charge, as Al does.
The encapsulation is exothermic in all cases, meaning that oxygen is more stable inside the cages as
O2− ion than its gaseous form. Bader charge approximation confirms that the encapsulated oxygen
atom gains ~1.40 electrons from the extra-framework electrons. The encapsulation energy calculated
for the second oxygen atom is slightly lower than that calculated for the first oxygen atoms due to
the lower number of electrons available for the second encapsulation. The encapsulation energies are
more negative for C12A7 electrides than S12A7 electrides. This is due to the smaller size of the cage
in C12A7 than S12A7, as evidenced by the smaller cage pole distance. In the case of B or Ga-doped
C12A7 electrides, the encapsulation energies are less exothermic than that calculated for the un-doped
C12A7 electrides (refer to Tables 3 and 6). Conversely, there is a small increase in the encapsulation
energies for B-doped S12A7 electride in comparison with un-doped S12A7. The encapsulation is not
significantly affected by the doping of Ga in S12A7.

Table 6. The encapsulation energies and Bader charge on the encapsulated oxygen atoms in
doped structures.

Encapsulation Process Encapsulation
Energy (eV) Bader Charge (|e|)

B or Ga O
B·C12A7:(e−)4 + 1/2 O2 → B·C12A7:(e−)2O2− −4.72 +3.00 −1.39

B·C12A7:(e−)2O2− + 1/2 O2 → B·C12A7:(O2−)2 −4.62 +3.00 −1.40, −1.44
Ga·C12A7:(e−)4 + 1/2 O2 → Ga·C12A7:(e−)2O2− −4.56 +3.00 −1.37

Ga·C12A7:(e−)2O2− + 1/2 O2 → Ga·C12A7:(O2−)2 −4.25 +3.00 −1.38, −1.40
B·S12A7:(e−)4 + 1/2 O2 → B·S12A7:(e−)2O2− −4.31 +3.00 −1.42

B·S12A7:(e−)2O2− + 1/2 O2 → B·S12A7:(O2−)2 −4.29 +3.00 −1.43 (2)
Ga·S12A7:(e−)4 + 1/2 O2 → Ga·S12A7:(e−)2O2− −4.17 +3.00 −1.40

Ga·S12A7:(e−)2O2− + 1/2 O2 → Ga·S12A7:(O2−)2 −3.94 +3.00 −1.43 (2)

The calculated DOS plots for the encapsulated configurations are shown in Figure 8.
The encapsulation reduces the Fermi energy (refer to Figures 6 and 8). There is a significant change
in the Fermi energy level between the first and the second atom encapsulation. This is because the
metallic character of the first encapsulated structure disappears upon the second atom encapsulation.
As both dopants (B and Ga) are isoelectronic with Al and all three atoms are in the +3 charge state,
doping does not increase or decrease the concentration of electrons.
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4. Conclusions

The encapsulation efficacy of C12A7 and S12A7 electrides and their doped forms are examined for
the ORR at the cathode in SOFC using spin-polarized DFT simulations. The exothermic encapsulation
is observed for both electrides, and the reduction of oxygen is confirmed by the negative Bader charge
on the encapsulated oxygen atoms. The encapsulation is stronger in C12A7 electride than the S12A7
electride. The doped C12A7 electrides are also promising as they exhibit exoergic encapsulation, though
the encapsulation is slightly lower than that calculated for the un-doped C12A7 electride. Conversely,
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there is an enhancement in the encapsulation for the S12A7 electride doped with B compared to its
un-doped form. The Ga-doped S12A7 electride exhibits a negligible change in the encapsulation with
respect to its un-doped form. The current simulation study can stimulate future experimental studies
designing of cathode material for SOFC. The performance of electride materials should be tested and
compared with traditional cathodes, such as lanthanum strontium manganite (LSM) and lanthanum
strontium cobalt ferrite (LSCF).
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